首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of reinforcements and thermal exposure on the tensile properties of aluminium AA 5083–silicon carbide (SiC)–fly ash composites were studied in the present work. The specimens were fabricated with varying wt.% of fly ash and silicon carbide and subjected to T6 thermal cycle conditions to enhance the properties through “precipitation hardening”. The analyses of the microstructure and the elemental distribution were carried out using scanning electron microscopic (SEM) images and energy dispersive spectroscopy (EDS). The composite specimens thus subjected to thermal treatment exhibit uniform distribution of the reinforcements, and the energy dispersive spectrum exhibit the presence of Al, Si, Mg, O elements, along with the traces of few other elements. The effects of reinforcements and heat treatment on the tensile properties were investigated through a set of scientifically designed experimental trials. From the investigations, it is observed that the tensile and yield strength increases up to 160 °C, beyond which there is a slight reduction in the tensile and yield strength with an increase in temperature (i.e., 200 °C). Additionally, the % elongation of the composites decreases substantially with the inclusion of the reinforcements and thermal exposure, leading to an increase in stiffness and elastic modulus of the specimens. The improvement in the strength and elastic modulus of the composites is attributed to a number of factors, i.e., the diffusion mechanism, composition of the reinforcements, heat treatment temperatures, and grain refinement. Further, the optimisation studies and ANN modelling validated the experimental outcomes and provided the training models for the test data with the correlation coefficients for interpolating the results for different sets of parameters, thereby facilitating the fabrication of hybrid composite components for various automotive and aerospace applications.  相似文献   

2.
Refined microstructures achieved by cyclic heat treatment significantly contribute to improving the wear resistance of steels. To acquire the refined microstructures of 65Mn low-alloy steel, first, the specimens were solid solution-treated; then, they were subjected to cyclic heat treatment at cyclic quenching temperatures of 790–870 °C and quenching times of 1–4 with a fixed holding time of 5 min. The mechanical properties of 65Mn low-alloy steel in terms of hardness, tensile strength, elongation and wear resistance were characterized. Afterwards, the effect of cyclic heat treatment on microstructure evolution and the relationships between grain refinement and mechanical properties’ improvement were discussed. The results show that the average grain size firstly decreased and then increased with the increase in the quenching temperature. Hardness increased with grain refinement when the temperature was lower than 830 °C. Once the temperature exceeded 830 °C, hardness increased with the temperature increase owing to the enrichment of carbon content in the martensite. With the increase in cyclic quenching times, hardness continuously increased with grain refinement strengthening. In addition, both tensile strength and elongation could be significantly improved through grain refinement. The relationships among wear loss, hardness and average grain size showed that wear resistance was affected by the synthesis reaction of grain refinement and hardness. Higher hardness and refined grain size contributed to improving the wear resistance of 65Mn low-alloy steel.  相似文献   

3.
Fly ash wastes (silica, aluminum and iron-rich materials) could be smartly valorized by their incorporation in concrete formulation, partly replacing the cement. The necessary binding properties can be accomplished by a simple procedure: an alkali activation process, involving partial hydrolysis, followed by gel formation and polycondensation. The correlations between the experimental fly ash processing conditions, particle characteristics (size and morphology) and the compressive strength values of the concrete prepared using this material were investigated by performing a parametric optimization study to deduce the optimal processing set of conditions. The alkali activation procedure included the variation of the NaOH solutions concentration (8–12 M), temperature values (25–65 °C) and the liquid/solid ratio (1–3). The activation led to important modifications of the crystallography of the samples (shown by powder XRD analysis), their morphologies (seen by SEM), particle size distribution and Blaine surface values. The values of the compressive strength of concrete prepared using fly ash derivatives were between 16.8–22.6 MPa. Thus, the processed fly ash qualifies as a proper potential building material, solving disposal-associated problems, as well as saving significant amounts of cement consumed in concrete formulation.  相似文献   

4.
This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)2 showed slow increase till the age of 28 days. Under these non-standard conditions (2–4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor.  相似文献   

5.
Coal fly ash with the addition of Al2O3 was recycled to produce mullite/alumina composites and the camphene-based freeze casting technique was processed to develop a controlled porous structure with improved mechanical strength. Many rod-shaped mullite crystals, formed by the mullitization of coal fly ash in the presence of enough silicate, melt. After sintering at 1300–1500 °C with the initial solid loadings of 30–50 wt.%, interconnected macro-sized pore channels with nearly circular-shaped cross-sections developed along the macroscopic solidification direction of camphene solvent used in freeze casting and a few micron-sized pores formed in the walls of the pore channels. The macro-pore size of the mullite/alumina composites was in the range 20–25 μm, 18–20 μm and 15–17 μm with reverse dependence on the sintering temperature at 30, 40 and 50 wt.% solid loading, respectively. By increasing initial solid loading and the sintering temperature, the sintered porosity was reduced from 79.8% to 31.2%, resulting in an increase in the compressive strength from 8.2 to 80.4 MPa.  相似文献   

