首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We report the results of a genome-wide search in a four-generation pedigree with autosomal dominant early-onset dementia (mean onset age: 64.9 years, range 53-79 years). In this family we previously excluded the known Alzheimer's disease genes based on linkage analysis and mutation screening of the amyloid precursor protein gene (exons 16 and 17) and the presenilin 1 and 2 genes. In addition we excluded mutations in the prion protein gene and exons 9-13 of the microtubule associated protein tau (MAPT) gene. We obtained conclusive linkage with chromosome 17q21 markers with a maximum multi-point LOD score of 5.51 at D17S951 and identified a candidate region of 4.8 cM between D17S1787 and D17S958 containing MAPT. Recent clinical and neuropathological follow-up of the family showed that the phenotype most closely resembled frontotemporal dementia (FTD) characterized by dense ubiquitin-positive neuronal inclusions that were tau negative. Extensive mutation analysis of MAPT identified 38 sequence variations in exons, introns, untranslated regions and the 5' regulatory sequence, however none was comprised within the disease haplotype. Although our findings do not entirely exclude a mutation in a yet unanalyzed region of MAPT, the apparent absence of MAPT mutations combined with the lack of tau pathology is highly suggestive for another defective gene at 17q21 responsible for FTD in this family.  相似文献   

2.
The purpose of this study was to assess 65 pedigrees ascertained through a Bipolar I (BPI) proband for evidence of linkage, using nonparametric methods in a genome-wide scan and for possible parent of origin effect using several analytical methods. We identified 15 loci with nominally significant evidence for increased allele sharing among affected relative pairs. Eight of these regions, at 8q24, 18q22, 4q32, 13q12, 4q35, 10q26, 2p12, and 12q24, directly overlap with previously reported evidence of linkage to bipolar disorder. Five regions at 20p13, 2p22, 14q23, 9p13, and 1q41 are within several Mb of previously reported regions. We report our findings in rank order and the top five markers had an NPL>2.5. The peak finding in these regions were D8S256 at 8q24, NPL 3.13; D18S878 at 18q22, NPL 2.90; D4S1629 at 4q32, NPL 2.80; D2S99 at 2p12, NPL 2.54; and D13S1493 at 13q12, NPL 2.53. No locus produced statistically significant evidence for linkage at the genome-wide level. The parent of origin effect was studied and consistent with our previous findings, evidence for a locus on 18q22 was predominantly from families wherein the father or paternal lineage was affected. There was evidence consistent with paternal imprinting at the loci on 13q12 and 1q41.  相似文献   

3.
Numerous families exhibiting both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have been described, and although many of these have been shown to harbour a repeat expansion in C9ORF72, several C9ORF72-negative FTD-ALS families remain. We performed neuropathological and genetic analysis of a large European Australian kindred (Aus-12) with autosomal dominant inheritance of dementia and/or ALS. Affected Aus-12 members developed either ALS or dementia; some of those with dementia also had ALS and/or extrapyramidal features. Neuropathology was most consistent with frontotemporal lobar degeneration with type B TDP pathology, but with additional phosphorylated tau pathology consistent with corticobasal degeneration. Aus-12 DNA samples were negative for mutations in all known dementia and ALS genes, including C9ORF72 and FUS. Genome-wide linkage analysis provided highly suggestive evidence (maximum multipoint LOD score of 2.9) of a locus on chromosome 16p12.1–16q12.2. Affected individuals shared a chromosome 16 haplotype flanked by D16S3103 and D16S489, spanning 37.9 Mb, with a smaller suggestive disease haplotype spanning 24.4 Mb defined by recombination in an elderly unaffected individual. Importantly, this smaller region does not overlap with FUS. Whole-exome sequencing identified four variants present in the maximal critical region that segregate with disease. Linkage analysis incorporating these variants generated a maximum multipoint LOD score of 3.0. These results support the identification of a locus on chromosome 16p12.1–16q12.2 responsible for an unusual cluster of neurodegenerative phenotypes. This region overlaps with a separate locus on 16q12.1–q12.2 reported in an independent ALS family, indicating that this region may harbour a second major locus for FTD-ALS.  相似文献   

