首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The influence of bicuculline on the tuning curves of 65 neurons in the inferior colliculus of the mustache bat was investigated. Single units were recorded with multibarrel electrodes where one barrel contained bicuculline, an antagonist specific for gamma-amino-butyric acid (GABA)A receptors. Fifty-nine tuning curves were recorded from units that were sharply tuned to 60 kHz, the dominant frequency of the bat's orientation call, but six tuning curves were also recorded from units tuned to lower frequencies and whose tuning curves were broader than the 60 kHz cells. Tuning curves were constructed from peristimulus time (PST) histograms obtained over a wide range of frequency-intensity combinations. Thus tuning curves, PST histograms evoked by frequencies within the tuning curve, and rate-level functions at the best frequency were obtained before iontophoresis of bicuculline and compared with the tuning curves and response properties obtained during the administration of bicuculline. 2. Three general types of tuning curves were obtained: 1) open tuning curves that broadened on both the high- and low-frequency sides with increasing sound level; 2) level-tolerant tuning curves in which the width of the tuning curve remained uniformly narrow with increasing sound level; and 3) upper-threshold tuning curves, which did not discharge to high-intensity tone bursts at the best frequency, thereby creating closed or folded tuning curves. 3. One major finding is that GABAergic inhibition plays an important role in sharpening frequency tuning properties of many neurons in the mustache bat inferior colliculus. In response to blocking GABAergic inputs with bicuculline, the tuning curves broadened in 42% of the neurons that were sharply tuned to 60 kHz. The degree of change in most units varied with sound level: tuning curves were least affected, or not affected at all, within 10 dB of threshold and showed progressively greater changes at higher sound levels. These effects were seen in units that had open, level-tolerant, and upper-threshold tuning curves. 4. A second key result is that bicuculline affected rate-level functions and/or temporal discharge patterns in many units. Bicuculline transformed the rate-level functions of 13 cells that originally had nonmonotonic rate level functions, from strongly nonmonotonic into weakly nonmonotonic or monotonic functions. It also changed the temporal discharge patterns in 22 cells, and the changes were often frequency specific.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
There have been conflicting reports concerning the importance of visual experience in the development of auditory localization mechanisms. We have examined the representation of auditory space in the superior colliculus of adult ferrets that were visually deprived by binocular eyelid suture from postnatal days 25–28, prior to natural eye opening, until the time of recording. This procedure attenuated the transmission of light by a factor of at least 20–25 and blurred the image so that, as long as the eyelids were still fused, the responses of visual units in the superficial layers of the superior colliculus were labile and very poorly tuned. After the eyelids were opened, the representation of the visual field in these layers appeared to be normal. Acoustically responsive units were, as usual, almost exclusively restricted to the deeper layers of the superior colliculus. However, unlike normal animals, where responses occurring only at stimulus onset pre-dominate, most of these units exhibited sustained or multi-peaked discharge patterns. The degree of spatial tuning of individual units recorded from the normal and deprived groups of animals was not significantly different in either azimuth or elevation. Normally orientated maps of both sound azimuth and elevation were also found in the visually deprived ferrets. However, abnormalities were present in the topography and precision of these representations and consequently in their alignment with the overlying visual map. In particular, an increase was observed in the proportion of auditory units with spatially ambiguous receptive fields, in which the maximum response occurred at two distinct locations. These results indicate that patterned visual experience is not required for establishing at least a crude map of auditory space in the superior colliculus, but suggest that it may play a role in refining this representation during development.  相似文献   

3.