6.
This paper presents results of a study on the effect of filler size in the form of 15 wt% corn stalk (CS) fibers on the mechanical and thermomechanical properties of polylactide (PLA) matrix composites. In the test, polylactidic acid (PLA) is filled with four types of length of corn stalk fibers with a diameter of 1 mm, 1.6 mm, 2 mm and 4 mm. The composites were composed by single screw extrusion and then samples were prepared by injection molding. The mechanical properties of the composites were determined by static tensile test, static bending test and Charpy impact test while the thermo-mechanical properties were determined by dynamic mechanical thermal analysis (DMTA). The composite structures were also observed using X-ray microcomputed tomography and scanning electron microscopy. In the PLA/CS composites, as the filler fiber diameter increased, the degradation of mechanical properties relative to the matrix was observed including tensile strength (decrease 22.9–51.1%), bending strength (decrease 18.9–36.6%) and impact energy absorption (decrease 58.8–69.8%). On the basis of 3D images of the composite structures for the filler particles larger than 2 mm a weak dispersion with the filler was observed, which is reflected in a significant deterioration of the mechanical and thermomechanical properties of the composite. The best mechanical and thermomechanical properties were found in the composite with filler fiber of 1 mm diameter. Processing resulted in a more than 6-fold decrease in filler fiber length from 719 ± 190 µm, 893 ± 291 µm, 1073 ± 219 µm, and 1698 ± 636 µm for CS1, CS1.6, CS2, and CS4 fractions, respectively, to 104 ± 43 µm, 123 ± 60 µm, 173 ± 60 µm, and 227 ± 89 µm. The fabricated green composites with 1 to 2 mm corn stalk fiber filler are an alternative to traditional plastic based materials in some applications.  相似文献   

7.
This article analyses the possibility of using fly ash from the combustion of wood–sunflower biomass in a fluidized bed boiler as an additive to concrete. The research shows that fly ash applied in an amount of 10–30% can be added as a sand substitute for the production of concrete, without reducing quality (compression strength and low-temperature resistance) compared to control concrete. The 28-day compressive strength of concrete with fly ash increases with the amount of ash added (up to 30%), giving a strength 28% higher than the control concrete sample. The addition of fly ash reduces the extent to which the compression strength of concrete is lowered after low-temperature resistance tests by 22–82%. The addition of fly ash in the range of 10–30% causes a slight increase in the water absorption of concrete. Concretes containing the addition of fly ash from biomass combustion do not have a negative environmental impact with respect to the leaching of heavy metal ions into the environment.  相似文献   

8.
The range of available aluminum alloy powders for laser powder bed fusion (LPBF) is restricted to mainly Al–Si based alloys. Currently aluminum alloy powders, designed for lightweight application, based on Al–Mg (5000 series), Al–Si–Mg (6000 series), or Al–Zn–Mg (7000 series), cannot be processed by LPBF without solidification cracks. This has an impact on the potential of LPBF for lightweight applications. In fusion welding, solidification cracks are eliminated by using filler materials. This study aims to transfer the known procedure to LPBF, by supplementing EN AW-5083 (AlMg4.5Mn0.7) with AlSi10Mg. EN AW-5083 and two modifications (+7 wt.% and +15 wt.% AlSi10Mg) were produced by LPBF and analyzed. It was found that, in EN AW-5083, the solidification cracks have a length ≥200 µm parallel to the building direction. Furthermore, the solidification cracks can already be eliminated by supplementing 7 wt.% AlSi10Mg. The microstructure analysis revealed that, by supplementing AlSi10Mg, the melt pool boundaries become visible, and the grain refines by 40% relative to the base alloy. Therefore, adding a low melting point phase and grain refinement are the mechanisms that eliminate solidification cracking. This study illustrates a practical approach to eliminate solidification cracks in LPBF.  相似文献   

