首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the structural properties and the electrical conductivity of La1−xPrxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) and PrNbO4+δ are presented and discussed. All synthesized samples crystallized in a monoclinic structure with similar thermal expansion coefficients. The phase transition temperature between the monoclinic and tetragonal structure increases with increasing praseodymium content from 500 °C for undoped LaNbO4+δ to 700 °C for PrNbO4+δ. Thermogravimetry, along with X-ray photoelectron spectroscopy, confirmed a mixed 3+/4+ oxidation state of praseodymium. All studied materials, in humid air, exhibited mixed protonic, oxygen ionic and hole conductivity. The highest total conductivity was measured in dry air at 700 °C for PrNbO4+δ, and its value was 1.4 × 10−3 S/cm.  相似文献   

2.
New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO) target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111) underlayer enhanced the (001) orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111) textured film at 700 °C and directly onto (100) Si wafers showed relatively larger (011) and diminished intensity (00ℓ) diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (εr) and resistivity (ρ) of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.  相似文献   

3.
The reactivity index of weight loss (RI) and tumbling strength after the reaction (I10600) of manufacturing coke were first tested at a temperature series of 1100, 1200, and 1300 °C under CO2 atmosphere with different compositions and duration times to study the effects of temperature, time, and gas composition on coke hot strength. Then the RI/I10600, carbon structure, and optical texture of the cokes prepared from different single coals were mainly studied after a solution reaction with CO2 under a high temperature of 1300 °C and a standard temperature of 1100 °C. It was found that temperature greatly affects the RI/I10600 of coke, especially at high temperatures up to 1300 °C. Compared with standard tests under 1100 °C, the changes of RI/I10600 for different cokes are very different at 1300 °C, and the changes are greatly related to coke optical texture. Under a high temperature in the testing method, the tumbling strength of cokes with more isotropy increased, whereas it decreased for those with less isotropy. This simple method of using high temperature could yield the same results when compared with complicated simulated blast furnace conditions.  相似文献   

4.
In order to improve the wear resistance of offshore drilling equipment, CoCrFeNiMn high-entropy alloy coatings were prepared by cold spraying (CS) and high-speed oxygen fuel spraying (HVOF), and the coatings were subjected to vacuum heat treatment at different temperatures (500 °C, 700 °C and 900 °C). The friction and wear experiments of the coatings before and after vacuum heat treatment were carried out in simulated seawater drilling fluid. The results show that CoCrFeNiMn high-entropy alloy coatings prepared by CS and HVOF have dense structure and bond well with the substrate. After vacuum heat treatment, the main peaks of all oriented FCC phases are broadened and the peak strength is obviously enhanced. The two types of coatings achieve maximum hardness after vacuum heat treatment at 500 °C; the Vickers microhardness of CS-500 °C and HVOF-500 °C are 487.6 and 352.4 HV0.1, respectively. The wear rates of the two coatings at room temperature are very close. CS and HVOF coatings both have the lowest wear rate after vacuum heat treatment at 500 °C. The CS-500 °C coating has the lowest wear rate of 0.2152 mm3 m−1 N−1, about 4/5 (0.2651 mm3 m−1 N−1) of the HVOF-500 °C coating. The wear rates and wear amounts of the two coatings heat-treated at 700 °C and 900 °C decrease due to the decrease in microhardness. The wear mechanisms of the coatings before and after vacuum heat treatment are adhesive wear, abrasive wear, fatigue wear and oxidation wear.  相似文献   

5.
The main measure to reduce energy losses is the usage of insulating materials. When the temperature exceeds 500 °C, silicate and ceramic products are most commonly used. In this work, high-crystallinity 1.13 nm tobermorite and xonotlite were hydrothermally synthesized from lime and Ca–Si sedimentary rock, opoka. By XRD, DSC, TG and dilatometry methods, it has been shown that 1.13 nm tobermorite becomes the predominant compound in stirred suspensions at 200 °C after 4 h of synthesis in the mixture with a molar ratio CaO/SiO2 = 0.83. It is suitable for the production of insulating products with good physical–mechanical properties (average density < 200 kg·m−1, compressive strength ~0.9 MPa) but has a limited operating temperature (up to 700 °C). Sufficiently pure xonotlite should be used to obtain materials with a higher operating temperature. Even small amounts of semi-amorphous C–S–H(I) significantly increase its linear shrinkage during firing. It has also been observed that an increase in the strength values of the samples correlated well with the increase in the size of xonotlite crystallites. The optimal technological parameters are as follows: molar ratio of mixture CaO/SiO2 = 1.2; water/solid ratio W/S = 20.0; duration of hydrothermal synthesis at 220 °C—8 h, duration of autoclaving at 220 °C—4 h. The average density of the samples was ~180 kg·m−1, the operating temperature was at least 1000 °C, and the compressive strengths exceeded 1.5 MPa.  相似文献   

