首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methotrexate (MTX) is a folic acid antagonist widely used as a cytotoxic chemotherapeutic agent for leukemia and other malignancies. The purpose of this study was to investigate the damage caused by MTX on liver mitochondria and its protection by using antioxidant properties of lipoic acid. MTX substantially affects mitochondrial function by reducing glutathione levels leading to disturbances in antioxidant enzyme defense system. Lipoic acid occurs naturally in mitochondria as a coenzyme. In various studies lipoic acid has been convincingly shown to exhibit an antioxidant role when supplemented exogenously. We studied the effect of lipoic acid pre-treatment on the toxicity of MTX in mouse liver mitochondria focusing specifically on the oxidative stress. MTX caused a significant rise in the mitochondrial lipid peroxidation (LPO), protein carbonyl (PC) content and superoxide radical generation. It also affected the mitochondrial thiol profile. Pre-treatment of mice with lipoic acid (35 mg/kg) markedly lowered mitochondrial LPO, PC content and superoxide radical generation. It also restored decreased enzymatic and non-enzymatic antioxidants of mitochondria. It is suggested that lipoic acid has a potential role in suppressing MTX-induced mitochondrial toxicity, and it affords protection either by reversing the decline of antioxidants or by the directly scavenging the free radicals.  相似文献   

2.
The protective efficacy of diallyl tetrasulfide (DTS) from garlic on liver injury induced by cadmium (Cd) was investigated. In this study, Cd (3 mg/kg body weight) was administered subcutaneously for 3 weeks to induce toxicity. DTS was administered orally (10, 20 and 40 mg/kg body weight) for 3 weeks with subcutaneous (sc) injection of Cd. Cd-induced liver damage was evidenced from increased activities of serum hepatic enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and lactate dehydrogenase, with significant elevation of lipid peroxidation indices (thiobarbituric acid reactive substances and hydroperoxides) and protein carbonyl groups in the liver. Rats subjected to Cd toxicity also showed a decline in the levels of total thiols, reduced glutathione (GSH), vitamin C and vitamin E, accompanied by an increased accumulation of Cd, and significantly decreased activities of superoxide dismutase, catalase (CAT), glutathione peroxidase, glutathione-S-transferase (GST), glutathione reductase, and glucose-6-phosphate dehydrogenase in the liver. Administration of DTS at 40 mg/kg body weight significantly normalised the activities of hepatic marker enzymes, compared to other doses of DTS (10 and 20 mg/kg body weight). In addition, DTS (40 mg/kg body weight) significantly reduced the accumulation of Cd and the level of lipid peroxidation, and restored the level of antioxidant defense in the liver. Histological studies also showed that administration of DTS to Cd-treated rats resulted in a marked improvement of hepatocytes morphology with mild portal inflammation. Our results suggest that DTS might play a vital role in protecting Cd-induced oxidative damage in the liver.  相似文献   

3.
In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride - induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats.Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production.After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl4 displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl4, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage.  相似文献   

4.
In an earlier communication, we have shown that Tephrosia purpurea ameliorates benzoyl peroxide-induced oxidative stress in murine skin (Saleem et al. 1999). The present study was designed to investigate a chemopreventive efficacy of T purpurea against N-diethylnitrosamine-initiated and potassium bromate-mediated oxidative stress and toxicity in rat kidney. A single intraperitoneal dose of N-diethylnitrosamine (200 mg/kg body weight) one hr prior to the dose of KBrO3 (125 mg/kg body weight) increases microsomal lipid peroxidation and the activity of xanthine oxidase and decreases the activities of renal antioxidant enzymes viz., catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase, phase II metabolizing enzymes such as glutathione-S-transferase and quinone reductase and causes depletion in the level of renal glutathione content. A sharp increase in blood urea nitrogen and serum creatinine has also been observed. Prophylactic treatment of rats with T. purpurea at doses of 5 mg/kg body weight and 10 mg/kg body weight prevented N-diethylnitrosamine-initiated and KBrO3 promoted renal oxidative stress and toxicity. The susceptibility of renal microsomal membrane for iron ascorbate-induced lipid peroxidation and xanthine oxidase activities were significantly reduced (P<0.01). The depleted levels of glutathione, the inhibited activities of antioxidant enzymes, phase II metabolizing enzymes and the enhanced levels of serum creatinine and blood urea nitrogen were recovered to a significant level (P<0.01). All the antioxidant enzymes were recovered dose-dependently. Our data indicate that T purpurea besides a skin antioxidant can be a potent chemopreventive agent against renal oxidative stress and carcinogenesis induced by N-diethylnitrosamine and KBrO3.  相似文献   