9.
This study investigates the effect of varying ratios of fly ash as a partial replacement for fine aggregate on the performance of alkali-activated municipal slag composites. The strength and other properties of alkali-activated cementitious material (AACM) composites can be optimized by selecting the appropriate mix proportion. In this study, we used fly ash as a substitute for fine aggregate (FA/S) at varying ratios of 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0%, mixed with 50% water (W/SL), and 20% alkali activator (AL/SL) content instead of municipal slag (SL) as a core binder, cured in steam conditions. The effects of these substitutions on the initial mixing temperature, slump flow, compressive and splitting tensile strengths, and microstructure analysis of composites cured in steam conditions were investigated at 1, 7, 28, and 91 days. The evaluation of the experimental results revealed that increasing the ratio of fly ash substitution to fine aggregate by up to 20.0% led to a higher strength attributable to the composites, whereas when the extra substitution ratio of FA/S ranged from 25.0–30.0%, significant decreases in strength were observed. The composites’ strengths were estimated using the ACI 209 and ACI 318 design equations and compared to the measured strengths.  相似文献   

10.
Evaluation of the high-temperature tensile properties of Ti-6Al-4V manufactured by electron beam melting (EBM) and subjected to a low-temperature hot isostatic pressing (HIP) treatment (800 °C) was performed in this study. The high-temperature tensile properties of as-built and standard HIP-treated (920 °C) materials were studied for comparison. Metallurgical characterization of the as-built, HIP-treated materials was carried out to understand the effect of temperature on the microstructure. As the HIP treatments were performed below the β-transus temperature (995 °C for Ti-6Al-4V), no significant difference was observed in β grain width between the as-built and HIP-treated samples. The standard HIP-treated material measured about 1.4×–1.7× wider α laths than those in the modified HIP (low-temperature HIP)-treated and as-built samples. The standard HIP-treated material showed about a 10–14% lower yield strength than other tested materials. At 350 °C, the yield strength decreased to about 65% compared to the room-temperature strength for all tested specimens. An increase in ductility was observed at 150 °C compared to that at room temperature, but the values decreased between 150 and 350 °C because of the activation of different slip systems.  相似文献   

11.
This study examines foamed geopolymer composites based on fly ash from the Skawina coal-fired power plant in Poland. The paper presents the effect of adding 3% and 5% by weight of glass wool waste on selected properties of foamed geopolymers. The scope of the tests carried out included density measurements, compressive and bending strength tests, measurements of the heat conduction coefficient, and the results of measurements of changes in thermal radiation in samples subjected to a temperature of 800 °C. The obtained results indicate that glass wool waste can be successfully used to lower the density and heat conduction coefficient of foamed geopolymer composites with a fly ash matrix. In addition, the results of changes in thermal radiation in the samples subjected to the temperature of 800 °C showed a positive effect of the addition of glass wool waste. Moreover, the introduction of the addition of glass wool waste made it possible to increase the compressive strength of the examined foamed geopolymers. For the material modified with 3% by weight of mineral wool, the increase in compressive strength was about 10%, and the increase in fibers in the amount of 5% by weight resulted in an increase of 20% concerning the base material. The obtained results seem promising for future applications. Such materials can be used in technical constructions as thermal insulation materials.  相似文献   

12.
Concrete is the most commonly used structural material, without which modern construction could not function. It is a material with a high potential to adapt to specific operating conditions. The use of this potential is made by its material modification. The aim of the performed investigations was the assessment of rational application possibilities of fly ashes from thermally conversed municipal sewage sludge as an alternative concrete admixture. A concrete mix was designed, based on the Portland cement CEM I 42.5R and containing various quantity of ash, amounting to 0–25% of cement mass. The samples were conditioned and heated in a furnace at the temperature of 300 °C, 500 °C, and 700 °C. Physical and chemical properties of the ashes as well as utility properties of the concrete, i.e., density, compressive strength after 28, 56, and 90 days of maturation, frost resistance, and compressive strength in high temperature were determined. The tests were performed at cubic samples with 10 cm edge. The replacement of a determined cement quantity by the fly ashes enables obtaining a concrete composite having good strength parameters. The concrete modified by the fly ashes constituting 20% of the cement mass achieved its average compressive strength after 28 days of maturation equal to 50.12 MPa, after 56 days 50.61 MPa and after 90 days 50.80 MPa. The temperature growth weakens the composite structure. The obtained results confirm the possibility of waste recycling in the form of fly ashes as a cement substitute in concrete manufacturing.  相似文献   

13.
This article presents test results of aggressive environment impact, i.e., seawater, acid solutions and carbonation, on the durability of cement–ash mortars. Tests were conducted on CEM I 42.5R-based mortars containing 35 to 70% by mass of FBC fly ash from brown and black coal combustion in a homogeneous form and mixtures of 35% by mass of siliceous fly ashes (CFA) and 35% by mass of FBC fly ash. It was demonstrated that in normal conditions (20 °C), FBC ashes showed higher pozzolanic activity than CFA, except when their curing temperature was increased to 50 °C. FBC ashes increased mortars’ water demands, which led to an accelerated carbonation process. In an environment of Cl- ions, cement–ash mortars showed more Ca2+ ions leached and no expansive linear and mass changes, which, with their increased strength, might be an argument in favour for their future use in construction of coastal structures resistant to seawater. FBC ash content may be increased to 35% by mass, maintaining mortars’ resistance to seawater, acid rain and carbonation. A favourable solution turned out to be a FBC and CFA mixed addition to cement of 35% by mass each, in contrast to mortars containing 70% of FBC fly ash in homogeneous form.  相似文献   