4.
A Swiss frontotemporal dementia (FTD) kindred with extrapyramidal-like features and without motor neuron disease shows a brain pathology with ubiquitin-positive but tau-negative inclusions. Tau and neurofilament modifications are now studied here in three recently deceased family members. No major and specific decrease of tau was observed as described by others in, e.g., sporadic cases of FTD with absence of tau-positive inclusions. However, a slight decrease of tau, neurofilament, and synaptic proteins, resulting from frontal atrophy was detected. In parallel, polymorphic markers on chromosome 17q21-22, the centromeric region of chromosome 3 and chromosome 9, were tested. Haplotype analysis showed several recombination events for chromosomes 3 and 17, but patients shared a haplotype on chromosome 9q21-22. However as one of the patients exhibited Alzheimer and vascular dementia pathology with uncertain concomitant FTD, this locus is questionable. Altogether, these data indicate principally that the Swiss kindred is unlinked to locus 17q21-22, and that tau is not at the origin of FTD in this family.  相似文献   

5.
Families with autosomal dominant frontotemporal dementia and amyotrophic lateral sclerosis (FTD/ALS) have previously been linked to a locus on chromosome 9p21. We describe the clinical phenotype and pathology of a large family with autosomal dominant FTD/ALS with nine affected members originating from Gwent in South Wales, UK. We also further refine the locus on chromosome 9p21 using a haplotype sharing approach and assess heterogeneity in 9p21 linked families. Within this family, affected individuals present with either FTD or ALS or both diseases simultaneously. In addition there was marked phenotypic variation including ataxia, Parkinsonism, psychosis and visuo-spatial cognitive deficits. The pathological features of the three cases described were consistent with type 2 FTD pathology, as previously reported in similar families. However, we also report distinctive cerebellar and glial pathology and a significant proportion of TDP-43 negative inclusions. No mutations in known genes for FTD or ALS were found. We identified a large 4.8-megabase haplotype on chromosome 9p21, which was shared by all affected family members. This haplotype overlaps and limits the previously reported FTD/ALS linkage region on chromosome 9p21. Sequencing of this region did not identify any evidence of a pathogenic exonic mutation. This suggests that the pathogenic change affects non-coding DNA and that the disease is caused by variation in gene or protein expression.  相似文献   

6.
BACKGROUND: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with adult onset that generally progress rapidly after the onset of symptoms. The 2 conditions are independent, but they also overlap in a significant proportion of families, including 2 families in which the disorders are reported to be linked to chromosome 9p. A locus was established between the markers D9S2154 and D9S1791 by comparing haplotypes between these families. OBJECTIVE: To determine whether additional families have ALS and FTD linked to chromosome 9p. METHODS: Families were identified in Canada and France, and genotyping was performed using sequence tagged site markers around the ALS-FTD candidate interval. RESULTS: Three new families with mapping to the chromosome 9p ALS-FTD locus were identified. Analysis of the largest family shows a peak 2-point logarithm of odds (LOD) score of 2.81 and a multipoint LOD score of 3.01. The particular candidate interval delineated by this family spans 27.1 centimorgans (cM) between markers D9S157 and D9S1805. This reduces the centromeric boundary of the candidate interval compared with previously reported values, shortening the locus to 8.1 cM (8.0 megabase pairs). A maximum multipoint LOD score of 7.22 is obtained when the 3 families are combined. CONCLUSIONS: The identification of new families enables reduction of the ALS-FTD candidate region located on chromosome 9p. The clinical features observed in these families help characterize the profiles of ALS and FTD with linkage to chromosome 9p-linked families.  相似文献   

7.
OBJECTIVE To further assess the presence of a large hexanucleotide repeat expansion in the first intron of the C9orf72 gene identified as the genetic cause of chromosome 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD) in 4 unrelated families with a conclusive linkage to c9ALS/FTD. DESIGN A repeat-primed polymerase chain reaction assay. SETTING Academic research. PARTICIPANTS Affected and unaffected individuals from 4 ALS/FTD families. MAIN OUTCOME MEASURE The amplified C9orf72 repeat expansion. RESULTS We show that the repeat is expanded in and segregated perfectly with the disease in these 4 pedigrees. CONCLUSION Our findings further confirm the C9orf72 hexanucleotide repeat expansion as the causative mutation for c9ALS/FTD and strengthen the hypothesis that ALS and FTD belong to the same disease spectrum.  相似文献   

8.