Although the tectofugal system projects to the primate cerebral cortex by way of the pulvinar, previous studies have failed to find any physiological evidence that the superior colliculus influences visual activity in the cortex. We studied the relative contributions of the tectofugal and geniculostriate systems to the visual properties of neurons in the superior temporal polysensory area (STP) by comparing the effects of unilateral removal of striate cortex, the superior colliculus, or of both structures. In the intact monkey, STP neurons have large, bilateral receptive fields. Complete unilateral removal of striate cortex did not eliminate visual responses of STP neurons in the contralateral visual hemifield; rather, nearly half the cells still responded to visual stimuli in the hemifield contralateral to the lesion. Thus the visual properties of STP neurons are not completely dependent on the geniculostriate system. Unilateral striate lesions did affect the response properties of STP neurons in three ways. Whereas most STP neurons in the intact monkey respond similarly to stimuli in the two visual hemifields, responses to stimuli in the hemifield contralateral to the striate lesion were usually weaker than responses in the ipsilateral hemifield. Whereas the responses of many STP neurons in the intact monkey were selective for the direction of stimulus motion or for stimulus form, responses in the hemifield contralateral to the striate lesion were not selective for either motion or form. Whereas the median receptive field in the intact monkey extended 80 degrees into the contralateral visual field, the receptive fields of cells with responses in the contralateral field that survived the striate lesions had a median border that extended only 50 degrees into the contralateral visual field. Removal of both striate cortex and the superior colliculus in the same hemisphere abolished the responses of STP neurons to visual stimuli in the hemifield contralateral to the combined lesion. Nearly 80% of the cells still responded to visual stimuli in the hemifield ipsilateral to the lesion. Unilateral removal of the superior colliculus alone had only small effects on visual responses in STP. Receptive-field size and visual response strength were slightly reduced in the hemifield contralateral to the collicular lesion. As in the intact monkey, selectivity for stimulus motion or form were similar in the two visual hemifields. We conclude that both striate cortex and the superior colliculus contribute to the visual responses of STP neurons. Striate cortex is crucial for the movement and stimulus specificity of neurons in STP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. The activity of single units in the inferior colliculus of unanesthetized monkeys was recorded during performance in an auditory reaction time task. Stimulus intensity and frequency were varied. 2. Spontaneous rate of unit discharge varied from 0 to 78.2 discharges per second, with a mean of 14.7 discharges/sec. 3. Both broadly and narrowly tuned units were encountered in the central nucleus of the inferior colliculus. The temporal discharge pattern of most units varied with changes in stimulus frequency; onset bursts and/or sustained discharge suppression dominated the unit discharge at the edges of receptive fields. 4. Half of the units examined at several intensity levels displayed nonmonotonic relationships between evoked discharge rate and stimulus intensity, with most nonmonotonic units showing a distinct "best intensity". The temporal response pattern of almost all units varied with changes in stimulus intensity, with onset bursts and discharge suppression increasing in occurrence with increasing intensity. 5. Units recorded in the external nucleus of the inferior colliculus displayed spontaneous rates which were similar to those of central nucleus units, and were affected by variation in stimulus intensity in the same fashion. However, the average initial latency of such units to intense stimuli was no longer than the latency of central nucleus units. 6. Variations in unit discharge with changes in stimulus frequency and intensity are consistent with an interaction of excitatory and inhibitory inputs with different initial latencies, dynamic ranges and receptive fields. In particular, our data suggest that inhibitory inputs have longer initial latencies and higher thresholds. Inhibition is stronger at the edges of a unit's receptive field, and dominates at high frequencies in units with low characteristic frequency. 7. Our data are not consistent with previous reports that single units in the unanesthetized animal display uniformly monotonic intensity functions and uniformly broad frequency responses.  相似文献   

5.
