首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We traced an acid proteinase from Candida spp. in the initial stages of the pathogenesis of the mycosis. On infection of human buccal mucosa, proteinase antigens were detected by immuno-scanning electron microscopy on the surface of adhering blastoconidia and invading filamentous cells of C. albicans serotype A. Proteinase antigens were also present on blastoconidia of C. albicans serotype B, but were missing on filamentous cells of this serotype. Proteolytic isolates of C. tropicalis behaved like C. albicans serotype A. An isolate of C. parapsilosis did not express the proteinase antigen under conditions of this study. After infection of mucosa, culture medium of C. albicans or C. tropicalis showed a time-dependent accumulation of acid proteolytic activity, indicating that the visualized antigens represent active proteinase. No such activity was detected in the medium of C. parapsilosis. Preliminary experiments with the proteinase inhibitor pepstatin A revealed an 89% reduction of mucosal adherence of C. albicans (serotype A). These results suggest that Candida proteinase is involved in fungal attachment. The pattern of adherence reflects the differential expression of secretory proteinase by different candidal strains.  相似文献   

2.
3.
The expression of secreted aspartyl proteinases (Saps) by clinical isolates of Candida albicans, C. tropicalis and C. parapsilosis in human saliva supplemented with glucose and in a proteinase-inducing medium (YCB-BSA), was investigated. Also, yeast growth, pH fluctuation and total protein concentration of the saliva cultures during incubation were measured. Sap expression was assessed by evaluating the enzyme activity as well as the antigen concentration. Saps were expressed well in human saliva supplemented with glucose by all three Candida species, although greater expressions was found in YCB-BSA medium. C. albicans isolates were significantly more proteolytic than the non-albicans isolates. In general, for all three species, the rate of yeast growth, pH fluctuation and percentage reduction of total salivary protein concentration concurred with the degree of expression of Saps. These data strongly suggest that Saps of C. albicans, C. tropicalis and C. parapsilosis may play an active role in the progression of oral candidoses, particularly with regard to the abundance of low pH microenvironments in the oral cavity, which are regularly replenished with dietary carbohydrates.  相似文献   

4.
The yeasts of the genus Candida are opportunistic pathogens associated with the rising incidence of life-threatening infections in immunocompromised individuals. Secretion of aspartic proteinases has been determined to be one of the virulence factors of the pathogenic Candida species. To analyze the extracellular proteolytic activities of a large number of Candida clinical isolates, we developed a screening system based on a solid medium containing hemoglobin as the sole nitrogen source. The cleavage of hemoglobin by the secreted proteinases results in formation of clearance zones. The visibility of such zones was enhanced by addition of an acid-base indicator. Using this system, we assessed 245 clinical isolates of Candida from patients in the hospital of the Faculty of Medicine, Palacky University, Olomouc, Czech Republic, for the presence of secreted aspartic proteases (Saps). We also used the test plates for rapid semiquantitative testing of Sap inhibitors. Most of the pepstatin analogs affected the formation of the zones of clearance as well as the growth of Candida albicans, C. tropicalis, and C. parapsilosis colonies. By contrast, the human immunodeficiency virus proteinase inhibitors saquinavir, ritonavir, nelfinavir, and indinavir had no effect on the Candida strains tested. These results are in agreement with the inhibition constants obtained for the individual inhibitors with purified Saps. Thus, the plates containing hemoglobin proved to be an appropriate tool for the rapid and reliable assessment of Sap production and inhibition.  相似文献   

5.
Early identification of Candida isolates to the species level is necessary for effective antifungal therapy, and can also facilitate control of hospital infections. Phenotype-based methods for identifying Candida species are often difficult and time-consuming. Molecular biological techniques provide a useful alternative approach. In the present study, the ITS1-5.8S-ITS2 regions of fungal rRNA genes were amplified with universal primers in 20 standard strains. Digestion of the PCR products with one restriction enzyme, MspI, allowed discrimination of medically important Candida species, including C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, and C. guilliermondii. Using this method, we successfully identified 137 clinical isolates of Candida. Among them, C. albicans was identified as the most common species, followed by C. parapsilosis, C. tropicalis, C. glabrata, C. krusei, and C. guilliermondii. This method is a simple, rapid, and cost-effective method for differentiation between species that is applicable in clinical laboratories.  相似文献   

