首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defects in the assembly of dolichol-linked oligosaccharide or its transfer to proteins result in severe, multi-system human diseases called Type I congenital disorders of glycosylation. We have identified a novel CDG type, CDG-Ij, resulting from deficiency in UDP-GlcNAc: dolichol phosphate N-acetyl-glucosamine-1 phosphate transferase (GPT) activity encoded by DPAGT1. The patient presents with severe hypotonia, medically intractable seizures, mental retardation, microcephaly, and exotropia. Metabolic labeling of cultured dermal fibroblasts from the patient with [2-(3)H]-mannose revealed lowered incorporation of radiolabel into full-length dolichol-linked oligosaccharides and glycoproteins. In vitro enzymatic analysis of microsomal fractions from the cultured cells indicated that oligosaccharyltransferase activity is normal, but the GPT activity is reduced to approximately 10% of normal levels while parents have heterozygous levels. The patient's paternal DPAGT1 allele contains a point mutation (660A>G) that replaces a highly conserved tyrosine with a cysteine (Y170C). The paternal allele cDNA produces a full-length protein with almost no activity when over-expressed in CHO cells. The maternal allele makes only about 12% normal mature mRNA, while the remainder shows a complex exon skipping pattern that shifts the reading frame encoding a truncated non-functional GPT protein. Thus, we conclude that the DPAGT1 gene defects are responsible for the CDG symptoms in this patient. Hum Mutat 22:144-150, 2003.  相似文献   

2.
Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17 different CDG-I subtypes. Patients in the few reported DPAGT1-CDG families exhibit severe intellectual disability (ID), epilepsy, microcephaly, severe hypotonia, facial dysmorphism and structural brain anomalies. In this study, we report a non-consanguineous family with two affected adults presenting with a relatively mild phenotype consisting of moderate ID, epilepsy, hypotonia, aggressive behavior and balance problems. Exome sequencing revealed a compound heterozygous missense mutation, c.85A>T (p.I29F) and c.503T>C (p.L168P), in the DPAGT1 gene. The affected amino acids are located in the first and fifth transmembrane domains of the protein. Isoelectric focusing and high-resolution mass spectrometry analyses of serum transferrin revealed glycosylation profiles that are consistent with a CDG-I defect. Our results show that the clinical spectrum of DPAGT1-CDG is much broader than appreciated so far.  相似文献   

3.
Congenital disorders of glycosylation (CDG) are due to either defects in the synthesis of the glycan moiety of glycoproteins or glycolipids and in the attachment of the glycans to proteins and lipids. Some 50 CDG have been identified. They represent a challenge for clinicians because most are multisystem diseases with a heterogeneous spectrum of clinical manifestations with involvement of any organ and system. We report on a patient with a mutation in the glycosyltransferase encoded by the DPAGT1 gene, an infrequent CDG. He showed severe fetal hypokinesia phenotype with decreased fetal movements and polyhydramnios. At birth he showed decreased facial expression, without nasolabial folds, soft long ears, U-shaped vermilion of the upper lip, thick skin, hypertrichosis, camptodactyly, moderate multiple contractures, hypotonia and severe hypokinesia, no spontaneous movements, and very limited movements with stimuli; he died at 1? months. Isoelectrofocusing of serum transferrin showed a type 1 pattern with increased asialo- and disialotransferrin. The study of the DPAGT1 gene showed he was a compound heterozygote for two novel point missense mutations [c.901C>T]+[c.1094T>G]. This phenotype expands the clinical features of the few DPATG1-CDG patients reported.  相似文献   

4.
We present two sibs with congenital disorder of glycosylation (CDG) type Id. Each shows severe global delay, failure to thrive, seizures, microcephaly, axial hypotonia, and disaccharidase deficiency. One sib has more severe digestive issues, while the other is more neurologically impaired. Each is compound heterozygous for a novel point mutation and an already known mutation in the ALG3 gene that leads to the synthesis of a severely truncated oligosaccharide precursor for N-glycans. The defect is corrected by introduction of a normal ALG3 cDNA. CDG should be ruled out in all patients with severe seizures and failure to thrive. (c) 2007 Wiley-Liss, Inc.  相似文献   