The responses to changes in stimulus azimuth of 220 high best-frequency (BF) (greater than 3 kHz) units in the central nucleus of the inferior colliculus of the anesthetized cat were studied with BF tones (220 units) and noise stimuli (84 units). By this means we hoped to gain some insights into the way the azimuthal locations of high BF stimuli were represented in the inferior colliculus. For each unit the discharge rate was determined for stimuli located along a plane tilted at 20 degrees above the horizontal. This plane was chosen to optimize pinna directionality. Locations in the frontal field were sampled in 10-20 degree steps around a 170 degree arc. These measurements were repeated at a number of different stimulus intensities until the directional properties of the unit became clear. Units for which the functions relating discharge rate to azimuth for a given stimulus showed a clear feature (peak or border), the azimuthal location of which varied little with intensities between 20 and 40 dB above threshold, were defined as being azimuth selective for that stimulus. Only 13% of units were azimuth selective for BF tones, whereas 44% were selective for noise. Many azimuth functions for selective units were of the plateau-shaped type for which relatively high discharge rates occurring at most contralateral azimuths declined steeply to near zero and remained low for most ipsilateral azimuths. These plateau-shaped functions were most common for tonal stimuli. Other functions showed a fixed azimuth of maximum firing (best azimuth); these were more common for noise than for tonal stimuli. Detailed azimuth functions for both tone and noise stimuli were measured for 63 units. Some exhibited the same kind of azimuth function to both stimuli. However, 18 units were azimuth selective to noise but not to tones. The borders of plateau-shaped functions obtained using both noise and tonal stimuli were concentrated within 20 degrees of the median plane. Very few units had borders that spanned peripheral ipsilateral or contralateral azimuths. Although the best azimuths of some noise azimuth functions were observed to lie at these peripheral azimuths, the majority occurred around 20 degrees contralateral to the median plane. The recording sites for units were related to a three-by-three matrix of rostrocaudal and mediolateral locations across the central nucleus. Units that were azimuth selective to noise were distributed fairly evenly throughout the central nucleus, whereas units azimuth selective to tones formed highest proportions rostrally.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
In the cochlear nucleus (CN) of awake mustached bats, single- and two-tone stimuli were used to examine how responses in major CN subdivisions contribute to spectrotemporal integrative features in the inferior colliculus (IC). Across CN subdivisions, the proportional representation of frequencies differed. A striking result was the substantial number of units tuned to frequencies <23 kHz. Across frequency bands, temporal response patterns, latency, and spontaneous discharge differed. For example, the 23- to 30-kHz representation, which comprises the fundamental of the sonar call, had an unusually high proportion of units with onset responses (39%) and low spontaneous rates (53%). Units tuned to 58-59 kHz, corresponding to the sharply tuned cochlear resonance, had slightly but significantly longer latencies than other bands. In units tuned to frequencies >30 kHz, 31% displayed a secondary excitatory peak, usually between 10 and 22 kHz. The secondary peak may originate in cochlear mechanisms for some units, but in others it may result from convergent input onto CN neurons. In 20% of units tested with two-tone stimuli, suppression of best frequency (BF) responses was tuned at least an octave below BF. These properties may underlie similar IC responses. However, other forms of spectral interaction present in IC were absent in CN: we found no facilitatory combination-sensitive interactions and very few combination-sensitive inhibitory interactions of the dominant IC type in which inhibition was tuned to 23-30 kHz. Such interactions arise above CN. Distinct forms of spectral integration thus originate at different levels of the ascending auditory pathway.  相似文献   

7.
Auditory responses to free-field broad band stimulation from different directions were recorded from clusters of neurones in the superior colliculus (SC) of the anaesthetized tammar wallaby. The auditory responses were found approximately 2 mm beneath the first recording of visually evoked responses in the superficial layers, the vast majority being solely auditory in nature; only one recording responded to both auditory and visual stimulation. Responses to suprathreshold intensities displayed sharp spatial tuning to sound in the contralateral hemifield. Those from the rostral pole of the SC disclosed a preference for auditory stimuli in the azimuthal anterior field, whereas those in the caudal SC preferentially responded to sounds in the posterior field. A continuum of directionally tuned responses was seen along the rostrocaudal axis of the SC so that the entire azimuthal contralateral auditory hemifield was represented in the SC. Furthermore, tight spatial alignment was evident between the best position of the visual responses in the superficial layers in azimuth and the peak angle of the auditory response in the deeper layers.  相似文献   

8.