6.
Candida albicans has been shown to stimulate infection in mice by a number of bacteria when both organisms are inoculated intraperitoneally (E. Carlson, Infect. Immun. 39:193-197, 1983). When subcutaneous and intraperitoneal inoculations were given with Staphylococcus aureus and C. albicans injected at opposite sites, mixed infection was established at the site of fungal inoculation but not at the site of the bacterial injection. Histopathologic evaluation of tissues for the presence of C. albicans and S. aureus after intraperitoneal inoculation of both showed fungal growth in the mesentery and omentum of the abdominal cavity. Cocci were numerous and always associated with the fungi, located within the fungal growth rather than at its periphery. It was concluded that this growth pattern in some way protected the bacteria and was the basis for the generalized fungal stimulation of the bacterial infections observed. In addition to C. albicans, Candida stellatoidea, Candida tropicalis, Candida parapsilosis, Torulopsis glabrata, and heat-inactivated C. albicans also demonstrated some ability to protect bacteria injected simultaneously, although C. parapsilosis and T. glabrata were less effective than the other yeasts in this respect.  相似文献   

7.
In order to approximate and adhere to mucosal epithelial cells, Candida must traverse the overlying mucus layer. Interactions of Candida species with mucin and human buccal epithelial cells (BECs) were thus investigated in vitro. Binding of the Candida species to purified small intestinal mucin showed a close correlation with their hierarchy of virulence. Significant differences (P < 0.05) were found among three categories of Candida species adhering highly (C. dubliniensis, C. tropicalis, and C. albicans), moderately (C. parapsilosis and C. lusitaniae) or weakly (C. krusei and C. glabrata) to mucin. Adherence of C. albicans to BECs was quantitatively inhibited by graded concentrations of mucin. However, inhibition of adherence was reversed by pretreatment of mucin with pronase or C. albicans secretory aspartyl proteinase Sap2p but not with sodium periodate. Saturable concentration- and time-dependent binding of mucin to C. albicans was abrogated by pronase or Sap2p treatment of mucin but was unaffected by beta-mercaptoethanol, sodium periodate, neuraminidase, lectins, or potentially inhibitory sugars. Probing of membrane blots of the mucin with C. albicans revealed binding of the yeast to the 66-kDa cleavage product of the 118-kDa C-terminal glycopeptide of mucin. Although no evidence was found for the participation of C. albicans cell surface mannoproteins in specific receptor-ligand binding to mucin, inhibition of binding by p-nitrophenol (1 mM) and tetramethylurea (0.36 M) revealed that hydrophobic interactions are involved in adherence of C. albicans to mucin. These results suggest that C. albicans may both adhere to and enzymatically degrade mucins by the action of Saps, and that both properties may act to modulate Candida populations in the oral cavity and gastrointestinal tract.  相似文献   

8.
We developed a microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species. Nucleotide sequences derived from the internal transcribed spacer (ITS) region of fungal rDNA were used to develop species-specific oligonucleotide probes for Candida albicans, C. tropicalis, C. parapsilosis, and C. krusei. No cross-hybridization was detected with any other fungal, bacterial, or human DNAs tested. In contrast, a C. (Torulopsis) glabrata probe cross-reacted with Saccharomyces cerevisiae DNA but with no other DNAs tested. Genomic DNA purified from C. albicans blastoconidia suspended in blood was amplified by PCR with fungus-specific universal primers ITS3 and ITS4. With the C. albicans-specific probe labeled with digoxigenin, a biotinylated capture probe, and streptavidin-coated microtitration plates, amplified DNA from a few as two C. albicans cells per 0.2 ml of blood could be detected by enzyme immunoassay.  相似文献   

