首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location of the motoneurons innervating the extraocular muscles of the guinea-pig was investigated using horseradish peroxidase (HRP) and the fluorescent substances fast blue, propidium iodide and nuclear yellow as retrograde tracers. The innervation of the inferior rectus, medial rectus and inferior oblique muscles is exclusively ipsilateral, and these neurons form three well-defined and mutually separate subnuclei in the oculomotor nucleus. The subgroup innervating the medial rectus lies exclusively along the medial face of the oculomotor nucleus, with no aberrant neurons in the medial longitudinal fasciculus, as have been found in other mammals. The superior rectus and levator palpebrae are innervated almost entirely by contralateral motoneurons located both in the oculomotor nucleus and in a variety of extranuclear positions (in the periaqueductal grey, among the fibres of medial longitudinal fasciculus and ventral to this bundle). There is no anteroposterior separation between the oculomotor and trochlear nuclei, since superior rectus and levator palpebrae neurons are found flanking the latter laterally all along its anterior half. In the caudal two-thirds of the oculomotor nucleus the motoneurons innervating the superior rectus and levator palpebrae are partially intermingled with those corresponding to the ipsilaterally-innervated muscles, particularly those of the inferior rectus.  相似文献   

2.
The distribution of extraocular motoneurons and abducens and oculomotor internuclear neurons was determined in guinea pigs by injecting horseradish peroxidase (HRP) into individual extraocular muscles, the abducens nucleus, the oculomotor nucleus, and the cerebellum. Motoneurons in the oculomotor nucleus innervated the ipsilateral inferior rectus, inferior oblique, medial rectus, and the contralateral superior rectus and levator palpebrae muscles. Most motoneurons of the trochlear nucleus projected to the contralateral superior oblique muscle although a small number innervated the ipsilateral superior oblique. The abducens and accessory abducens nuclei innervated the ipsilateral rectus and retractor bulbi muscles, respectively. The somata of abducens internuclear neurons formed a cap around the lateral and ventral aspects of the abducens nucleus. The axons of these internuclear neurons terminated in the medial rectus subdivision of the contralateral oculomotor nucleus. At least two classes of guinea pig oculomotor internuclear interneurons exist. One group, located primarily ventral to the oculomotor nucleus, innervated the abducens nucleus and surrounding regions. The second group, lying mainly in the dorsal midline area of the oculomotor nucleus, projected to the cerebellum. Intracellular staining with HRP demonstrated similar soma-dendritic organization for oculomotor and trochlear motoneurons of both guinea pigs and rabbits. Dendrites of oculomotor motoneurons radiated symmetrically from the soma to cover approximately one-third of the entire nucleus, and each motoneuron sent at least one dendrite into the central gray overlying the oculomotor nucleus. In both species, a small percentage of oculomotor motoneurons possessed axon collaterals that terminated both within and outside of the nucleus. The dendrites of trochlear motoneurons extended into the medial longitudinal fasciculus and the reticular formation lateral to the nucleus. Our data on the topography of motoneurons and internuclear neurons in the guinea pig and soma-dendritic organization of motoneurons in the guinea pig and rabbit show that these species share common organizational and morphological features. In addition, comparison of these data with those from other mammals reveals that dendritic complexity (number of dendrites per motoneuron) of extraocular motoneurons exhibits a systematic increase with animal size.  相似文献   

3.
Shigeo Miyazaki   《Brain research》1985,348(1):57-63
Subdivisions of the oculomotor nucleus, and the course of axons in the brainstem and more peripherally in the oculomotor nerve of the cat, were studied by directly applying horseradish peroxidase solution to the transected nerve-branch stump in the orbit. The medial rectus subdivision consisted of two subgroups, and intermingling between subdivisions was found. About 20% of the motoneurons controlling the medial rectus muscle were scattered in the medial longitudinal fasciculus or a more ventrolateral area. A few motoneurons controlling the inferior rectus or inferior oblique muscle were also located in the medial longitudinal fasciculus. Axons to the superior branch that supplied the superior rectus and levator muscle coursed in the dorsolateral half of the oculomotor nerve. In contrast, those to the medial rectus, inferior rectus, and inferior oblique muscles were scattered diffusely in the oculomotor nerve.  相似文献   