Summary The directional sensitivity of single auditory neurons in the midbrain (Nucleus mesencephalicus lateralis pars dorsalis) of the pigeon (Columba livia) was studied, using acoustic free-field stimulation (usually pure tones) in the frontal hemifield. Of a total of 337 units, 84.6% showed statistically significant changes of their responses as a function of sound azimuth. Of these, most units respond maximally to sounds in a particular azimuthal range, each has its best area. These neurons were classified into four classes according to the properties of their best areas: (1) contralateral neurons (53.4%); (2) ipsilateral neurons (6.2%); (3) frontal neurons (18.1%); and (4) complex neurons (3.3%). The first two showed only one border of the best area within the frontal hemifield, with an increase of response strength towards the contralateral and the ipsilateral side, respectively; with frontal neurons, the best area was bounded towards both sides within the frontal hemifield, whereas the complex neurons had two or more separated best areas or extensive frontal inhibitory areas. In the remaining units (3.6%), termed weakly directional neurons, changes of their discharge rate depending on sound azimuth were statistically significant, but too poor to determine any best areas. There was a significant underrepresentation of best frequencies in the mid-frequency range (1–2 kHz) with a minimum in the relative number of MLD neurons recorded from at 2 kHz. However, the directional sensitivity of the neurons quantified by analysing different parameters of the directional diagrams (dynamic range, roll-off steepness, best area width) was undiminished in the mid-frequency range. In several experiments, in addition to the neurons' directional sensitivity in free-field sound, their sensitivity to interaural ongoing time (phase) differences (OTDs) and interaural intensity differences (IIDs) were also tested, using dichotic stimulation (pure tones) by headphones. Directional sensitive neurons tuned to low frequencies (best frequency < 2 kHz) were either sensitive exclusively to OTDs or to both OTDs and IIDs; the ranges of best OTDs were correlated significantly with the azimuthal position of the best area. High frequency units (best frequency > 2 kHz) were sensitive to IIDs but not to OTDs. In accordance with previous behavioral studies, the results confirm the concept that the mechanisms of azimuthal sound localization in the pigeon correspond essentially to the principles of the duplex theory which has postulated two distinct binaural mechanisms of directional hearing, a low-frequency mechanism using OTD cues, and a high-frequency one using IID cues.Abbreviations IC Inferior colliculus - IID Interaural intensity difference - MLD Nucleus mesencephalicus lateralis pars dorsalis - OTD Interaural ongoing time difference - SPL Sound pressure level  相似文献   

9.
Response patterns of neurons in the cochlear nuclei of the barn owl (Tyto alba) were studied by obtaining poststimulus time histograms (PSTHs) and interspike interval histograms for the response to short tone bursts at the neuron's characteristic frequency. The observed response patterns can be classified according to the scheme developed for neurons of the mammalian cochlear nuclear complex (22). Neurons of the magnocellular cochlear nucleus (n. magnocellularis), which respond in a phase-locked manner to sinusoidal signals and do not show large increases in spike discharge rate with changes in stimulus intensity (26), have "primarylike" (PSTH) discharge patterns and broad interspike interval histograms. This indicates that magnocellular neurons have irregular firing patterns, with the timing of individual spikes being dependent on the phase of the stimulus waveform. Neurons of the angular cochlear nucleus (n. angularis), which show little or no phase-locking and large increases in spike rate with increasing intensity (26), had almost exclusively "transient chopper" discharge patterns. The interspike interval histograms of these angular units are sharp, indicating that their discharge is very regular. At the onset of the response where the chopper pattern is observed, both discharge regularity and rate-intensity sensitivity are at their maximum levels. Several "onset" units were isolated in the angular cochlear nucleus, but no "pauser" or "buildup" units were seen. Also, all of the units in the angular nucleus had monotonic rate-intensity functions. Thus no neural response patterns typical of mammalian dorsal cochlear nucleus units were observed. The relationship of response pattern type to neural function is discussed in relation to the acoustic cues used by the owl for two-dimensional sound localization. The primarylike, phase-locked discharge of magnocellular units is undoubtedly involved in the analysis of interaural differences in stimulus phase, which the owl uses for horizontal localization. There is strong evidence suggesting that the angular nucleus is involved in processing stimulus intensity information, which is important for determining sound elevation (due to asymmetries in vertical directionality of the owl's external ears). The predominant chopper patterns seen in the angular nucleus suggest that in the owl, this response type is correlated with stimulus intensity processing. Similarities in both anatomy and physiology suggest that the magnocellular nucleus is analogous to the spherical cell or bushy cell population of the anterior division of the mammalian anteroventral cochlear nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Summary Single units were recorded extracellularly from area 17 and lateral suprasylvian area (LSSA) in curarized cats. Visual stimuli, usually a 10 ° black spot, were introduced abruptly in the visual field remote from the discharge area of a neuron's receptive field and moved at a speed of about 30 °/sec. The effect of these remote stimuli (S2) on the response to a restricted visual stimulus (S1) crossing the discharge area was studied.It was found that most units in area 17 were not affected by the presentation of remote stimuli, the remainder being either slightly facilitated or slightly inhibited. In contrast the LSSA neurons were usually inhibited by the presentation of S2: this effect was strong, was present in all classes of LSSA neurons and was independent of the relative directions of movement of S1 and S2.On the basis of these data and those previously obtained from the superior colliculus it is concluded that the way the extrageniculate centres respond to a stimulus abruptly introduced in the visual field is substantially different from that of the striate cortex. Only in the extrageniculate centres a new stimulus, besides exciting the neurons which correspond to the position of the stimulus in the field, concomitantly decreases the responses of neurons located in positions of the visual field remote from that stimulus. Possible behavioral implications of the findings are discussed.  相似文献   

11.