Objective

Mutations in the progranulin (PGRN) gene were recently described as the cause of ubiquitin positive frontotemporal dementia (FTD). Clinical and pathological overlap between amyotrophic lateral sclerosis (ALS) and FTD prompted us to screen PGRN in patients with ALS and ALS–FTD.

Methods

The PGRN gene was sequenced in 272 cases of sporadic ALS, 40 cases of familial ALS and in 49 patients with ALS–FTD.

Results

Missense changes were identified in an ALS–FTD patient (p.S120Y) and in a single case of limb onset sporadic ALS (p.T182M), although the pathogenicity of these variants remains unclear.

Conclusion

PGRN mutations are not a common cause of ALS phenotypes.Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder predominantly involving motor neurons leading to paralysis and death within 3–5 years from symptom onset. The pathogenic mechanism leading to motor neuron degeneration is unknown in the majority of cases. Frontotemporal dementia (FTD) is a degenerative disorder of the frontal and anterior temporal lobes.1 Clinical, pathological and genetic data suggest that ALS and FTD form a spectrum of disease.2 Approximately 5% of ALS patients have FTD (ALS–FTD)3 and approximately half of patients with “classical” ALS have subtle frontal and temporal lobe cognitive impairment.4 Many FTD cases similarly develop symptoms of motor neuron involvement during the course of their illness5 and up to one third of FTD patients without overt motor symptoms have loss of anterior horn cells with characteristic ubiquitin inclusions in surviving motor neurons on autopsy.6Recently, mutations in the progranulin (PGRN) gene have been described as the cause of ubiquitin positive FTD.7,8 The overlap between ALS and FTD prompted us to screen 272 cases of sporadic ALS, 40 familial ALS cases and 49 patients diagnosed with ALS–FTD for mutations in this gene.  相似文献   

9.
Two genetically distinct types of frontotemporal dementia (FTD) are linked to chromosome 17q21. FTD with parkinsonism (FTDP-17) results from mutations in the gene encoding microtubule associated protein tau (MAPT) and is associated with tau deposition in the patient's brain. An increasing number of FTD families are linked to 17q21 in the absence of a demonstrable MAPT mutation. Brains of these patients do not show tau deposits, but tau-negative intra- and perinuclear inclusions of unknown composition that are immunoreactive to ubiquitin (FTDU-17). These ubiquitin inclusions are located in the cytoplasm or nucleus of predominantly neuronal cells of affected brain regions. By extensive segregation analyses in conclusively linked FTDU-17 families, the candidate region was reduced to a 6.2 Mb segment containing MAPT; however, genomic sequencing of MAPT in FTDU-17 patients excluded disease-causing mutations. Further, the linked region was characterized by the presence of multiple low-copy repeat regions associated with genomic instability. However, we excluded genomic rearrangements as the cause of FTDU-17. Subsequent sequencing of positional candidate genes identified loss-of-function mutations in the gene encoding progranulin (PGRN), a growth factor involved in multiple physiological processes such as cellular proliferation and survival and tissue repair, and pathological processes including tumorigenesis. In a Belgian FTD patient series, the prevalence of PGRN mutations was 3.5 times higher than that of MAPT mutations underscoring a major role for PGRN in FTD pathogenesis. Together, mutation data provided convincing evidence that PGRN haploinsufficiency leads to neurodegeneration because of reduced PGRN-mediated neuronal survival. The PGRN protein is not deposited in the ubiquitin-positive inclusions, the nature of which remains unknown. Due to the functions of PGRN in neuronal survival and the clinicopathological overlaps between FTD and other dementias it is likely that reduced PGRN expression is associated with the progression of other neurodegenerative brain diseases including Alzheimer's disease. These findings open promising novel targets for therapeutic intervention against neurodegeneration.  相似文献   