5.
We describe the clinical and biochemical characteristics in three patients from two different families diagnosed with Congenital Disorder of Glycosylation type IIe owing to a defect in Conserved Oligomeric Golgi complex (COG)7; one of the eight subunits of the COG. The siblings and an unrelated single child of consanguineous parents presented with growth retardation, progressive, severe microcephaly, hypotonia, adducted thumbs, feeding problems by gastrointestinal pseudo-obstruction, failure to thrive, cardiac anomalies, wrinkled skin and episodes of extreme hyperthermia. A combined disorder in the biosynthesis of N- and O-linked glycosylation with hyposialylation was detected. Western blot analysis showed a severe reduction in the COG5 and 7 subunits of the COG. A homozygous, intronic splice site mutation (c.169+4A>C) of the COG7 gene was identified in all patients. The phenotype is similar to that previously described in two patients of North African ethnicity with the same mutation, except for the lack of skeletal anomalies and only a mild liver involvement in our patients. We suggest performing protein glycosylation studies and Western blot for the different COG subunits in patients with progressive microcephaly, growth retardation, hypotonia, adducted thumbs and cardiac defects, especially in association with skin anomalies or episodes of hyperthermia. The presence of the characteristic phenotype might warrant direct DNA analysis.  相似文献   

6.
7.
8.
SLC25A1 mutations are associated with combined D,L‐2‐hydroxyglutaric aciduria (DL‐ 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal‐onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2‐OH‐glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V‐associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.
  相似文献   

9.
Cohen syndrome (CS) is a rare autosomal recessive disorder associated with mutations in the vacuolar protein sorting 13 homolog B (VPS13B; formerly COH1) gene. The core clinical phenotype comprises a characteristic facial gestalt, marked developmental delay, and myopia. Additional, nonobligatory features include obesity, microcephaly, short stature, muscular hypotonia, scoliosis, narrow hands and feet, progressive retinopathy, as well as neutropenia. Here we report a novel homozygous nonsense mutation in the VPS13B gene and previously undescribed clinical features in a 19‐year‐old woman with developmental delay, intellectual disability, and a particular facial appearance. The patient showed several features consistent with CS. In addition, the parents observed congenital alacrima and anhidrosis persisting until onset of puberty. The diagnosis was not established based on the clinical phenotype. We performed whole‐genome sequencing and identified a novel homozygous nonsense mutation c.62T>G (NM_152564.4), p.(Leu21*) in the VPS13B gene. Our findings extended the previously reported phenotype of CS. We conclude that transient, prepubertal alacrima and anhidrosis are part of the phenotypic spectrum of CS associated with a novel homozygous nonsense mutation in the VPS13B gene.  相似文献   

10.
Pathogenic DNM1L mutations cause a mitochondrial disorder with a highly variable clinical phenotype characterized by developmental delay, hypotonia, seizures, microcephaly, poor feeding, ocular abnormalities, and dysarthria. We report the case of an 8‐month‐old female with autosomal dominant, de novo DNM1L c. 1228G>A (p. E410K) mutation and mitochondrial disorder, septo‐optic dysplasia, hypotonia, developmental delay, elevated blood lactate, and severe mitochondrial cardiomyopathy leading to nonischemic congestive heart failure and cardiogenic shock resulting in death. This case suggests that cardiac involvement, previously undescribed, can be a clinically important feature of this syndrome and should be screened for at diagnosis.  相似文献   

11.
Congenital Disorder of Glycosylation (CDG) type Ic is caused by mutations in ALG6. This gene encodes an alpha1,3 glucosyltransferase used for synthesis of the lipid linked oligosaccharide (LLO) precursor of the protein N-glycosylation pathway. CDG-Ic patients have moderate to severe psychomotor retardation, seizures, hypotonia, strabismus, and feeding difficulties. We previously identified a typical patient with a heterozygous point mutation, c.391T>C (p.Tyr131His) in ALG6. Using complementation analysis of ALG6-deficient yeast, we show that this alteration is as severe as the most common disease-causing mutation, c998C>T (p. Ala333Val), which occurs in over half of all known CDG-Ic patients. The frequency of c.391T>C (p.Tyr131His) in the US population, is 0.0214, suggesting that homozygotes would occur at a rate of& tilde;1:2,200. We identified one patient with typical CDG-Ic symptoms and a homozygous p.Tyr131His alteration in ALG6. However, in contrast to most CDG patients, her LLO and plasma transferrin glycosylation appeared normal. Thus, it is unclear whether c.391T>C causes CDG-Ic or contributes to the symptoms. Genotyping additional patients with CDG-like symptoms will be required to resolve this issue.  相似文献   