1. Neuronal mechanisms for decoding sound azimuth and angular movement were studied by recordings of several single units in parallel in the core areas of the auditory cortex of the macaque monkey. The activity of 180 units was recorded during the presentation of moving and static sound stimuli. Both the activity of single units and the interactions between neighboring neurons in response to each stimulus were analyzed. 2. Sixty-two percent of the units showed significant modulation of their firing rates as a function of the stimulus azimuth. Contralateral stimuli were preferred by the majority (approximately 60%) of these neurons. Thirty-five percent of the units showed mild but statistically significant modulation of their firing rates, which was specifically attributed to the angular movement of the sound source. 3. Eighty-nine percent of the "movement-sensitive" units were also "azimuth sensitive." The sound source's azimuth determined the pattern of the response components (on, sustained, off), whereas the source's movement affected only the magnitude of these components, typically the sustained component. Most neurons for which the sustained response to static sounds was greater for contralateral than ipsilateral stimuli preferred moving sounds that were moving into the contralateral hemifield. 4. Cross-correlation analysis was carried out for 245 neuron pairs. Cross-correlograms were computed for each pair under all stimulus conditions to allow comparison of the neuronal interactions under the various conditions. The shapes of some correlograms (after subtraction of direct stimulus effects) were dependent on specific stimulus conditions, suggesting that the effective connectivity between these neurons depended on the location and/or movement of the sound stimuli. Furthermore, joint peristimulus time (JPST) analysis indicated that modifications of connectivity may be temporally related to the stimulus and may occur over short periods of time. These results could not have been predicted from analysis of the independent single-unit responses to the stimuli. 5. The data suggest that both firing rates and correlated activity between adjacent neurons in the auditory cortex encode sound location and movement.  相似文献   

12.
Summary 452 single neurons from the superior colliculus were recorded in awake and non-paralysed cats. 75 neurons were obtained from cats with unrestrained horizontal head movements.228 neurons remained unaffected by saccadic eye movements. Eye movement related discharge followed the onset of saccades in 156 neurons either only in the presence of a visual pattern (92 neurons) or in darkness, too (64 neurons). The latter reaction type probably depends on eye muscle afferents.In 48 neurons eye movement related activity preceded the onset of eye movements. 12 neurons fired in synchrony with eye movements of any direction (type I). 30 neurons were excited during contralaterally directed eye versions within or into the contralateral head related hemifield. They were inhibited when the eyes moved within or into the ipsilateral head related hemifield (type II). 6 neurons with constant maintained activity during fixation were inhibited by ipsilaterally directed saccades, but remained unaffected by contralateral eye movements.Head movement related discharge followed the onset of head movements in 20 neurons only in presence of a visual pattern and also in darkness in 6 neurons. Ipsilateral head movements or postures strongly suppressed maintained activity and visual responsiveness of some neurons.15 neurons discharged in synchrony with and prior to contralateral head movements. Ipsilateral head movements inhibited these neurons. Activation or inhibition were usually related to movement and to posture, exceptionally to movement or to posture.Electrical stimulation of recording sites of these neurons through the recording microelectrode elicits contralateral head movements.  相似文献   

13.