4.
Peripheral and central oculomotor organization was studied in the goldfish. The sizes of the extraocular muscles were quantified by counting the fibers contained in a given muscle and by area measurements of the cross-sectional surfaces. All the muscles were of approximately similar size. Kinematics were determined by electrical stimulation of a given muscle. The macroscopic appearance and kinematics of the muscles had the characteristics of other lateral-eyed animals (e.g., rabbit). Locations of extraocular motor neurons were found by retrograde transport of horseradish peroxidase (HRP) following injections into individual extraocular muscles. The eye muscles were innervated by four ipsilateral (lateral rectus, medial rectus, inferior oblique, inferior rectus) and two contralateral (superior rectus, superior oblique) motor neuron pools. The oculomotor nucleus was found in the midbrain, at the level of the caudal zone of the inferior lobe of the hypothalamus. Inferior rectus motor neurons were located rostrally in the oculomotor nucleus, whereas medial rectus, superior rectus, and inferior oblique motor neurons were intermingled in its more caudal portions. All labelled cells were located dorsally and medially to the medial longitudinal fasciculus (MLF) in close proximity to either the floor of the ventricle or the midline region. Occasionally, motor neurons were interspersed within the fiber bundles of the MLF or the exiting fibers of the oculomotor nerve. The trochlear nucleus, containing superior oblique motor neurons, was found in the immediate lateral and caudal neighborhood of the oculomotor nucleus, where its rostral border overlapped with the caudal border of the latter. The abducens nucleus, containing lateral rectus motor neurons, was located in the posterior brainstem in the neighborhood of the vestibular nuclear complex. This nucleus was divided into a rostral and a caudal portion. The axons of ipsilaterally projecting motor neurons headed toward their respective nerve roots via the shortest possible route, as did the axons of superior rectus motor neurons, which crossed the midline without detour to enter the contralateral oculomotor nerve. In contrast, trochlear motor neuron axons arched around the dorsal aspect of the ventricle through the cerebellar commissure to reach the contralateral trochlear nerve. The morphology of individual motor neurons was visualized by intrasomatic injection of HRP. Cell somata had oblong shapes, and their large dendrites were oriented laterally and ventrally. The axons did not collateralize within the midbrain region or the oculomotor nerve as far as they could be traced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
The motor nuclei of the oculomotor, trochlear, and abducens nerves of the reptile Varanus exanthematicus and the neurons that subserve the sensory innervation of the extraocular muscles were identified and localized by retrograde and anterograde transport of horseradish peroxidase (HRP). The highly differentiated oculomotor nuclear complex, located dorsomedially in the tegmentum of the midbrain, consists of the accessory oculomotor nucleus and the dorsomedial, dorsolateral, intermediate, and ventral subnuclei. The accessory oculomotor nucleus projects ipsilaterally to the ciliary ganglion. The dorsomedial, dorsolateral, and intermediate subnuclei distribute their axons to the ipsilateral orbit, whereas the ventral subnucleus, which innervates the superior rectus muscle, has a bilateral, though predominantly contralateral projection. The trochlear nucleus, which rostrally overlaps the oculomotor nuclear complex, is for the greater part a comma-shaped cell group situated lateral, dorsal, and medial to the medial longitudinal fasciculus. Following HRP application to the trochlear nerve, almost all retrogradely labeled cells were found in the contralateral nucleus. The nuclear complex of the abducens nerve consists of the principal and accessory abducens nuclei, both of which project ipsilaterally. The principal abducens nucleus is located just beneath the fourth ventricle laterally adjacent to the medial longitudinal fasciculus and innervates the posterior rectus muscle. The accessory abducens nucleus has a ventrolateral position in the brainstem in close approximation to the ophthalmic fibers of the descending trigeminal tract. It innervates the retractor bulbi and bursalis muscles. The fibers arising in the accessory abducens muscles form a loop in or just beneath the principal abducens nucleus before they join the abducens nerve root. The afferent fibers conveying sensory information from the extraocular muscles course in the oculomotor nerve and have their perikarya in the ipsilateral trigeminal ganglion, almost exclusively in its ophthalmic portion.  相似文献   