9.
Biofilm production has been implicated as a potential virulence factor of some Candida species responsible for catheter-related fungemia in patients receiving parenteral nutrition. We therefore compared clinical bloodstream isolates representing seven different Candida species to each other and to those from other anatomical sites for the capacity to form biofilms in glucose-containing medium. Potential associations between the capacity to form biofilms and the clinical characteristics of fungemia were also analyzed. Isolates included the following from nonneutropenic patients: 101 bloodstream isolates (35 C. parapsilosis, 30 C. albicans, 18 C. tropicalis, 8 C. glabrata, and 10 other Candida species isolates) and 259 clinical isolates from other body sites (116 C. albicans, 53 C. glabrata, 43 C. tropicalis, 17 C. parapsilosis, and 30 other Candida species isolates). Organisms were grown in Sabouraud dextrose broth (SDB) containing a final concentration of 8% glucose to induce biofilm formation, as published previously. Biofilm production was determined by both visual and spectrophotometric methods. In this medium, biofilm production by C. albicans isolates was significantly less frequent (8%) than that by non-C. albicans Candida species (61%; P < 0.0001). The overall proportion of non-C. albicans Candida species isolates from the blood that produced biofilms was significantly higher than that of non-C. albicans Candida isolates obtained from other sites (79% versus 52%; P = 0.0001). Bloodstream isolates of C. parapsilosis alone were significantly more likely to be biofilm positive than were C. parapsilosis isolates from other sites (86% versus 47%; P = 0.0032). Non-C. albicans Candida species, including C. parapsilosis, were more likely to be biofilm positive if isolates were derived from patients whose candidemia was central venous catheter (CVC) related (95%; P < 0.0001) and was associated with the use of total parenteral nutrition (TPN) (94%; P < 0.005). These data suggest that the capacity of Candida species isolates to produce biofilms in vitro in glucose-containing SDB may be a reflection of the pathogenic potential of these isolates to cause CVC-related fungemia in patients receiving TPN.  相似文献   

10.
Effectiveness of amphotericin B alone or in combination with rifampicin or clarithromycin on the killing of Candida species biofilms was investigated in vitro. Amphotericin B was assayed at 0.005 to 10 mg/ml. Rifampin and clarithromycin were assayed at 10 mg/ml. We studied 7 Candida albicans, 3 Candida parapsilosis, 3 Candida glabrata, 3 Candida krusei and 2 Candida tropicalis strains. Biofilms were developed in 96-well, flat-bottomed microtiter plates for 48 hours. A synergistic effect between amphotericin B and clarithromycin was demonstrated against 66.6% of C. parapsilosis, 66.6% of C. glabrata, and 42.8% of C. albicans biofilms. A synergistic effect between amphotericin B and rifampin was demonstrated against 66.6% of C. parapsilosis, 42.8% of C. albicans, and 33.3% of C. glabrata biofilms. No synergistic effect was observed against C. krusei or C. tropicalis biofilms with any of the combinations. Rifampin or clarithromycin alone did not exert any effect on Candida species biofilms. Rifampin or clarithromycin combinations with amphotericin B might be of interest in the treatment of Candida biofilm-related infections.  相似文献   

11.
From June to July 1998, two episodes of Candida tropicalis fungemia occurred in the Aristotle University neonatal intensive care unit (ICU). To investigate this uncommon event, a prospective study of fungal colonization and infection was conducted. From December 1998 to December 1999, surveillance cultures of the oral cavities and perinea of the 593 of the 781 neonates admitted to the neonatal ICU who were expected to stay for >7 days were performed. Potential environmental reservoirs and possible risk factors for acquisition of C. tropicalis were searched for. Molecular epidemiologic studies by two methods of restriction fragment length polymorphism analysis and two methods of random amplified polymorphic DNA analysis were performed. Seventy-two neonates were colonized by yeasts (12.1%), of which 30 were colonized by Candida albicans, 17 were colonized by C. tropicalis, and 5 were colonized by Candida parapsilosis. From December 1998 to December 1999, 10 cases of fungemia occurred; 6 were due to C. parapsilosis, 2 were due to C. tropicalis, 1 was due to Candida glabrata, and 1 was due to Trichosporon asahii (12.8/1,000 admissions). Fungemia occurred more frequently in colonized than in noncolonized neonates (P < 0.0001). Genetic analysis of 11 colonization isolates and the two late blood isolates of C. tropicalis demonstrated two genotypes. One blood isolate and nine colonization isolates belonged to a single type. The fungemia/colonization ratio of C. parapsilosis (3/5) was greater than that of C. tropicalis (2/17, P = 0.05), other non-C. albicans Candida spp. (1/11, P = 0.02), or C. albicans (0/27, P = 0.05). Extensive environmental cultures revealed no common source of C. tropicalis or C. parapsilosis. There was neither prophylactic use of azoles nor other risk factors found for acquisition of C. tropicalis except for total parenteral nutrition. A substantial risk of colonization by non-C. albicans Candida spp. in the neonatal ICU may lead to a preponderance of C. tropicalis as a significant cause of neonatal fungemia.  相似文献   