5.
Oxalate/calcium oxalate toxicity is mediated through generation of reactive oxygen species in a process that partly depends upon events that induce mitochondrial damage. Mitochondrial dysfunction is an important event favoring stone formation. The objective of the present study was to investigate whether mitochondria is a target for oxalate/calcium oxalate and the plausible role of naturally occurring glycosaminoglycans from edible seaweed, fucoidan in ameliorating mitochondrial damage. Male albino rats of Wistar strain were divided into four groups and treated as follows: Group I: vehicle treated control, Group II: hyperoxaluria was induced with 0.75% ethylene glycol in drinking water for 28 days, Group III: fucoidan from F. vesiculosus (5 mg/kg b.wt, s.c) from the 8th day of the experimental period, Group IV: ethylene glycol+fucoidan treated rats. The tricarboxylic acid (TCA) cycle enzymes like succinate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase and respiratory complex enzyme activities were assessed to evaluate mitochondrial function. Oxidative stress was assessed based on the activities of antioxidant enzymes, level of reactive oxygen species, lipid peroxidation and reduced glutathione. Mitochondrial swelling was also analyzed. Ultra structural changes in renal tissue were analyzed with electron microscope. Hyperoxaluria induced a decrease in the activities of TCA cycle enzymes and respiratory complex enzymes. The oxidative stress was evident by the decrease in antioxidant enzymes, glutathione and an increase in reactive species and lipid peroxidation in mitochondria. Mitochondrial damage was evident by increased mitochondrial swelling. Administration of fucoidan, decreased reactive oxygen species, lipid peroxidation (P<0.05), mitochondrial swelling and increased the activities of antioxidant enzymes and glutathione levels (P<0.05) and normalized the activities of mitochondrial TCA cycle and respiratory complex enzymes (P<0.05). From the present study, it can be concluded that mitochondrial damage is an essential event in hyperoxaluria, and fucoidan was able to effectively prevent it and thereby the renal damage in hyperoxaluria.  相似文献   

6.
Aluminium is present in many manufactured foods and medicines and is also added to drinking water during purification purposes. Therefore, the present experiment was undertaken to determine the effectiveness of propolis in alleviating the toxicity of aluminium chloride (AlCl3) on biochemical parameters, antioxidant enzymes and lipid peroxidation of male Wistar Albino rats. Animals were assigned to 1 of 4 groups: control; 34 mg AlCl3/kg bw; 50 mg propolis/kg bw; AlCl3 (34 mg/kg bw) plus propolis (50 mg/kg bw), respectively. Rats were orally administered their respective doses daily for 70 days. The levels of thiobarbituric acid reactive substances (TBARS) was increased, and the activities of glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were decreased in liver, kidney and brain of rats treated with AlCl3. While, TBARS was decreased and the antioxidant enzymes were increased in rats treated with propolis alone. Plasma transaminases, lactate dehydrogenase, glucose, urea, creatinine, bilirubin, total lipid, cholesterol, triglyceride and LDL-c were increased, while total protein, albumin and high HDL-c were decreased due to AlCl3 administration. The presence of propolis with AlCl3 alleviated its toxic effects in rats treated with AlCl3. It can be concluded that propolis has beneficial influences and could be able to antagonize AlCl3 toxicity.  相似文献   

7.
Aim of the present study was planned to determine the protective role of naringin in attenuating the toxicity induced by nickel sulfate in rat liver. In this investigation nickel sulfate (20 mg/kg body weight) was administered intraperitoneally for 20 days to induce toxicity. Naringin was administered orally (20, 40 and 80 mg/kg body weight) for 20 days with intraperitoneal administration of nickel sulfate. Liver injury was measured by the increased activities of serum hepatic enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidation markers, thiobarbituric reactive acid substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of nickel was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase and non-enzymatic antioxidants like reduced glutathione, total sulfhydryl groups, vitamin C and vitamin E levels were significantly decreased. Naringin administered at a dose of 80 mg/kg body weight significantly reversed the activities of hepatic marker enzymes, decreasing lipid peroxidative markers, increasing the antioxidant cascade and decreasing the nickel concentration in the liver. The effect at a dose of 80 mg/kg body weight was more pronounced than that of other two doses (20 and 40 mg/kg body weight). All these changes were supported by histopathological observations. These results clearly demonstrate that naringin has the potential in alleviating the toxic effects of nickel in rat liver.  相似文献   