This study aimed to classify the responses of single units in the auditory midbrain to acoustic stimuli presented in the free field in order to characterize those units likely to have a role in sound localization in the horizontal plane. The responses of 131 single units in the inferior colliculus of the cat and the brush-tailed possum were studied using tone and noise-burst stimuli presented from a speaker capable of movement at any point along a plane 10 degrees above the horizontal plane. Speaker positions along this plane are referred to as speaker azimuths; those on the same side as the recorded inferior colliculus as ipsilateral, and on the opposite side as contralateral, azimuths. For each unit, spike counts were measured as a function of azimuth either at the best frequency (BF) or using noise bursts. These functions are referred to as azimuth functions and were usually measured for at least two intensities, between 10 and 70 dB above threshold. The recording sites of most units were identified histologically with the aid of microlesions and were related to the major subdivisions of the inferior colliculus: the central nucleus (ICC), the lateral part of the external nucleus (ICX), and the rostroventral process (R-ICX). Two units were located in the pericentral nucleus and two in the dorsal nucleus of the lateral lemniscus. Two major classes of neuron were identified: omnidirectional and directionally sensitive. Omnidirectional units exhibited azimuth functions that were either flat or that declined gradually at progressively ipsilateral azimuths. For the latter units, discharge rates at all points monotonically increased with stimulus intensity. There was no indication, for either type of omnidirectional unit, of significant binaural interaction. A good correlation was found between the summed proportions of excitatory-excitatory (EE) and monaural (EO) units observed in dichotic studies (46-55%) and the proportion of omnidirectional units in the present study (47%). A subgroup of directionally sensitive units (36% of the total) displayed azimuth functions for which the azimuthal position of the discharge border or peak firing azimuth remained essentially unaltered over a range of stimulus intensities. These azimuth-selective units are likely to have a role in the detection of the location of stimuli in the horizontal plane and appear to include units that would be considered excitatory-inhibitory (EI) or delay sensitive in dichotic studies. The azimuths over which directionally sensitive units showed their marked directional effects were influenced by the position of the contralateral pinna.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
How do neurons in the inferior colliculus (IC) encode the spatial location of sound? We have addressed this question using a virtual auditory environment. For this purpose, the individual head-related transfer functions (HRTFs) of 18 guinea pigs were measured under free-field conditions for 122 locations covering the upper hemisphere. From 257 neurons, 94% responded to the short (50-ms) white noise stimulus at 70 dB sound pressure level (SPL). Out of these neurons, 80% were spatially tuned with a receptive field that is smaller than a hemifield (at 70 dB). The remainder responded omnidirectionally or showed fractured receptive fields. The majority of the neurons preferred directions in the contralateral hemisphere. However, preference for front or rear positions and high elevations occurred frequently. For stimulation at 70 dB SPL, the average diameter of the receptive fields, based on half-maximal response, was less than a quarter of the upper hemisphere. Neurons that preferred frontal directions responded weakly or showed no response to posterior directions and vice versa. Hence, front/back discrimination is present at the single-neuron level in the IC. When nonindividual HRTFs were used to create the stimuli, the spatial receptive fields of most neurons became larger, split into several parts, changed position, or the response became omnidirectional. Variation of absolute sound intensity had little effect on the preferred directions of the neurons over a range of 20 to 40 dB above threshold. With increasing intensity, most receptive fields remained constant or expanded. Furthermore, we tested the influence of binaural decorrelation and stimulus bandwidth on spatial tuning. The vast majority of neurons with a low characteristic frequency (<2.5 kHz) lost spatial tuning under stimulation with binaurally uncorrelated noise, whereas high-frequency units were mostly unaffected. Most neurons that showed spatial tuning under broadband stimulation (white noise and 1 octave wide noise) turned omnidirectional when stimulated with 1/3 octave wide noise.  相似文献   

15.