12.
Colonization of biomaterial by Candida species could be the first step of Candida infection. We examined the in vitro adherence capabilities of five Candida species to polyvinyl chlorure (PVC). Twenty stains were tested: C. albicans (9), C. glabrata (3), C. tropicalis (3), C. kefyr (4) and C. parapsilosis (1). The adherence to PVC was evaluated by direct microscopic examination. The results indicate that the adherence of C. albicans to PVC is similar to that of C. glabrata and C. tropicalis. Only C. kefyr adheres to a lower degree. We conclude that the adherence capabilities of non-albicans species were similar to that of C. albicans. There is a relationship between the adherence of Candida species and their abilities to colonize the biomaterial. The species, which are more adherent, are those, which are more virulent.  相似文献   

13.
Little is known about fungal biofilms, which may cause infection and antibiotic resistance. In this study, biofilm formation by different Candida species, particularly Candida albicans and C. parapsilosis, was evaluated by using a clinically relevant model of Candida biofilm on medical devices. Candida biofilms were allowed to form on silicone elastomer and were quantified by tetrazolium (XTT) and dry weight (DW) assays. Formed biofilm was visualized by using fluorescence microscopy and confocal scanning laser microscopy with Calcofluor White (Sigma Chemical Co., St. Louis, Mo.), concanavalin A-Alexafluor 488 (Molecular Probes, Eugene, Oreg.), and FUN-1 (Molecular Probes) dyes. Although minimal variations in biofilm production among invasive C. albicans isolates were seen, significant differences between invasive and noninvasive isolates (P < 0.001) were noted. C. albicans isolates produced more biofilm than C. parapsilosis, C. glabrata, and C. tropicalis isolates, as determined by DW assays (P was <0.001 for all comparisons) and microscopy. Interestingly, noninvasive isolates demonstrated a higher level of XTT activity than invasive isolates. On microscopy, C. albicans biofilms had a morphology different from that of other species, consisting of a basal blastospore layer with a dense overlying matrix composed of exopolysaccharides and hyphae. In contrast, C. parapsilosis biofilms had less volume than C. albicans biofilms and were comprised exclusively of clumped blastospores. Unlike planktonically grown cells, Candida biofilms rapidly (within 6 h) developed fluconazole resistance (MIC, >128 microg/ml). Importantly, XTT and FUN-1 activity showed biofilm cells to be metabolically active. In conclusion, our data show that C. albicans produces quantitatively larger and qualitatively more complex biofilms than other species, in particular, C. parapsilosis.  相似文献   

14.
Adherence and penetration of vascular endothelium by Candida yeasts   总被引:7,自引:13,他引:7       下载免费PDF全文
Metastatic infection after hematogenous dissemination of Candida species is presumably dependent on the fungus traversing the vascular endothelium. An in vitro model of the earliest events of metastatic Candida infection was developed with whole vascular strips. Freshly obtained porcine blood vessels were secured in a perforated Lucite template that allowed the application of yeasts directly to the endothelial surface. Multiple wells allowed experimental and control observations on the same vascular segments. Adherence to endothelium was greatest with Candida albicans and Candida tropicalis, less with Candida Krusei, and least with Candida parapsilosis, Candida pseudotropicalis, and Torulopsis glabrata. This hierarchy of adherence parallels that in other in vitro systems employing mucosal epithelial cells or fibrin-platelet matrixes and reflects the known virulence of the respective species and their potential for hematogenous dissemination. C. albicans and C. tropicalis yeasts that adhered were capable of directly traversing the endothelial surface before the production of germ tubes. Heat or Formalin-killed yeasts and viridans group streptococci, although adherent, were incapable of vascular penetration, a process presumably attributable to enzymatic digestion of host tissue. Loss of integrity of penetrated endothelial tissue was verified by loss of dye exclusion, lactic dehydrogenase release, and ultramicroscopic changes. These two steps, adherence and penetration, provide direct insight into the earliest events in hematogenous Candida species dissemination and suggest that C. albicans and C. tropicalis yeasts are capable of initiating tissue invasion before germ tubes have had the opportunity to form and participate in the invasive process.  相似文献   