8.
Bisphenol A (BPA), an estrogenic and endocrine disrupting agent, is widely used in manufacturing of polycarbonate plastics and epoxy resins. BPA and other endocrine disrupting chemicals (EDCs) act via multiple mechanisms including interference with mitochondrial functions. Mitochondria are the hub of cellular energy pool and hence are the target of many EDCs. We studied perturbation of activities of mitochondrial enzymes by BPA and its possible role in hepatotoxicity in Wistar rats. Rats were exposed to BPA (150 mg/kg, 250 mg/kg, 500 mg/kg per os, for 14 days) and activities of enzymes of mitochondrial electron transport chain (ETC) were measured. Besides, other biochemical parameters such as superoxide generation, protein oxidation, and lipid peroxidation (LPO) were also measured. Our results indicated a significant decrease in the activities of enzymes of mitochondrial ETC complexes, i.e., complex I, II, III, IV, and V along with significant increase in LPO and protein oxidation. Additionally, a significant increase in mitochondrial superoxide generation was also observed. All these findings could be attributed to enhanced oxidative stress, decrease in reduced glutathione level, and decrease in the activity of superoxide dismutase in rat liver mitochondria isolated from BPA‐treated rats. BPA treatment also caused a significant increase in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase indicating its potential hepatotoxicity. Furthermore, histopathological findings revealed marked edema formation, hepatocellular degeneration, and necrosis of liver tissue in BPA‐exposed rats. In conclusion, this study provides an evidence of impaired mitochondrial bioenergetics and liver toxicity after high‐dose BPA exposure in rats. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1922–1934, 2016.  相似文献   

9.
Objectives The aim of this research paper was to investigate the hepatoprotective and antioxidant effects of gallic acid in paracetamol‐induced liver damage in mice. Methods In the present study, the hepatoprotective and antioxidant effects of gallic acid were evaluated against paracetamol‐induced hepatotoxicity in mice and compared with the silymarin, a standard hepatoprotective drug. The mice received a single dose of paracetamol (900 mg/kg body weight i.p.). Gallic acid (100 mg/kg body weight i.p.) and silymarin (25 mg/kg body weight i.p.) were administered 30 min after the injection of paracetamol. After 4 h, liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase) and inflammatory mediator tumour necrosis factor‐alpha (TNF‐α) were estimated in serum, while the lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione‐S‐transferase and glutathione) were determined in liver homogenate of the control and experimental mice. Key findings Increased activities of liver marker enzymes and elevated TNF‐α and lipid peroxidation levels were observed in mice exposed to paracetamol (P < 0.05), whereas the antioxidant status was found to be depleted (P < 0.05) when compared with the control group. However gallic acid treatment (100 mg/kg body weight i.p.) significantly reverses (P < 0.05) the above changes by its antioxidant action compared to the control group as observed in the paracetamol‐challenged mice. Conclusions The results clearly demonstrate that gallic acid possesses promising hepatoprotective effects.  相似文献   

10.
Lipoic acid ameliorates adriamycin-induced testicular mitochondriopathy   总被引:1,自引:0,他引:1  
Adriamycin (ADR), an anthracycline antibiotic, which is widely used as an antineoplastic drug in the treatment of various solid tumors, has been shown to induce reproductive abnormalities in males. In the present study, the effect of lipoic acid (LA), a universal antioxidant was investigated on ADR-induced testicular toxicity in rats. Adult male albino rats of Wistar strain were administered ADR (1 mg/kg body weight, i.v.), once a week for 10 weeks. Mitochondrial fractions of the testis were obtained by differential centrifugation. The activities of mitochondrial antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase were decreased significantly in the animals treated with ADR. The levels of mitochondrial lipid peroxides and hydrogen peroxide were increased in ADR-treated rats. ADR-treated rats also showed decline in the activities of mitochondrial enzymes such as succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH). Treatment with lipoic acid (35 mg/kg body weight, i.p.) 1 day prior to ADR administration, maintained near normal activities of the enzymes, thereby proving to be an effective cytoprotectant.  相似文献   