6.
High quality, micron-sized interpenetrating grains of MgB2, with high density, are produced at low temperatures (~420 °C < T < ~500 °C) under autogenous pressure by pre-mixing Mg powder and NaBH4 and heating in an Inconel 601 alloy reactor for 5–15 h. Optimum production of MgB2, with yields greater than 75%, occurs for autogenous pressure in the range 1.0 MPa to 2.0 MPa, with the reactor at ~500 °C. Autogenous pressure is induced by the decomposition of NaBH4 in the presence of Mg and/or other Mg-based compounds. The morphology, transition temperature and magnetic properties of MgB2 are dependent on the heating regime. Significant improvement in physical properties accrues when the reactor temperature is held at 250 °C for >20 min prior to a hold at 500 °C.  相似文献   

7.
The traditional solid-state reaction method was employed to synthesize bulk calcium cobaltite (Ca349/Ca3Co4O9) ceramics via ball milling the precursor mixture. The samples were compacted using conventional sintering (CS) and spark plasma sintering (SPS) at 850, 900, and 950 °C. The X-ray diffraction (XRD) pattern indicates the presence of the Ca349 phase for samples sintered at 850 and 900 °C. In addition, SPS fosters higher densification (81.18%) than conventional sintering (50.76%) at elevated sintering temperatures. The thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) performed on the precursor mixture reported a weight loss of ~25.23% at a temperature range of 600–820 °C. This current work aims to analyze the electrical properties (Seebeck coefficient (s), electrical resistivity (ρ), and power factor) of sintered samples as a function of temperature (35–500 °C). It demonstrates that the change in sintering temperature (conventional sintering) did not evince any significant change in the Seebeck coefficient (113–142 μV/K). However, it reported a low resistivity of 153–132 μΩ-m and a better power factor (82–146.4 μW/mK2) at 900 °C. On the contrary, the SPS sintered samples recorded a higher Seebeck coefficient of 121–181 μV/K at 900 °C. Correspondingly, the samples sintered at 950 °C delineated a low resistivity of 145–158 μΩ-m and a better power factor (97–152 μW/mK2).  相似文献   

8.
New insights into the chemistry of alumino-phosphate solutions are provided in this contribution. In a first part, a solution with a P/Al molar ratio of 3.2 was prepared for the first time. The binders obtained at 500 and 700 °C were compared to those obtained with the 3 and 3.5 P/Al molar ratio solutions in order to determine the impact of moderate P2O5 excess on the final phosphate ceramic nature. In a second part, the widely used P/Al = 3 solution was heat-treated at 500 °C using different heating rates (0.2, 1, and 10 °C/min) to determine how this parameter modifies the final phosphate ceramic composition. Our data show that moderate P2O5 excess is sufficient to obtain binders with a high amount of stable cubic aluminium metaphosphate compound at 700 °C but not at 500 °C, where significant P2O5 excess is mandatory. We also show that slow heating favors the formation of cubic aluminium metaphosphate compound at 500 °C.  相似文献   

9.
In our study, transparent and conductive films of NiOx were successfully deposited by sol-gel technology. NiOx films were obtained by spin coating on glass and Si substrates. The vibrational, optical, and electrical properties were studied as a function of the annealing temperatures from 200 to 500 °C. X-ray Photoelectron (XPS) spectroscopy revealed that NiO was formed at the annealing temperature of 400 °C and showed the presence of Ni+ states. The optical transparency of the films reached 90% in the visible range for 200 °C treated samples, and it was reduced to 76–78% after high-temperature annealing at 500 °C. The optical band gap of NiOx films was decreased with thermal treatments and the values were in the range of 3.92–3.68 eV. NiOx thin films have good p-type electrical conductivity with a specific resistivity of about 4.8 × 10−3 Ω·cm. This makes these layers suitable for use as wideband semiconductors and as a hole transport layer (HTL) in transparent solar cells.  相似文献   