Recordings of response to free-field stimuli at best frequency were made from single units in the central nucleus of the inferior colliculus of anesthetized cats. Stimulus position was varied in azimuth, and the responses of units were compared with variation in the intensity and arrival time of the sound at each ear, derived from cochlear microphonic (CM) recordings. CM recordings were made at each frequency and at every point in space for which single-unit data were collected. Interaural time difference (delay) increased monotonically, but not linearly, as the stimulus was moved away from the midline. However, a given delay did not represent a single azimuth across frequency. Low-frequency interaural intensity differences (IIDs) were monotonic across azimuth and peaked at, or near, the poles. Higher-frequency IIDs were nonmonotonic and peaked relatively close to the midline, decreasing toward the poles. Units that showed little variation in discharge across azimuth formed 28% of the sample and were classified as omnidirectional. For other units, the spike-count intensity function and the variation of the CM with azimuth were combined to form a derived monaural azimuth function. For 29% of those units showing azimuthal sensitivity, the derived monaural azimuth function matched the actual azimuth function. This suggested that these units received input from only one ear. The largest group of azimuthally sensitive units (47%) was formed from those units inferred to be IID sensitive. At higher frequencies these units displayed a peaked azimuth function paralleling the nonmonotonic relation of IID to azimuth. The proportion of inferred IID-sensitive units was close to that found in dichotic studies.  相似文献   

16.
Using extracellular electrodes we studied acoustic responses in the superior colliculus (SC) of the barbiturate-anesthetized cat. Pure tonal stimuli were delivered through sealed and calibrated earphones and were presented either monaurally or binaurally with interaural intensity differences (IIDs) and interaural time differences (ITDs). Acoustically sensitive cells were found in the intermediate and deep layers of the SC throughout its rostrocaudal and mediolateral extent. Most cells (80%) discharged only at stimulus onset; the rest had more complex firing patterns. For 88% of our sample the mean first-spike latency measured at 20 dB above threshold ranged between 6 and 16 ms. The sharpness and threshold intensity of the frequency tuning curves varied widely. In the SC, the average characteristic frequency and threshold intensity were higher than in other auditory brain stem nuclei. Neurons whose characteristic frequency was low were never sharply tuned. The probability of response decreased when the repetition rate at which the stimuli were delivered increased. The mean stimulus interval at which spike count reached 50% of maximum was 360 ms. Most (83%) of the cells discharged only to monaural stimulation of the contralateral ear, 7% responded to tones applied to either ear and only 1% to only ipsilateral input. The remaining cells responded only to stimulation of both ears. With binaural stimuli, most neurons (80%) could be shown to receive input from both ears. Seventy percent of the binaural cells showed predominant binaural inhibition (BI), 25% binaural facilitation (BF), and 5% a more complex mixture. Because the majority of SC neurons had high characteristic frequencies, we examined their responses to IIDs. The spike count vs. IID functions of BI cells were monotonic and sigmoidal, those of BF cells were nonmonotonic and bell-shaped. The slopes and horizontal positions of the curves varied among neurons. IIDs favoring the contralateral ear were the most effective. For a given cell, increasing the mean binaural level extended the range of IIDs that evoked maximal discharge. A small number of cells was sensitive to physiologically significant interaural time differences of low-frequency tones or the envelopes of amplitude-modulated, high-frequency tones.  相似文献   

17.
We studied duration tuning in neurons of the inferior colliculus (IC) of the mustached bat. Duration-tuned neurons in the IC of the mustached bat fall into three main types: short (16 of 136), band (34 of 136), and long (29 of 136) pass. The remaining 51 neurons showed no selectivity for the duration of sounds. The distribution of best durations was double peaked with maxima around 3 and 17 ms, which correlate with the duration of the short frequency-modulated (FM) and the long constant-frequency (CF) signals emitted by Pteronotus parnellii. Since there are no individual neurons with a double-peaked duration response profile, both types of temporal processing seem to be well segregated in the IC. Most short- and band-pass units with best frequency in the CF2 range responded to best durations > 9 ms (66%, 18 of 27 units). However, there is no evidence for a bias toward longer durations as there is for neurons tuned to the frequency range of the FM component of the third harmonic, where 83% (10 of 12 neurons) showed best durations longer than 9 ms. In most duration-tuned neurons, response areas as a function of stimulus duration and intensity showed either V or U shape, with duration tuning retained across the range of sound levels tested. Duration tuning was affected by changes in sound pressure level in only six neurons. In all duration-tuned neurons, latencies measured at the best duration were longer than best durations, suggesting that behavioral decisions based on analysis of the duration of the pulses would not be expected to be complete until well after the stimulus has occurred.  相似文献   

18.