11.
Therapeutic potential of pyridoxine (vit B6) was evaluated against cadmium induced hepatic cytotoxicity in culture and oxidative stress in rats. Nonmalignant "Chang" liver cell culture was exposed to Cd (cadmium chloride) that produced cytotoxicity in terms of increase in cell growth inhibition rate, alanine aminotransferase, lactate dehydrogenase and lipid peroxidation, which was significantly mitigated by pyridoxine in a concentration dependent manner. Acute exposure to Cd (6.5mg/kg body weight; ip once only) produced a condition of hepatic oxidative stress by substantially increasing lipid peroxidation and oxidized glutathione level along with corresponding decrease in reduced glutathione and various antioxidant enzymes, i.e., superoxide dismutase, catalase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase. Cadmium administration significantly increased the leakage of liver marker enzymes in serum, i.e., transaminases, alkaline phosphatase and lactate dehydrogenase. Therapy with pyridoxine after 3h of Cd administration decreased the release of serum transaminases, alkaline phosphatase and lactate dehydrogenase towards control. Administration of pyridoxine inhibited lipid peroxidation and formation of oxidized glutathione, increased the reduced glutathione level and restored the activities of aforesaid antioxidant enzymes towards control. The observations clearly demonstrated that pyridoxine treatment mitigates cadmium induced hepatic cytotoxicity and oxidative stress and provides evidence that it may be used clinically against Cd-induced hepatic toxicity.  相似文献   

12.
Arsenic (As) is a well known toxicity inducer. Recent investigations, however, showed that it might have some therapeutic application in cancer treatment. These dual roles of arsenic have attracted a renewed research in organ pathophysiology. In this study, we report that As administration (in the form of NaAsO2 at a dose of 10 mg/kg body weight for 2 days, orally) induces apoptosis in testicular tissue of the experimental rats by the activation of caspase-3 and reciprocal regulation of Bcl-2/Bad with the concomitant reduction of mitochondrial membrane potential and increased level of cytosolic cytochrome C. Arsenite has also been shown to induce activation of mitogen-activated protein kinases (MAPKs), Akt as well as NF-κB (p65) in testicular tissue. In addition, As significantly decreased testicular Δ5-3β-HSD and 17β-HSD activities and reduced the plasma testosterone level, testicular sperm count and sperm motility. Besides, arsenite exposure increased the levels of reactive oxygen species (ROS), serum TNF-α, As accumulation and lipid peroxidation and decreased the activities of the antioxidant enzymes and glutathione in the testicular tissue. Oral administration of taurine (at a dose of 100 mg/kg body weight for 5 days) was found to be effective in counteracting As-induced oxidative stress, attenuation of testicular damages and amelioration of apoptosis in testicular tissue by controlling the reciprocal regulation of Bcl-2/Bad, phospho-ERK1/2, phospho-p38, phospho-Akt and NF-κB. Taurine was also found to play similar beneficial role via mitochondrial dependent pathways in As-induced testicular damages leading to apoptotic cell death.  相似文献   

13.
Chemoprevention has emerged as a very effective preventive measure against carcinogenesis. Several bioactive compounds present in fruits and vegetables have revealed their cancer curative potential on benzo(a)pyrene (B(a)P) induced carcinogenesis. In the present study, the efficacy of quercetin on the level of lipid peroxides, activities of antioxidant enzymes and tumor marker enzymes in B(a)P induced experimental lung carcinogenesis in Swiss albino mice was assessed. In lung cancer bearing animals there was an increase in lung weight, lipid peroxidation and marker enzymes such as aryl hydrocarbon hydroxylase, gamma glutamyl transpeptidase, 5'-nucleotidase, lactate dehydrogenase and adenosine deaminase with subsequent decrease in body weight and antioxidant enzymes-superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, reduced glutathione, vitamin E and vitamin C. Quercetin supplementation (25 mg/kg body weight) attenuated all these alterations, which indicates the anticancer effect that was further confirmed by histopathological analysis. Overall, the above data shows that the anticancer effect of quercetin is more pronounced when used as an chemopreventive agent rather than as a chemotherapeutic agent against B(a)P induced lung carcinogenesis.  相似文献   