10.
The influence of tempering temperature on the microstructure of 0.5Cr0.4W steels was investigated by scanning electron microscope, and the roles of grain boundary character, dislocation, and Taylor factor in sulfide stress cracking (SSC) resistance were interpreted using the election backscattered diffraction technique. The 0.5Cr0.4W steels tempered at 690 °C, 700 °C, and 715 °C all showed tempered martensites. The specimen tempered at 715 °C exhibited a higher critical stress intensity factor (KISSC) of 34.58 MPa·m0.5, but the yield strength of 800 MPa did not meet the criterion of 125 ksi (862 MPa) grade. When the specimen was tempered at 690 °C, the yield strength reached 960 MPa and the KISSC was only 21.36 MPa·m0.5, displaying poorer SSC resistance. The 0.5Cr0.4W steel tempered at 700 °C showed a good combination of yield strength (887 MPa) and SSC resistance (KISSC: 31.16 MPa·m0.5). When increasing the tempering temperature, the local average misorientation and Taylor factor of the 0.5Cr0.4W steels were decreased. The reduced dislocation density, and greater number of grains amenable to slippage, produced less hydrogen transport and a lower crack sensitivity. The SSC resistance was, thus, increased, owing to the minor damage to hydrogen aggregation. Therefore, 700 °C is a suitable tempering temperature for 0.5Cr0.4W casing steel.  相似文献   

11.
Low-temperature co-fired ceramics (LTCCs) are dielectric materials that can be co-fired with Ag or Cu; however, conventional LTCC materials are mostly poorly thermally conductive, which is problematic and requires improvement. We focused on ZnAl2O4 (gahnite) as a base material. With its high thermal conductivity (~59 W·m−1·K−1 reported for 0.83ZnAl2O4–0.17TiO2), ZnAl2O4 is potentially more thermally conductive than Al2O3 (alumina); however, it sinters densely at a moderate temperature (~1500 °C). The addition of only 4 wt.% of Cu3Nb2O8 significantly lowered the sintering temperature of ZnAl2O4 to 910 °C, which is lower than the melting point of silver (961 °C). The sample fired at 960 °C for 384 h exhibited a relative permittivity (εr) of 9.2, a quality factor by resonant frequency (Q × f) value of 105,000 GHz, and a temperature coefficient of the resonant frequency (τf) of −56 ppm·K−1. The sample exhibited a thermal conductivity of 10.1 W·m−1·K−1, which exceeds that of conventional LTCCs (~2–7 W·m−1·K−1); hence, it is a superior LTCC candidate. In addition, a mixed powder of the Cu3Nb2O8 additive and ZnAl2O4 has a melting temperature that is not significantly different from that (~970 °C) of the pristine Cu3Nb2O8 additive. The sample appears to densify in the solid state through a solid-state-activated sintering mechanism.  相似文献   

12.
Dielectric films with a high energy storage density and a large breakdown strength are promising material candidates for pulsed power electrical and electronic applications. Perovskite-type dielectric SrTiO3 (STO) has demonstrated interesting properties desirable for capacitive energy storage, including a high dielectric constant, a wide bandgap and a size-induced paraelectric-to-ferroelectric transition. To pave a way toward large-scale production, STO film capacitors were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by the sol–gel method in this paper, and their electrical properties including the energy storage performance were studied as a function of the annealing temperature in the postgrowth rapid thermal annealing (RTA) process. The appearance of a ferroelectric phase at a high annealing temperature of 750 °C was revealed by X-ray diffraction and electrical characterizations (ferroelectric P-E loop). However, this high dielectric constant phase came at the cost of a low breakdown strength and a large hysteresis loss, which are not desirable for the energy storage application. On the other hand, when the RTA process was performed at a low temperature of 550 °C, a poorly crystallized perovskite phase together with a substantial amount of impurity phases appeared, resulting in a low breakdown strength as well as a very low dielectric constant. It is revealed that the best energy storage performance, which corresponds to a large breakdown strength and a medium dielectric constant, is achieved in STO films annealed at 650 °C, which showed a large energy density of 55 J/cm3 and an outstanding energy efficiency of 94.7% (@ 6.5 MV/cm). These findings lay out the foundation for processing high-quality STO film capacitors via the manufacturing-friendly sol–gel method.  相似文献   