At and above the level of the inferior colliculus (IC), some neurons respond maximally to a limited range of sound durations, with little or no excitatory response to durations outside of this range. Such neurons have been termed "duration tuned" or "duration selective." In this study we examined the effects of varying signal amplitude on best duration, width of tuning, and first spike latency of duration tuned neurons in the IC of the big brown bat, Eptesicus fuscus. Response areas as a function of stimulus duration and intensity took a variety of forms, including open (V-shaped), narrow and level tolerant (U-shaped), or closed (O-shaped). The majority (82%) of duration tuned neurons had narrow U-shaped or O-shaped duration response areas. Those with narrow U-shaped response areas retained their duration tuning across a broad dynamic range, < or = 50 dB above threshold, whereas those with O-shaped response areas were narrowly tuned to both stimulus duration and amplitude. For about one-half (55%) of the neurons with either a U- or O-shaped response areas, best duration (BD) changed by <1 ms across the range of suprathreshold amplitudes tested. Changes in BD most often took the form of a shift to slightly shorter durations as stimulus level increased. For the majority (65%) of U- and O-shaped neurons, 50% width of duration tuning changed by <2 ms with increasing amplitude. Latency of response at BD remained stable across changes in sound level, suggesting that the relative strengths of excitatory and inhibitory inputs to duration tuned neurons remain in balance over a wide dynamic range of sound pressure levels.  相似文献   

19.
Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.  相似文献   

20.
1. Preliminary to studying the organization of azimuthal sensitivity of neurons along frequency-band strips in the primary auditory cortex (AI) of cat (see companion paper), this study examined the sensitivity of 251 units in cat AI to variations in the azimuthal location of sound sources in the frontal hemifield. Most units (231) were tested with tones at the characteristic frequency (CF; frequency to which the unit had the lowest threshold). Unit CFs ranged from 5 to 36 kHz. A large number of units (91) were tested with broadband noise stimuli, and a few units were also tested at other frequencies within the cell's tuning response area. 2. When tested at stimulus intensities 20-30 dB above CF or noise threshold, the different forms of azimuthal sensitivity exhibited by AI neurons could be divided into (1) contra-field azimuth functions; (2) ipsi-field functions; (3) central-field functions; (4) omnidirectional functions, and (5) multipeaked functions. Contra-field azimuth functions were the most prevalent, with 45.9% of units tested with CF tones and 42.9% of units tested with noise exhibiting this type of azimuthal sensitivity. Ipsi-field azimuthal sensitivity was found in 16.9% of units tested with CF tones and 19.8% of units tested with noise. Central-field azimuthal sensitivity was seen in 10.8% of units tested with CF tones and 17.6% of units tested with noise. Omnidirectional azimuthal sensitivity was seen in 19.9% of units tested with CF tones and 17.6% of units tested with noise, whereas multipeaked azimuthal sensitivity was found in 6.5% of units tested with CF tones and 5.5% of units tested with noise. 3. The effects of increasing stimulus intensity on azimuthal sensitivity were examined in 185 units tested with CF tones and 67 units tested with noise. For four major classes of azimuthal sensitivity (contra-field, ipsi-field, central-field and omnidirectional), the most common effect (approximately 60% of each class) was for the azimuth function to remain constant in form by the defining criteria for these classes. The next most common effect for all classes except omnidirectional azimuth functions was for an expansion of the azimuthal range eliciting responses. (The definition of omnidirectionality precluded any expansion of the response range in this class of azimuth function). A smaller number of units in some classes showed a compression of the azimuth function to a smaller response range, and others showed more complex expansive and compressive effects with increasing stimulus intensity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号