7.
The localization of the motor neurons innervating the extraocular muscles in the oculomotor nuclei of adult cats and rabbits was investigated by means of retrograde labelling with horseradish peroxidase (HRP). The groups consisting of the motor neurons innervating an individual muscle lay in the nucleus as elongated columns extending in a longitudinal direction. The position of each group in the transverse section varied according to the rostro-caudal level of the nucleus. In the cat and rabbit, entire contralateral innervation of the superior rectus and entire ipsilateral innervation of three muscles of the inferior rectus, medial rectus and inferior oblique were similarly observed. However, the arrangement of individual motor groups differed considerably in both animals except for the group innervating the inferior rectus which was generally found in the ventral position running through the rostral two-thirds of the oculomotor nucleus. In the case of cats, the central caudal nucleus bilaterally innervated the levator palpebrae superioris. The motor neurons innervating this muscle in the rabbit (which lacks the central caudal nucleus) formed a rostro-caudal club-shaped column close to the group innervating the superior rectus. The aberrant cellular mass in the adjoining medial longitudinal fasciculus which belongs to the medial rectus appears to play an important role in the eye movement, because it commonly appears in various animals.  相似文献   

8.
Retrograde transport of HRP was used to determine the location and organization of the motor nuclei innervating the extrinsic eye muscles of the stingray, an elasmobranch fish. Oculomotor neurons are located both medial to and immediately ventrolateral to the MLF in the rostral midbrain. A ventral oculomotor nucleus was found among the IIIrd nerve rootlets close to the base of the midbrain. The dendrites of cells in the dorsal nucleus appear to be preferentially oriented in the transverse plane penetrating the MLF. Motoneuron pools innervating individual muscles are incompletely segregated in the dorsal group. However, the ventral nucleus innervates only the inferior oblique muscle. Dorsally, motoneurons innervating a single muscle are found on both sides of the MLF. In the caudal midbrain, the majority of trochlear motoneurons are located immediately ventrolateral to the MLF. Abducens motoneurons are scattered in the medulla from a ventrolateral position resembling the location of the nucleus in teleost fish to a dorsomedial position close to the MLF as in most other vertebrates. In contrast to other vertebrates, the medial rectus muscle is innervated by the contralateral oculomotor nucleus. Motoneurons innervating the other muscles have the same laterality as found in other vertebrates.  相似文献   

9.
Motoneurons in the primate oculomotor nucleus can be divided into two categories, those supplying twitch muscle fibers and those supplying nontwitch muscle fibers. Recent studies have shown that twitch motoneurons lie within the classical oculomotor nucleus (nIII), and nontwitch motoneurons lie around the borders. Nontwitch motoneurons of medial and inferior rectus are in the C group dorsomedial to nIII, whereas those of inferior oblique and superior rectus lie near the midline are in the S group. In this anatomical study, afferents to the twitch and nontwitch subgroups of nIII have been anterogradely labeled by injections of tritiated leucine into three areas and compared. 1) Abducens nucleus injections gave rise to silver grain deposits over all medial rectus subgroups, both twitch and nontwitch. 2) Laterally placed vestibular complex injections that included the central superior vestibular nucleus labeled projections only in twitch motoneuron subgroups. However, injections into the parvocellular medial vestibular nucleus (mvp), or Y group, resulted in labeled terminals over both twitch and nontwitch motoneurons. 3) Pretectal injections that included the nucleus of the optic tract (NOT), and the olivary pretectal nucleus (OLN), labeled terminals only over nontwitch motoneurons, in the contralateral C group and in the S group. Our study demonstrates that twitch and nontwitch motoneuron subgroups do not receive identical afferent inputs. They can be controlled either in parallel, or independently, suggesting that they have basically different functions. We propose that twitch motoneurons primarily drive eye movements and nontwitch motoneurons the tonic muscle activity, as in gaze holding and vergence, possibly involving a proprioceptive feedback system.  相似文献   