14.
Altered mitochondrial function and free radical-mediated tissue damage have been suggested as important pathological events in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of (-)epigallocatechin-gallate (EGCG) on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Rats were pretreated with EGCG (30 mg/kg) orally using an intragastric tube daily for a period of 21 days. After that, ISO (100mg/kg) was subcutaneously injected to rats at intervals of 24h for 2 days. ISO-induced rats showed significant increase in mitochondrial lipid peroxidation products (thiobarbituric acid reactive substances and lipid hydroperoxides) and significant decrease in mitochondrial antioxidants (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and reduced glutathione). Also, significantly decreased activities of tricarboxylic acid cycle enzymes such as isocitrate, succinate, malate and alpha-ketoglutarate dehydrogenases and respiratory chain marker enzymes such as NADH-dehydrogenase and cytochrome-c-oxidase were observed in mitochondrial heart of myocardial infarcted rats. Prior treatment with EGCG (30mg/kg body weight) significantly prevented these alterations and restored normal mitochondrial function. Transmission electron microscopic findings also correlated with these biochemical parameters. In vitro studies on the effect of EGCG on scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS(+)), superoxide anion (O(-)), and hydroxyl (OH) radicals also confirmed the free radical scavenging and antioxidant activity of EGCG. Thus, the observed effects are due to the free radical scavenging and antioxidant potential of EGCG. Thus, this study confirmed the preventive effect of EGCG on isoproterenol-induced mitochondrial damage in experimentally induced myocardial infarction in Wistar rats.  相似文献   

15.
Oxidative stress can play a key role in myocardial necrosis. The present study was designed to investigate the effect of alpha-mangostin (an antioxidant phytonutrient) on mitochondrial dysfunction and endothelial nitric oxide synthase (eNOS) expression during isoproterenol-induced myocardial necrosis in rats. Induction of rats with isoproterenol (ISO) (150?mg/kg body weight, intraperitoneally) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, and GSH), mitochondrial cytochromes (b, c, c1, and aa3), and adenosine triphosphate level. A marked elevation in mitochondrial lipid peroxidation was also observed in ISO-intoxicated rats. Pretreatment with alpha-mangostin (200?mg/kg body weight) orally for 8 days significantly attenuated these functional abnormalities and restored normal mitochondrial function, when compared to the ISO-intoxicated group of rats. Cardiac eNOS expression was assessed by Western blot. Cardiac eNOS expression and NO level were significantly suppressed in ISO-intoxicated rats. Pretreatment with alpha-mangostin extenuated ISO-induced diminution of eNOS expression and NO level. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings conclude the ameliorative potential of alpha-mangostin against ISO-induced biochemical and morphological changes in mitochondria, which might be mediated through the NO pathway and by its ability at quenching free radicals.  相似文献   

16.
Oxidative stress plays an important role as a mediator of myocardial damage produced by ethanol. This work was designed to investigate the effect of ursolic acid (UA), a reported radical scavenger and antioxidant, on oxidative stress in the heart of chronically ethanol-administered rats. Chronic ethanol administration (7.9 g/kg/day for 60 days) caused tissue damage that was manifested by the elevation of serum lactate dehydrogenase (LDH) and creatine phosphokinase (CPK). It also induced oxidative stress in the heart by increasing the lipid peroxidation process and by decreasing the antioxidant capacity of the heart. After the induction of toxicity (i.e. initial 30 days), treatment groups received UA (10, 20 and 40 mg/kg/day) along with ethanol for another 30 days. Coadministration of UA effectively (20 mg/kg/day) restored the activities of marker enzymes. It also controlled the oxidative stress by decreasing lipid peroxidation products (manifested by decreased lipid peroxidation products such as thiobarbituric acid reactive substances--TBARS, lipid hydroperoxides--LOOH and conjugated dienes--CD), increasing the activities of free radical scavenging enzymes (superoxide dismutase--SOD, catalase--CAT, glutathione peroxidase--GPx and glutathione S-transferase--GSH) and increasing the levels of non-enzymic antioxidants such as reduced glutathione, ascorbic acid and alpha-tocopherol. These findings demonstrate that UA acts as a protective agent against ethanol-induced abnormalities in the heart by reducing the lipid peroxidation process and by enhancing the antioxidant capacity.  相似文献   