10.
The present study reports a genomewide scan using linkage analysis for risk genes involved in bipolar disorder with 613 microsatellite markers including additional testing of promising regions. As previously published significant linkage was obtained at chromosome 12q24.3 with a two-point parametric lod score of 3.42 at D12S1639 including all members in both families (empirical P-value 0.00004, genome-wide P-value 0.0417). The multipoint parametric lod score at D12S1639 was 3.63 (genome-wide P-value 0.0265). At chromosome 1p22-p21 a parametric, affecteds-only two-point lod score of 2.75 at marker D1S216 was found (empirical P-value 0.0002, genome-wide P-value 0.1622). A three-point lod score of 2.98 (genome-wide P-value 0.1022) at D1S216, and a multipoint non-parametric analysis with a maximum NPL-all score of 17.60 (P-value 0.00079) at D1S216 further supported this finding. A number of additional loci on chromosomes 4p16, 6q14-q22, 10q26 and 16p13.3 yielded parametric lod scores around or above 2.  相似文献   

11.
Autosomal recessive familial amyotrophic lateral sclerosis (RFALS) is a rare form of ALS that usually presents at an early age with slow progression of symptoms. RFALS is clinically and genetically heterogeneous and the locus of RFALS type 3 was mapped to 2q33 (ALS2) in a single family. We now report linkage of a more-common form of RFALS to chromosome 15q15-q22 markers (ALS5) and show further genetic locus heterogeneity in RFALS. ALS5 is the locus for most families with RFALS and appears to be present in both North African and European populations. Received: July 22, 1998 / Accepted: September 18, 1998 / Published online: December 18, 1998  相似文献   

12.
Bipolar affective disorder (BPAD) is a common psychiatric disorder with complex genetic aetiology. We have undertaken a genome-wide scan in one of the largest samples of bipolar affected sibling pairs (ASPs) using a two-stage approach combining sample splitting and marker grid tightening. In this second stage analysis, we have examined 17 regions that achieved a nominally significant maximum likelihood LOD score (MLS) threshold of 0.74 (or 1.18 for the X-chromosome) in stage one. The second stage has added 135 ASP families to bring the total stage 2 sample to 395 ASPs. In total, 494 microsatellite markers have been used to screen the human genome at a density of 10 cM in the first stage sample (260 ASPs) and 5 cM in the second stage. Under the broad diagnostic model, two markers gave LOD scores exceeding 3 with two-point analysis: D4S392 (LOD=3.30) and D10S197 (LOD=3.18). Multipoint analysis demonstrated suggestive evidence of linkage between BPAD and chromosomal regions 6q16-q21 (MLS=2.61) and 4q12-q21 (MLS=2.38). 6q16-q21 is of particular interest because our data, together with those from two recent genome scans, make this the best supported linkage region in BPAD. Further, our data show evidence of a gender effect at this locus with increased sharing predominantly within the male-male pairs. Our scan also provides support for linkage (MLS> or =1.5) at several other regions that have been implicated in meta-analyses of bipolar disorder and/or schizophrenia including 9p21, 10p14-p12 and 18q22.  相似文献   

13.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer-type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer-type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and the presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but also within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.  相似文献   

14.
Giant axonal neuropathy (GAN) is a rare autosomal recessive disorder described as a symmetrical distal neuropathy, with peripheral axons dilated by accumulation of 10 nm neurofilaments (NF) and a severe course of disease. The observation of kinky or curly hairs is not a constant finding. The GAN1 locus was localized by homozygosity mapping to chromosome 16 q24.1 in a 3 (4) cM interval flanked by the markers D16S3073 and D16S505 (D16S511) in three non-related Tunisian families, showing a genetic homogeneity in these families. Two point lod-score calculation between the linked haplotype and the disease locus was 14.2 at θmax = 0. The patients share a slow course of the disease. The differences in the course of the disease between Tunisian and non-Tunisian patients suggest a possible genetic heterogeneity, which is why the present linkage has been referred to as GAN1. The biochemical defect in GAN1 should help to understand the mechanisms involved in NF accumulations as in other neurological diseases (ALS, SMA). Received June 30, 1997; Revised and Accepted July 1, 1997  相似文献   