10.
11.
The anatomical characteristics of vestibular neurons, which are involved in controlling the horizontal vestibulo-ocular reflex, were studied by injecting horseradish peroxidase (HRP) into neurons whose response during spontaneous eye movements had been characterized in alert squirrel monkeys. Most of the vestibular neurons injected with HRP that had axons projecting to the abducens nucleus or the medial rectus subdivision of the oculomotor nucleus had discharge rates related to eye position and eye velocity. Three morphological types of cells were injected whose firing rates were related to horizontal eye movements. Two of the cell types were located in the ventral lateral vestibular nucleus and the ventral part of the medial vestibular nucleus (MV). These vestibular neurons could be activated at monosynaptic latencies following electrical stimulation of the vestibular nerve; increased their firing rate when the eye moved in the direction contralateral to the soma; had tonic firing rates that increased when the eye was held in contralateral positions; and had a pause in their firing rate during saccadic eye movements in the ipsilateral or vertical directions. Eleven of the above cells had axons that arborized exclusively on the contralateral side of the brainstem, terminating in the contralateral abducens nucleus, the dorsal paramedian pontine reticular formation, the prepositus nucleus, medial vestibular nucleus, dorsal medullary reticular formation, caudal interstitial nucleus of the medial longitudinal fasciculus, and raphé obscurus. Eight of the cells had axons that projected rostrally in the ascending tract of Deiters and arborized exclusively on the ipsilateral side of the brainstem, terminating in the ipsilateral medial rectus subdivision of the oculomotor nucleus and, in some cases, the dorsal paramedian pontine reticular formation or the caudal interstitial nucleus of the medial longitudinal fasciculus. Two MV neurons were injected that had discharge rates related to ipsilateral eye position, generated bursts of spikes during saccades in the ipsilateral direction, and paused during saccades in the contralateral direction. The axons of those cells arborized ipsilaterally, and terminated in the ipsilateral abducens nucleus, MV, prepositus nucleus, and the dorsal medullary reticular formation. The morphology of vestibular neurons that projected to the abducens nucleus whose discharge rate was not related to eye movements, or was related primarily to vertical eye movements, is also briefly presented.  相似文献   

12.
Eye muscle fibers can be divided into two categories: nontwitch, multiply innervated muscle fibers (MIFs), and twitch, singly innervated muscle fibers (SIFs). We investigated the location of motoneurons supplying SIFs and MIFs in the six extraocular muscles of monkeys. Injections of retrograde tracers into eye muscles were placed either centrally, within the central SIF endplate zone; in an intermediate zone, outside the SIF endplate zone, targeting MIF endplates along the length of muscle fiber; or distally, into the myotendinous junction containing palisade endings. Central injections labeled large motoneurons within the abducens, trochlear or oculomotor nucleus, and smaller motoneurons lying mainly around the periphery of the motor nuclei. Intermediate injections labeled some large motoneurons within the motor nuclei but also labeled many peripheral motoneurons. Distal injections labeled small and medium-large peripheral neurons strongly and almost exclusively. The peripheral neurons labeled from the lateral rectus muscle surround the medial half of the abducens nucleus: from superior oblique, they form a cap over the dorsal trochlear nucleus; from inferior oblique and superior rectus, they are scattered bilaterally around the midline, between the oculomotor nucleus; from both medial and inferior rectus, they lie mainly in the C-group, on the dorsomedial border of oculomotor nucleus. In the medial rectus distal injections, a "C-group extension" extended up to the Edinger-Westphal nucleus and labeled dendrites within the supraoculomotor area. We conclude that large motoneurons within the motor nuclei innervate twitch fibers, whereas smaller motoneurons around the periphery innervate nontwitch, MIF fibers. The peripheral subgroups also contain medium-large neurons which may be associated with the palisade endings of global MIFs. The role of MIFs in eye movements is unclear, but the concept of a final common pathway must now be reconsidered.  相似文献   