17.
Abstract: In an earlier communication, we have shown that Tephrosia purpurea ameliorates benzoyl peroxide‐induced oxidative stress in murine skin (Saleem et al. 1999). The present study was designed to investigate a chemopreventive efficacy of T. purpurea against N‐diethylnitrosamine‐initiated and potassium bromate‐mediated oxidative stress and toxicity in rat kidney. A single intraperitoneal dose of N‐diethylnitrosamine (200 mg/kg body weight) one hr prior to the dose of KBrO3 (125 mg/kg body weight) increases microsomal lipid peroxidation and the activity of xanthine oxidase and decreases the activities of renal antioxidant enzymes viz., catalase, glutathione peroxidase, glutathione reductase and glucose‐6‐phosphate dehydrogenase, phase II metabolizing enzymes such as glutathione‐S‐transferase and quinone reductase and causes depletion in the level of renal glutathione content. A sharp increase in blood urea nitrogen and serum creatinine has also been observed. Prophylactic treatment of rats with T. purpurea at doses of 5 mg/kg body weight and 10 mg/kg body weight prevented N‐diethylnitrosamine‐initiated and KBrO3 promoted renal oxidative stress and toxicity. The susceptibility of renal microsomal membrane for iron ascorbate‐induced lipid peroxidation and xanthine oxidase activities were significantly reduced (P<0.01). The depleted levels of glutathione, the inhibited activities of antioxidant enzymes, phase II metabolizing enzymes and the enhanced levels of serum creatinine and blood urea nitrogen were recovered to a significant level (P<0.01). All the antioxidant enzymes were recovered dose‐dependently. Our data indicate that T. purpurea besides a skin antioxidant can be a potent chemopreventive agent against renal oxidative stress and carcinogenesis induced by N‐diethylnitrosamine and KBrO3.  相似文献   

18.
Gossypol acetic acid (GAA) displays anti-fertility and antioxidant behavior. The efficacies of different doses of gossypol acetic acid were investigated in male albino rats. Rats were allocated into four groups: control group and three GAA-treated groups (2–4), that were injected with GAA (5, 10, 20 mg/kg BW, respectively), through inrtaperitonial injection. Treatment of GAA was found to elicit a significant decrease in sperm counting, sperm motility, serum levels of testosterone, luteinizing hormone and follicle-stimulating hormone, whereas, the activities of testicular 17β-hydroxysteroid dehydrogenase and 17-ketosteroid reductase were increased. The activities of serum transaminases and alkaline phosphatase and hepatic glutathione peroxidase; glutathione reductase, superoxide dismutase and glutathione S-transferase and the level of hepatic glutathione were elevated. While, the lipid peroxidation end product; malondialdehyde, nitric oxide, and lipid profile and the activity of hepatic cytochrome P450 were decreased in GAA-treated rats. The histological analysis of liver and testicular tissues showed sever hepatocyte damage in addition to abnormal localization of hepatocytic nuclei. Also, the testicular pathology of GAA-treated rats showed depressed spermatogensis, sertoli cell toxicity and degeneration of seminiferous tubules.  相似文献   

19.
Aldose reductase has been implicated in the etiology of diabetic complications, atherosclerosis, and ischemia-reperfusion injury. Aldose reductase inhibitors are known to have species-dependent differences in biotransformation enzyme induction. Whether aldose reductase inhibitors, which have antioxidant potential, alter the oxidative stress pathway is unknown. This study has determined whether four daily ip treatments of either low (10 mg/kg) or high (50 mg/kg) doses of AL-1576 or AL-4114 alter the activities of the antioxidant defense enzymes catalase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and the concentrations of reduced and oxidized glutathione in livers of normal rats and rabbits. There was no change in the concentration of thiobarbituric acid reactive substances in either rat or rabbit livers, indicating that lipid peroxidation was not increased by any treatment. Hepatic catalase, superoxide dismutase, and glutathione peroxidase activities and concentrations of reduced and oxidized glutathione were not significantly altered in rat, though glutathione reductase activity was increased after high doses of both drugs. However, in rabbit liver, glutathione reductase activity decreased in a dose-dependent manner after AL-4114 treatment, while superoxide dismutase and glutathione peroxidase activities decreased only after the low dose of AL-4114. Although AL-4114 and AL-1576 did not directly generate increased lipid peroxidation within normal rat and rabbit livers, some of the enzymes responsible for oxidative defense were altered, particularly in rabbit livers.  相似文献   

20.
The status of brain antioxidant enzymes and glutathione in methacrylonitrile (MeAN)-intoxicated Wistar rats was correlated with the levels of lipid peroxidation products. Optimum changes were observed 30 min and 60 min after oral administration of MeAN at dosages of 50 mg/kg body weight per day (0.25 LD50) and 100 mg/kg body weight per day (0.5 LD50). An increase in lipid peroxidation products, decrease in the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), and decrease in reduced glutathione (GSH) were observed. These studies suggest that the membrane lipid peroxidation observed in MeAN intoxication is related, in part, to a compromised antioxidant defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号