13.
Crystalline walled SBA-15 with large pore size were prepared using alkali and alkali earth metal ions (Na+, Li+, K+ and Ca2+). For this work, the ratios of alkali metal ions (Si/metal ion) ranged from 2.1 to 80, while the temperatures tested ranged from 500 to 700 °C. The SBA-15 prepared with Si/Na+ ratios ranging from 2.1 to 40 at 700 °C exhibited both cristobalite and quartz SiO2 structures in pore walls. When the Na+ amount increased (i.e., Si/Na increased from 80 to 40), the pore size was increased remarkably but the surface area and pore volume of the metal ion-based SBA-15 were decreased. When the SBA-15 prepared with Li+, K+ and Ca2+ ions (Si/metal ion = 40) was thermally treated at 700 °C, the crystalline SiO2 of quartz structure with large pore diameter (i.e., 802.5 Å) was observed for Ca+2 ion-based SBA-15, while no crystalline SiO2 structures were observed in pore walls for both the K+ and Li+ ions treated SBA-15. The crystalline SiO2 structures may be formed by the rearrangement of silica matrix when alkali or alkali earth metal ions are inserted into silica matrix at elevated temperature.  相似文献   

14.
In this paper, we have demonstrated the optimized device performance in the Γ-shaped gate AlGaN/AlN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) by incorporating aluminum into atomic layer deposited (ALD) HfO2 and comparing it with the commonly used HfO2 gate dielectric with the N2 surface plasma treatment. The inclusion of Al in the HfO2 increased the crystalline temperature (~1000 °C) of hafnium aluminate (HfAlOX) and kept the material in the amorphous stage even at very high annealing temperature (>800 °C), which subsequently improved the device performance. The gate leakage current (IG) was significantly reduced with the increasing post deposition annealing (PDA) temperature from 300 to 600 °C in HfAlOX-based MOS-HEMT, compared to the HfO2-based device. In comparison with HfO2 gate dielectric, the interface state density (Dit) can be reduced significantly using HfAlOX due to the effective passivation of the dangling bond. The greater band offset of the HfAlOX than HfO2 reduces the tunneling current through the gate dielectric at room temperature (RT), which resulted in the lower IG in Γ-gate HfAlOX MOS-HEMT. Moreover, IG was reduced more than one order of magnitude in HfAlOX MOS-HEMT by the N2 surface plasma treatment, due to reduction of N2 vacancies which were created by ICP dry etching. The N2 plasma treated Γ-shaped gate HfAlOX-based MOS-HEMT exhibited a decent performance with IDMAX of 870 mA/mm, GMMAX of 118 mS/mm, threshold voltage (VTH) of −3.55 V, higher ION/IOFF ratio of approximately 1.8 × 109, subthreshold slope (SS) of 90 mV/dec, and a high VBR of 195 V with reduced gate leakage current of 1.3 × 10−10 A/mm.  相似文献   

15.
Garden waste is one of the main components of urban solid waste which affects the urban environment. In this study, garden waste of Morus alba L. (SS), Ulmus pumila L. (BY), Salix matsudana Koidz (LS), Populus tomentosa (YS), Sophora japonica Linn (GH) and Platycladus orientalis (L.) Franco (CB) was pyrolyzed at 300 °C, 500 °C, 700 °C to obtain different types of biochar, coded as SSB300, SSB500, SSB700, BYB300, etc., which were tested for their Cr (VI) adsorption capacity. The results demonstrated that the removal efficiency of Cr by biochar pyrolyzed from multiple raw materials at different temperatures was variable, and the pH had a great influence on the adsorption capacity and removal efficiency. GHB700 had the best removal efficiency (89.44%) at a pH of 2 of the solution containing Cr (VI). The pseudo second-order kinetics model showed that Cr (VI) adsorption by biochar was chemisorption. The Langmuir model showed that the adsorption capacity of SSB300 was the largest (51.39 mg·g−1), BYB500 was 40.91 mg·g−1, GHB700, CBB700, LSB700, YSB700 were 36.85 mg·g−1, 36.54 mg·g−1, 34.53 mg·g−1 and 32.66 mg·g−1, respectively. This research, for the first time, used a variety of garden wastes to prepare biochar, and explored the corresponding raw material and pyrolysis temperature for the treatment of Cr (VI). It is hoped to provide a theoretical basis for the research and utilization of garden wastes and the production and application of biochar.  相似文献   