13.
The topography of motoneurons supplying each of the six ocular muscles of the lamprey, Lampetra fluviatilis, was studied by selective application of HRP to the cut nerves of identified muscles. In addition, the distributions of motoneuron populations to both eyes were studied simultaneously with fluorescein and rhodamine coupled dextran-amines (FDA and RDA) applied to cut ocular muscle nerves of either side. The motoneuron pool of the caudal oblique muscle is represented bilaterally in the trochlear (N IV) motor nucleus. The dorsal rectus muscle is innervated from a contralateral group of oculomotor (N III) motoneurons and the remaining four muscles exclusively from the ipsilateral side (N III and N VI). The inferior and posterior rectus muscles are both innervated by the abducens nerve. In contrast to all jawed vertebrates, only three eye muscles (the dorsal rectus, rostral rectus, and rostral oblique) are innervated by the oculomotor nerve in lampreys (N III). Lampreys have a motor nucleus similar to the accessory abducens nucleus previously described only in tetrapods. They lack the muscle homologous to the nasal rectus muscle of elasmobranchs and the medial rectus muscle of osteognathostomes. The distribution of the dendrites of different groups of motoneurons was studied and is considered in relation to inputs from tectum and the different cranial nerves.  相似文献   

14.
The oculomotor organization of two elasmobranch species, smooth dogfish (Mustelus canis) and little skate (Raja erinacea), was studied by investigating the extraocular muscle apparatus and the oculomotor motoneuron distribution. The macroscopic appearance of the eye muscles was similar to any lateral-eyed vertebrate species (e.g., goldfish, rabbit). The size of extraocular muscles was expressed by counting single muscle fibers and comparing cross-sectional areas of the extraocular muscles. There were significant differences in the number of fibers in the six extraocular muscles in dogfish, but not in skate. Fiber sizes varied considerably; thus, the number of fibers did not relate to cross-sectional areas. In the dogfish, no one pair of agonist-antagonist extraocular muscles was larger than the others, suggesting that there was no preference for eye movements in a particular plane of space. However, the lateral rectus was more than twice the size of most of the other muscles. In the skate, cross-sectional areas of the horizontal eye muscles were smaller than those of the vertical eye movers. This may indicate a reduced utilization of horizontal eye muscles, which may reflect the bottom-dwelling habitat and mode of locomotion of the skate. The distribution of the extraocular motoneurons was determined by injecting horseradish peroxidase (HRP) into single eye muscles. Medial rectus, superior rectus, and superior oblique motoneuron populations were located contralateral to their respective muscles. Lateral rectus, inferior rectus, and inferior oblique motoneurons were located ipsilateral to their muscles. This distribution is in contrast to almost all other vertebrates studied thus far, where medial rectus motoneurons are located ipsilateral to the muscle which they innervate. The oculomotor arrangement in elasmobranchs is likely to have consequences for the circuitry responsible for the production of conjugate compensatory eye movements in the horizontal plane. We hypothesize that, in contrast to other vertebrates, the basic elasmobranch vestibulo-ocular reflex pathway consists of three identically structured three-neuron-arcs connecting the three semicircular canals to their respective extraocular muscles. This innervation pattern may constitute a special feature of the elasmobranch brain or a phylogenetically older arrangement of eye movement pathways.  相似文献   

15.
The location of the motoneurons innervating the lateral rectus, pyramidalis, and quadratus muscles of the chick has been determined by application of horseradish peroxidase (HRP) to these muscles and their nerve branches, and internuclear neurons in the abducens nucleus have been identified by injection of HRP into the oculomotor nucleus. Quantitative results were obtained by means of a semiautomatic image analyzer. Lateral rectus motoneurons were observed only in the ipsilateral principal abducens nucleus, where they numbered 500-550, and quadratus and pyramidalis motoneurons only in the ipsilateral accessory abducens nucleus. The 325-375 internuclear neurons that appeared in the principal abducens nucleus contralateral to the oculomotor nucleus injected with HRP were practically confined to the rostral two thirds of the nucleus, where they tended to surround the lateral rectus motoneurons in dorsal or lateral positions, though a minority of interneurons also mingled with the motoneurons in the center or at the medial face of the nucleus. Most interneurons were small and elongated, but a minority of larger interneurons morphologically similar to the lateral rectus motoneurons were also distinguishable. The 100-110 quadratus motoneurons and the 45-55 pyramidalis motoneurons mingled in the accessory abducens nucleus were larger than the lateral rectus motoneurons and sent their axons into the ipsilateral abducens nerve.  相似文献   