15.
Over the last couple of decades, there has been a growing body of clinical, genetic, and histopathological evidence that similar pathological processes underlie amyotrophic lateral sclerosis (ALS) and some types of frontotemporal lobe dementia (FTD). Even though there is great diversity in the genetic causes of these disorders, there is a high degree of overlap in their histopathology. Genes linked to rare cases of familial ALS and/or FTD, like FUS, TARDBP, OPTN, and UBQLN2 may converge onto a unifying pathogenic pathway and thereby provide novel therapeutic targets common to a spectrum of etiologically diverse forms of ALS and ALS–FTD. Additionally, there are major loci for ALS–FTD on chromosomes 9p and 15q. Identification of causative genetic alterations at those loci will be an important step in understanding the pathogenesis of juvenile- and adult-onset ALS and ALS–FTD. Interactions between TDP-43, FUS, optineurin, and ubiquilin 2 need to be studied to understand their common molecular pathways. Future efforts should also be directed towards generation and characterization of in vivo models to dissect the pathogenic mechanisms of these diseases. Such efforts will rapidly accelerate the discovery of new drugs that regulate accumulation of pathogenic proteins and their downstream consequences.  相似文献   

16.
Familial hemiplegic migraine (FHM) is an autosomal dominant variety of migraine with aura. We previously mapped an FHM gene on the short arm of chromosome 19. Mutations in this gene, recently shown to be the α1 subunit of a P/Q-type voltage-dependent calcium channel, CACNL1A4, are involved in approximately 50% of unselected FHM families and in all families where migraine attacks are associated with permanent cerebellar ataxia. As a first step toward the identification of other FHM genes, we conducted a genetic linkage analysis in one large French pedigree and showed significant linkage to two microsatellite markers D1S2635 (Zmax: 3.33 at = 0.05) and D1S2705 (Zmax: 3.64 at = 0.05), establishing the existence of a second locus for FHM (FHM2) on chromosome 1q21–q23. Analysis of six additional FHM families favored linkage to this locus in two of them; linkage was excluded in the last four families, indicating further heterogeneity. Chromosome 1–linked families differ from the ones linked to chromosome 19, because penetrance in those families is much lower, and in some of their members, epileptic seizures occur during severe migraine attacks.  相似文献   

17.

Aim

To investigate whether primary lateral sclerosis (PLS) represents part of the amyotrophic lateral sclerosis–frontotemporal dementia (ALS–FTD) spectrum of diseases.

Methods

Comprehensive assessment was taken on 21 patients with PLS and results were compared to patients diagnosed with pure motor ALS (n?=?27) and ALS–FTD (n?=?12). Clinical features, Addenbrooke’s Cognitive Examination (ACE) scores, Motor Neuron Disease Behaviour (Mind-B) scores, motor disability on the ALS functional rating scale (ALSFRS) and survival times were documented. Motor cortex excitability was evaluated using transcranial magnetic stimulation (TMS).

Results

Global cognition was impaired in PLS (mean total ACE score 82.5?±?13.6), similar to ALS–FTD (mean total ACE score 76.3?±?7.7, p?>?0.05) while behavioural impairments were not prominent. TMS revealed that resting motor threshold (RMT) was significantly higher in PLS (75.5?±?6.2) compared ALS–FTD (50.1?±?7.2, p?<?0.001) and ALS (62.3?±?12.6, p?=?0.046). Average short-interval intracortical inhibition (SICI) was similar in all three patient groups. The mean survival time was longest in PLS (217.4?±?22.4 months) and shortest in ALS–FTD (38.5?±?4.5 months, p?=?0.002). Bulbar onset disease (β?=???0.45, p?=?0.007) and RMT (β?=?0.54, p?=?0.001) were independent predictors of global cognition while motor scores (β?=?0.47, p?=?0.036) and SICI (β?=?0.58, p?=?0.006) were significantly associated with ALSFRS.