16.
In this paper, we demonstrated the shallow NiSiGe Schottky junction on the SiGe P-channel by using low-temperature microwave annealing. The NiSiGe/n-Si Schottky junction was formed for the Si-capped/SiGe multi-layer structure on an n-Si substrate (Si/Si0.57Ge0.43/Si) through microwave annealing (MWA) ranging from 200 to 470 °C for 150 s in N2 ambient. MWA has the advantage of being diffusion-less during activation, having a low-temperature process, have a lower junction leakage current, and having low sheet resistance (Rs) and contact resistivity. In our study, a 20 nm NiSiGe Schottky junction was formed by TEM and XRD analysis at MWA 390 °C. The NiSiGe/n-Si Schottky junction exhibits the highest forward/reverse current (ION/IOFF) ratio of ~3 × 105. The low temperature MWA is a very promising thermal process technology for NiSiGe Schottky junction manufacturing.  相似文献   

17.
In this study, a double-layered CuAl/PHB-NiAl seal coating was prepared on a GH4169 substrate by atmospheric plasma spraying. The evolution of the microstructure and mechanical properties of the coating under simulated working conditions was studied. The surface hardness of as-sprayed coating decreased with an increase in the temperature from 25 to 700 °C, decreasing from 90.42 HR15Y to 66.83 HR15Y. A CuO phase was formed in the coating and the oxidation weight gain rate increased with an increase in the temperature when the coating was constantly oxidized at 500~700 °C for 100 h. The hardness of metal matrix in the coating increased with the extension in the oxidation time at 600 °C, increasing from 120.8 HV0.1 to 143.02 HV0.1. The residual stress of the as-sprayed porous CuAl top-coating was less than that of the top-coating/bond-coating interface, and it is further relieved by about 15~20 MPa after heat treatment. The coating porosity first increased and then decreased when the oxidation time was 1000 h. The further ablation of PHB and the formation of oxide were concluded to be the main reasons for the evolution of porosity.  相似文献   

18.
MnOx-CeO2, MnOx-ZrO2, MnOx-ZrO2-CeO2 oxides with the Mn/(Zr + Ce + Mn) molar ratio of 0.3 were synthesized by coprecipitation method followed by calcination in the temperature range of 400–800 °C and characterized by XRD, N2 adsorption, TPR, TEM, and EPR. The catalytic activity was tested in the CO oxidation reaction. It was found that MnOx-CeO2, MnOx-ZrO2-CeO2, MnOx-ZrO2 catalysts, calcined at 400–500 °C, 650–700 °C and 500–650 °C, respectively, show the highest catalytic activity in the reaction of CO oxidation. According to XRD and TEM results, thermal stability of catalysts is determined by the temperature of decomposition of the solid solution Mnx(Ce,Zr)1−xO2. The TPR-H2 and EPR methods showed that the high activity in CO oxidation correlates with the content of easily reduced fine MnOx particles in the samples and the presence of paramagnetic defects in the form of oxygen vacancies. The maximum activity for each series of catalysts is associated with the start of solid solution decomposition. Formation of active phase shifts to the high-temperature region with the addition of zirconium to the MnOx-CeO2 catalyst.  相似文献   

19.
In this study, Fe40Cr19Mo18C15B8 amorphous coatings were prepared using high velocity oxygen fuel (HVOF) technology. Different temperatures were used in the heat treatment (600 °C, 650 °C, and 700 °C) and the annealed coatings were analyzed by DSC, SEM, TEM, and XRD. XRD and DSC results showed that the coating started to form a crystalline structure after annealing at 650 °C. From the SEM observation, it can be found that when the annealing temperature of the Fe-based amorphous alloy coating reached 700 °C, the surface morphology of the coating became relatively flat. TEM observation showed that when the annealing temperature of the Fe-based amorphous alloy coating was 700 °C, crystal grains in the coating recrystallized with a grain size of 5–20 nm. SAED analysis showed that the precipitated carbide phase was M23C6 phase with different crystal orientations (M = Fe, Cr, Mo). Finally, the corrosion polarization curve showed that the corrosion current density of the coating after annealing only increased by 9.13 μA/cm2, which indicated that the coating after annealing treatment still had excellent corrosion resistance. It also proved that the Fe-based amorphous alloy coating can be used in high-temperature environments. XPS analysis showed that after annealing FeO and Fe2O3 oxide components increased, and the formation of a large number of crystals in the coating resulted in a decrease in corrosion resistance.  相似文献   

20.
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号