16.
Both spatial and temporal cues determine the fate of immature neurons. A major challenge at the interface of developmental and systems neuroscience is to relate this spatiotemporal trajectory of maturation to circuit‐level functional organization. This study examined the development of two extraocular motor nuclei (nIII and nIV), structures in which a motoneuron's identity, or choice of muscle partner, defines its behavioral role. We used retro‐orbital dye fills, in combination with fluorescent markers for motoneuron location and birthdate, to probe spatial and temporal organization of the oculomotor (nIII) and trochlear (nIV) nuclei in the larval zebrafish. We describe a dorsoventral organization of the four nIII motoneuron pools, in which inferior and medial rectus motoneurons occupy dorsal nIII, while inferior oblique and superior rectus motoneurons occupy distinct divisions of ventral nIII. Dorsal nIII motoneurons are, moreover, born before motoneurons of ventral nIII and nIV. The order of neurogenesis can therefore account for the dorsoventral organization of nIII and may play a primary role in determining motoneuron identity. We propose that the temporal development of extraocular motoneurons plays a key role in assembling a functional oculomotor circuit. J. Comp. Neurol. 525:65–78, 2017. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.  相似文献   

17.
The goal of this work was to compare the distribution and morphology of neurons projecting to the oculomotor nucleus in goldfish with those previously described in other vertebrate groups. Afferent neurons were revealed by retrograde labeling with horseradish peroxidase. The tracer was electrophoretically injected into the oculomotor nucleus. The location of the injection site was determined by the antidromic field potential elicited in the oculomotor nucleus by electrical stimulation of the oculomotor nerve. Labeled axons whose trajectories could be reconstructed were restricted to the medial longitudinal fasciculus. In order of quantitative importance, the afferent areas to the oculomotor nucleus were: (1) the ipsilateral anterior nucleus and the contralateral tangential and descending nuclei of the octaval column. Furthermore, a few labeled cells were found dorsomedially to the caudal pole of the unlabeled anterior octaval nucleus; (2) the contralateral abducens nucleus. The labeled internuclear neurons were arranged in two groups within and 500 microns behind the caudal subdivision of the abducens nucleus; (3) a few labeled cells were observed in the rhombencephalic reticular formation near the abducens nucleus, most of which were contralateral to the injection site. Specifically, stained cells were found in the caudal pole of the superior reticular nucleus, throughout the medial reticular nucleus and in the rostral area of the inferior reticular nucleus; (4) eurydendroid cells of the cerebellum, located close to the contralateral eminentia granularis pars lateralis, were also labeled; and (5) a small and primarily ipsilateral group of labeled cells was located at the mesencephalic nucleus of the medial longitudinal fasciculus. The similarity in the structures projecting to the oculomotor nucleus in goldfish to those in other vertebrates suggests that the neural network involved in the oculomotor system is quite conservative throughout phylogeny. Nevertheless, in goldfish these projections appeared with some specific peculiarities, such as the cerebellar and mesencephalic afferents to the oculomotor nucleus.  相似文献   