14.
The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber—17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.  相似文献   

15.
The behavior of soils under tensile stress is of interest to geotechnical engineers. Tensile strength of soils is often associated with tensile fractures that can generate a privileged flow path. The addition of bentonite improves the plastic properties of the soil, therefore the study was conducted for the compacted class F fly ash and fly ash with various bentonite additions. An amount of bentonite was: 5, 10 and 15%, calculated in weight relation to dry mass of samples. The tensile strength of compacted clay was also established, for comparison. Laboratory tests were carried out using the direct method (breaking) on cylindrical samples and the indirect method (the Brazilian test) on disc-shaped specimens. For this purpose, a universal testing machine with a frame load range of ±1 kN was used. It is stated that bentonite considerably influences the tensile strength of the fly ash evaluated with both methods. The tensile strength values obtained with the Brazilian method are comparable or higher than those obtained with the direct method. The achieved tensile strength values of compacted fly ash, improved by 10−15% of bentonite addition, are comparable with the results obtained for clay used in mineral sealing, while the strain at maximum tensile strength is similar in the direct test and lower in the indirect test.  相似文献   

16.
This work presents carbon fabric reinforced aluminosilicate matrix composites with content of boric acid, where boron replaces aluminum ions in the matrix and can increase the mechanical properties of composites. Five different amounts of boric acid were added to the alkaline activator for preparing six types (including alkaline activator without boric acid) of composites by the prepreg method. The influence of boric acid content in the matrix on the tensile strength, Young’s modulus and interlaminar strength of composites was studied. Attention was also paid to the influence of boron content on the behavior of the matrix and on the internal structure of composites, which was monitored using a scanning electron microscope. The advantage of the aluminosilicate matrix is its resistance to high temperatures; therefore, tests were also performed on samples affected by temperatures of 400–800 °C. The interlaminar strength obtained by short-beam test were measured on samples exposed to 500 °C either hot (i.e. measured at 500 °C) or cooled down to room temperature. The results showed that the addition of boron to the aluminosilicate matrix of the prepared composites did not have any significant effect on their mechanical properties. The presence of boron affected the brittleness and swelling of the matrix and the differences in mechanical properties were evident in samples exposed to temperatures above 500 °C. All six prepared composites showed tensile strength higher than 320 MPa at laboratory temperature. The boron-free composite had the highest strength 385 MPa. All samples showed a tensile strength higher than 230 MPa at elevated temperatures up to 500 °C.  相似文献   

17.
The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50) was (0.07–0.08) qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.  相似文献   

18.
The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.  相似文献   

19.
This study focuses on the properties and process parameters dictating behavioural aspects of friction stir welded Aluminium Alloy AA6061 metal matrix composites reinforced with varying percentages of SiC and B4C. The joint properties in terms of mechanical strength, microstructural integrity and quality were examined. The weld reveals grain refinement and uniform distribution of reinforced particles in the joint region leading to improved strength compared to other joints of varying base material compositions. The tensile properties of the friction stir welded Al-MMCs improved after reinforcement with SiC and B4C. The maximum ultimate tensile stress was around 172.8 ± 1.9 MPa for composite with 10% SiC and 3% B4C reinforcement. The percentage elongation decreased as the percentage of SiC decreases and B4C increases. The hardness of the Al-MMCs improved considerably by adding reinforcement and subsequent thermal action during the FSW process, indicating an optimal increase as it eliminates brittleness. It was seen that higher SiC content contributes to higher strength, improved wear properties and hardness. The wear rate was as high as 12 ± 0.9 g/s for 10% SiC reinforcement and 30 N load. The wear rate reduced for lower values of load and increased with B4C reinforcement. The microstructural examination at the joints reveals the flow of plasticized metal from advancing to the retreating side. The formation of onion rings in the weld zone was due to the cylindrical FSW rotating tool material impression during the stirring action. Alterations in chemical properties are negligible, thereby retaining the original characteristics of the materials post welding. No major cracks or pores were observed during the non-destructive testing process that established good quality of the weld. The results are indicated improvement in mechanical and microstructural properties of the weld.  相似文献   

20.
This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145–173 mm for pastes and 131–136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号