Conclusion

The cognitive profile in PLS resembles ALS–FTD, without prominent behavioural disturbances. A higher RMT in PLS than ALS and ALS–FTD is consistent with differential cortical motor neuronal abnormalities and more severe involvement of corticospinal axons while SICI, indicative of inhibitory interneuronal dysfunction was comparable with ALS and ALS–FTD. Overall, while these findings support the notion that PLS lies on the ALS–FTD spectrum, the mechanisms underlying slow disease progression are likely to be distinct in PLS.
  相似文献   

18.
The genetic basis of human narcolepsy remains poorly understood. Multiplex families with full-blown narcolepsy-cataplexy are rare, whereas families with both narcolepsy-cataplexy and excessive daytime sleepiness without cataplexy are more common. We performed a genomewide linkage analysis in a large French family with four members affected with narcolepsy-cataplexy and 10 others with isolated recurrent naps or lapses into sleep. Only three regions showed logarithm of odds (LOD) scores greater than 1 in two-point linkage analysis (D6S1960, D11S2359, and D21S228). Genotyping additional markers provided support for linkage to 9 markers on chromosome 21 (maximum two-point LOD score, 3.36 at D21S1245). The multipoint linkage analysis using SimWalk2 provided further evidence for linkage to the same region (maximum parametric LOD score, 4.00 at 21GT26K). A single haplotype was shared by all affected individuals and informative crossovers indicated that the elusive gene that confers susceptibility to narcolepsy is likely to be located between markers D21S267 and ABCG1, in a 5.15 Mb region of 21q.  相似文献   

19.
Ependymomas account for approximately 9% of all neuroepithelial tumors and represent the most frequent neuroepithelial tumors of the spinal cord. In adults, allelic loss of chromosome arm 22q occurs in up to 60% of the cases studied. Some of these tumors show an altered neurofibromatosis type 2 (NF2) gene; in others, NF2 appears to be unaffected, indicating the involvement of another tumor suppressor gene. Recently, the tumor suppressor gene hSNF5/INI1, located on 22q11.23, has been shown to contribute to the pathogenesis of renal and extrarenal rhabdoid tumors. In addition, this gene may be responsible for a new hereditary syndrome predisposing to a variety of tumors designated "rhabdoid predisposition syndrome." In the present study, we analyzed a series of 53 ependymal tumors of 48 patients [4 myxopapillary ependymomas (WHO grade I), 3 subependymomas (WHO grade I), 18 ependymomas (WHO grade II), 21 anaplastic ependymomas (WHO grade III) and 2 ependymoblastomas (WHO grade IV)] for mutations and homozygous deletions in the coding region of the hSNF5/INI1 gene and for allelic loss of its flanking chromosomal regions in 39 ependymal tumors of 35 patients. Allelic loss was detected in 11 of 35 informative primary ependymal tumors (31%) with a common region of overlap covered by the markers D22S257 and D22S310 on 22q11 including the marker D22S301. However, a detailed molecular analysis of 53 ependymal tumors for mutations and homozygous deletion of the hSNF5/INI1 gene revealed no alterations. We conclude that the hSNF5/INI1 gene is not involved in the pathogenesis of human ependymal tumors with allelic loss on chromosome arm 22q and an intact NF2 locus. In addition, our study localizes a putative ependymoma tumor suppressor gene(s) to a domain of chromosome arm 22q flanked by the microsatellite markers D22S257 and D22S310.  相似文献   

20.
Chromosome 7q21-22 and, in particular, the region surrounding D7S554 emerged from the recent American genome screen in multiple sclerosis (MS) as the most promising region genome-wide for harboring a disease susceptibility gene. We tested association between D7S554 and MS in 217 Sardinian trio MS families by the transmission disequilibrium test (TDT), and in a Northern Irish case-control study comprising 542 individuals. In both populations, we found evidence for significant allelic association (P(c)=0.04 and P(c)=0.0002, respectively). In a second stage, we analysed five microsatellite markers in a 4 megabase interval on chromosome 7q21-22 in the same set of Sardinian families. Parental transmission of a single allele of one of these markers, i.e. D7S3126, was significantly distorted (P(c)=0.008). D7S554 and D7S3126 are located at distances of, respectively, 40 and 81 kb 5' from the startcodon of the protachykinin-1 gene (TAC1), and occur in strong linkage disequilibrium (P<10(-7)). Our study indicates that the previous finding of linkage with D7S554 refers possibly to the presence of an MS susceptibility effect in vicinity to TAC1. In addition, a second independent association was uncovered between a microsatellite polymorphism in the plasminogen activator inhibitor-1 gene, i.e. D7S477, and MS. Overall, the analysis presented here may contribute to the increasingly refined genomic map of MS and underscores the requirement for a further high-resolution screening of chromosome 7q21-22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号