15.
Candida species have recently emerged as important nosocomial pathogens. Because of the lack of a reliable system for detecting differences within the same species, little is known about the epidemiology of infection with Candida species. We describe a typing system for Torulopsis glabrata and the non-C. albicans Candida species that uses contour-clamped homogeneous electric field electrophoresis (CHEF), a version of pulsed-field gradient gel electrophoresis, and compared it with restriction enzyme analysis (REA) of genomic DNA. One hundred seventeen clinical isolates from 40 patients were evaluated. CHEF and REA were performed on each of the isolates, and the results of the two procedures were compared. The REA procedure revealed 8 different types of Candida lusitaniae, 20 of Torulopsis glabrata, 5 of Candida tropicalis, 3 of Candida parapsilosis, and 7 of Candida kefyr, whereas the CHEF method revealed 14 different types of C. lusitaniae, 16 of T. glabrata, 10 of C. tropicalis, 10 of C. parapsilosis, and 7 of C. kefyr. The CHEF technique yielded unique patterns of electrophoretic karyotypes that could be used to distinguish intraspecies variations. When compared with REA, CHEF demonstrated greater sensitivity in recognizing subtle strain-to-strain variations in most isolates and will be a useful epidemiologic tool for studying non-C. albicans Candida species and T. glabrata.  相似文献   

16.
PCR of a Candida albicans cytochrome P-450 lanosterol-alpha-demethylase (P450-L1A1) gene segment is a rapid and sensitive method of detection in clinical specimens. This enzyme is a target for azole antifungal action. In order to directly detect and identify the clinically most important species of Candida, we cloned and sequenced 1.3-kbp fragments of the cytochrome P450-L1A1 genes from Torulopsis (Candida) glabrata and from Candida krusei. These segments were compared with the published sequences from C. albicans and Candida tropicalis. Amplimers for gene sequences highly conserved throughout the fungal kingdom were first used; positive PCR results were obtained for C. albicans, T. glabrata, C. krusei, Candida parapsilosis, C. tropicalis, Cryptococcus neoformans, and Trichosporon beigelii DNA extracts. Primers were then selected for a highly variable region of the gene, allowing the species-specific detection from purified DNA of C. albicans, T. glabrata, C. krusei, and C. tropicalis. The assay sensitivity as tested for C. albicans in seeded clinical specimens such as blood, peritoneal fluid, or urine was 10 to 20 cells per 0.1 ml. Compared with results obtained by culture, the sensitivity, specificity, and efficiency of the species-specific nested PCR tested with 80 clinical specimens were 71, 95, and 83% for C. albicans and 100, 97, and 98% for T. glabrata, respectively.  相似文献   

17.
Fluconazole disk-diffusion susceptibility was evaluated in 230 blood isolates and 344 non-blood clinical isolates of Candida spp. collected in 2002 at National Taiwan University Hospital. Up to 93.5% of blood isolates were susceptible to fluconazole, 3% were susceptible dose-dependent, and 3.5% were resistant. The minimum inhibitory concentrations at which 50% of tested isolates were inhibited (MIC50) of fluconazole against Candida blood isolates were highest for Candida glabrata (5 microg/mL), followed by Candida tropicalis (2.4 microg/mL), Candida albicans (2.4 microg/mL), and Candida parapsilosis (0.41 microg/mL). C. glabrata had less fluconazole-susceptible strains (76.7%) than C. albicans (98.2%), C. tropicalis (98%) and C. parapsilosis (93.8%) [p<0.05]. The proportions of fluconazole resistance in the non-blood isolates of C. albicans, C. glabrata and C. parapsilosis were similar to those of the blood isolates. However, the proportions of fluconazole resistance in the non-blood isolates of C. tropicalis surpassed those of the blood isolates (14.7% vs 2%, p<0.05). Comparison of species distribution of Candida blood isolates obtained in 2002 to those in 1981-2000 demonstrated that C. albicans remained the leading pathogen, and the proportion of C. albicans in blood isolates was lowest in 1996 (38%) and did not change significantly thereafter. However, the proportion of C. tropicalis increased from 14% during 1981-1993 to 22-23% during 1996-2002. Overall, the MIC50, MIC90 and the proportion of Candida blood isolates with fluconazole resistance remained stable during 1994-2002.  相似文献   