18.
Experiments on cats were performed to study the pathway and location of the secondary vestibulo-ocular neurons in response to stimulation of the ampullary nerves of the vertical, anterior or posterior, semicircular canals. Experiments on the medial longitudinal fasciculus transection disclosed that vertical canal-evoked, disynaptic excitation and inhibition were transmitted to the extraocular motoneurons through the contra- and ipsilateral medial longitudinal fasciculus respectively. Secondary vestibular neurons, which receive input from the ampullary nerve of the vertical semicircular canals and send their axons to contralateral medial longitudinal fasciculus, were intermingled in the rostral half of the descending and lateral part of the medial vestibular nuclei. A direct excitatory connection of some of these neurons to the target extraocular motoneurons was confirmed by means of a spike-triggered signal averaging technique. It was also found that neurons activated by antidromic stimulation of ipsilateral medial longitudinal fasciculus were located in the superior vestibular nucleus, some of which made direct inhibitory connections to the target extraocular motoneurons. Both excitatory and inhibitory vestibuloocular neurons made synaptic contact in about half of the impaled target motoneurons.  相似文献   

19.
Patterns of extraocular innervation by the oculomotor complex in the chick   总被引:1,自引:0,他引:1  
The horseradish peroxidase retrograde tracer technique was used to map the projection pattern of the oculomotor nuclear complex to the extraocular muscles in the chick embryo. The following projection pattern was found: The dorsolateral oculomotor subnucleus innervates the ipsilateral inferior rectus muscle, the dorsomedial subnucleus innervates the ipsilateral medial rectus muscle, a lateral division of the ventromedial subnucleus innervates the ipsilateral inferior oblique muscle, and a medial division of the ventromedial subnucleus innervates the contralateral superior rectus muscle. The so-called central nucleus also innervates the contralateral superior rectus muscle. This pattern was extremely discrete, with virtually no overlapping representations. These results provide the first evidence for a functional medial-lateral subdivision of the ventromedial subnucleus. This pattern relates to the unusual development of this subnucleus and suggests that only part of the primordium for this cell group migrates across the midline during its ontogeny, rather than all of it, as was previously believed. The subnuclear organization of the avian oculomotor complex is also considered in comparison to such functional organization in other species.  相似文献   

20.
Afferents to the abducens nucleus in the monkey and cat   总被引:1,自引:0,他引:1  
The abducens nucleus is a central coordinating element in the generation of conjugate horizontal eye movements. As such, it should receive and combine information relevant to visual fixation, saccadic eye movements, and smooth eye movements evoked by vestibular and visual stimuli. To reveal possible sources of these signals, we retrogradely labeled the afferents to the abducens nucleus by electrophoretically injecting horseradish peroxidase into an abducens nucleus in four monkeys and two cats. The histologic material was processed by the tetramethyl benzidine (TMB) method of Mesulam. In both species the largest source of afferents to the abducens nucleus was bilateral projections from the ventrolateral vestibular nucleus and the rostral pole of the medial vestibular nucleus. Scattered neurons were also labeled in the middle and caudal levels of the medial vestibular nucleus. Large numbers of neurons were labeled in the ventral margin of the nucleus prepositus hypoglossi in the cat and in the common margin of the nucleus prepositus and the medial vestibular nucleus in the monkey, a region we call the marginal zone. Substantial numbers of retrogradely labeled neurons were found in the dorsomedial pontine reticular formation both caudal and rostral to the abducens nuclei. In the monkey, large numbers of labeled neurons were present in the contralateral medial rectus subdivision of the oculomotor complex, while smaller numbers occurred in the ipsilateral medial rectus subdivision and elsewhere in the oculomotor complex. In the cat, large numbers of retrogradely labeled cells were present in a small periaqueductal gray nucleus immediately dorsal to the caudal pole of the oculomotor complex, and a few labeled neurons were also dispersed through the caudal part of the oculomotor complex. Occasional labeled neurons were present in the contralateral superior colliculus in both species. The size and distribution of the labeled neurons within the intermediate gray differed dramatically in the two species. In the cat, the retrogradely labeled neurons were very large and occurred predominantly in the central region of the colliculus, while in the monkey, they were small to intermediate in size and were distributed more uniformly within the middle gray. Among the afferent populations present in the monkey, but not in the cat, was a group of scattered neurons in the ipsilateral rostral interstitial nucleus of the medial longitudinal fasciculus and a denser, bilateral population in the interstitial nucleus of Cajal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号