18.
Micafungin is an echinocandin antifungal agent that has recently been approved for the prevention of invasive fungal infection and the treatment of esophageal candidiasis. Prospective sentinel surveillance for the emergence of in vitro resistance to micafungin among invasive Candida sp. isolates is indicated. We determined the in vitro activity of micafungin against 2,656 invasive (bloodstream or sterile site) unique patient isolates of Candida spp. collected from 60 medical centers worldwide in 2004 and 2005. We performed antifungal susceptibility testing according to the Clinical and Laboratory Standards Institute (CLSI) M27-A2 method and used a 24-hour prominent inhibition endpoint for determination of the MIC. Caspofungin was tested in parallel against all isolates. Of 2,656 invasive Candida sp. isolates, species distribution was 55.6% Candida albicans, 14.4% Candida parapsilosis, 13.4% Candida glabrata, 10.1% Candida tropicalis, 2.4% Candida krusei, 1.7% Candida guilliermondii, 0.9% Candida lusitaniae, 0.6% Candida kefyr, and 0.9% other Candida species. Overall, micafungin was very active against Candida (MIC50/MIC at which 90% of the isolates tested are inhibited [MIC90], 0.015/1 microg/ml; 96% inhibited at a MIC of < or =1 microg/ml, 100% inhibited at a MIC of < or =2 microg/ml) and comparable to caspofungin (MIC50/MIC90, 0.03/0.25 mug/ml; 99% inhibited at a MIC of < or =2 microg/ml). Results by species, expressed as MIC50/MIC90 (micrograms per milliliter), were as follows: C. albicans, 0.015/0.03; C. glabrata, 0.015/0.015; C. tropicalis, 0.03/0.06; C. krusei, 0.06/0.12; C. kefyr, 0.06/0.06; C. parapsilosis, 1/2; C. guilliermondii, 0.5/1; C. lusitaniae, 0.12/0.25; other Candida spp., 0.25/1. Although the species distribution varied considerably among the different geographic regions, there was no difference in micafungin activity across the regions. Micafungin has excellent in vitro activity against invasive clinical isolates of Candida from centers worldwide.  相似文献   

19.
A monoclonal antibody (MAb; MAb CAP1) that was reactive with extracellular aspartic proteinase of Candida albicans (CAP) was produced. The MAb showed strong sensitivity and reactivity to CAP but not to the aspartic proteinases of Candida parapsilosis, Candida tropicalis, and Aspergillus fumigatus or to human cathepsin D or porcine pepsin. The epitope of the CAP recognized by the MAb was the proteinaseous part of CAP and the putative epitope of the MAb was located in the Asp77 to Gly103 sequence. This antibody could be useful for the characterization of CAP and would be a valuable probe for the detection of CAP antigen in the sera of patients with invasive candidiasis.  相似文献   

20.
Comparative studies of random amplified polymorphic DNA (RAPD) band patterns of Candida tropicalis with those of clinically important Candida species have shown the presence of specific RAPD bands for C. tropicalis. A band specific to C. tropicalis strains (ca. 400 bp) was extracted and sequenced. It was found to belong to a fragment of the Trf4 gene, which is essential for growth of these strains and has a characteristic sequence of C. tropicalis. A PCR primer was designed specifically for C. tropicalis which amplifies the 324 bp band. The PCR primer amplified DNA products for all C. tropicalis strains tested, but did not amplify any PCR bands from C. albicans, C. dubliniensis, C. glabrata, C. guilliermondii, C. kefer, C. krusei, C. parapsilosis, or C. zeylanoides. Usefulness of the PCR primer in differentiating from clinical isolates of other fungal species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号