12.
Congenital disorders of glycosylation (CDG) are an expanding group of inherited disorders caused by defects in the N- or O-Glycosylation of proteins and lipids. Several CDG subtypes have been described so far, including CDG type Ih which is caused by a deficiency of the dolichyl-P-Glc:Glc1Man9GlcNAc2-PP-dolichyl α1,3-glucosyltransferase (hALG8). The defect leads to an accumulation of Dol-PP-GlcNAc2Man9 and Dol-PP-GlcNAc2Man9Glc1 in the endoplasmic reticulum of patients’ fibroblasts that can be detected by analyzing the lipid-linked oligosaccharyl intermediates. Five patients with CDG-Ih have been described so far. The clinical presentation of four of these patients was severe with death in early infancy. In this report, we describe two mildly affected siblings with CDG-Ih caused by two novel mutations.While one mutation (c.1434delC) causes a frame shift resulting in a premature termination codon (p.485X), the point mutation of the other allele (c.845C>T, p.A282V) causes an amino acid replacement in a highly conserved region of the hALG8 gene. The two siblings show similar symptoms, including pseudo-gynecomastia, epicanthus, muscular hypotonia, mental retardation and ataxia, expanding the genetic and clinical spectrum of CDG-Ih.  相似文献   

13.
Congenital disorders of glycosylation (CDG) are caused by a dysfunction of glycosylation, an essential step in the manufacturing process of glycoproteins. This paper focuses on a 6-year-old patient with a new type of CDG-I caused by a defect of the steroid 5α reductase type 3 gene (SRD5A3). The clinical features were psychomotor retardation, pathological nystagmus, slight muscular hypotonia and microcephaly. SRD5A3 was recently identified encoding the polyprenol reductase, an enzyme catalyzing the final step of the biosynthesis of dolichol, which is required for the assembly of the glycans needed for N-glycosylation. Although an early homozygous stop-codon (c.57G>A [W19X]) with no functional protein was found in the patient, about 70% of transferrin (Tf) was correctly glycosylated. Quantification of dolichol and unreduced polyprenol in the patient's fibroblasts demonstrated a high polyprenol/dolichol ratio with normal amounts of dolichol, indicating that high polyprenol levels might compete with dolichol for the initiation of N-glycan assembly but without supporting normal glycosylation and that there must be an alternative pathway for dolichol biosynthesis.  相似文献   

14.
15.
Hypophosphatasia is a rare inherited bone disease caused by mutations in the alkaline phosphatase liver-type gene (ALPL) gene, with extensive allelic heterogeneity leading to a range of clinical phenotypes. We report here a patient who died from severe lethal hypophosphatasia, who was compound heterozygous for the mutation c.1133A>T (D361V) and the newly detected missense mutation c791A>G, and whose parents were both healthy. Because the c.1133A>T (D361V) mutation was previously reported to have a dominant-negative effect and to be responsible for the uncommon perinatal benign form of the disease, we studied the expression of the ALPL gene in this family. Analysis at the messenger RNA (mRNA) level, both quantitative and qualitative, showed that the paternal c.1133A>T (D361V) mutation was associated with over-expression of the ALPL gene and that the maternal c.791A>G mutation lead to complete skipping of exon 7. The results provide an explanation of the lethal phenotype in the patient where the two ALPL alleles are non-functional and in the asymptomatic father where over-expression of the normal allele could counteract the effect of the c.1133A>T (D361V) mutation by providing an increased level of normal mRNA. This may also explain the variable expression of hypophosphatasia observed in parents of patients with the perinatal benign form.  相似文献   

16.
17.
Neonatal epileptic encephalopathies with suppression bursts (SBs) are very severe and relatively rare diseases characterized by neonatal onset of seizures, interictal electroencephalogram (EEG) with SB pattern and very poor neurological outcome or death. Their etiology remains elusive but they are occasionally caused by metabolic diseases or malformations. Studying an Arab Muslim Israeli consanguineous family, with four affected children presenting a severe neonatal epileptic encephalopathy, we have previously identified a mutation in the SLC25A22 gene encoding a mitochondrial glutamate transporter. In this report, we describe a novel SLC25A22 mutation in an unrelated patient born from first cousin Algerian parents and presenting severe epileptic encephalopathy characterized by an EEG with SB, hypotonia, microcephaly and abnormal electroretinogram. We showed that this patient carried a homozygous p.G236W SLC25A22 mutation which alters a highly conserved amino acid and completely abolishes the glutamate carrier's activity in vitro . Comparison of the clinical features of patients from both families suggests that SLC25A22 mutations are responsible for a novel clinically recognizable epileptic encephalopathy with SB.  相似文献   

18.
Biallelic mutations in the SLC1A4 gene have been identified as a very rare cause of neurodevelopmental disorders. l-serine transport deficiency has been regarded as the causal molecular mechanism underlying the neurological phenotype of SLC1A4 mutation patients. To date this genetic condition has been reported almost exclusively in a limited number of Ashkenazi-Jewish individuals and as a result the SLC1A4 gene is not routinely included in the majority of the genetic diagnostic panels for neurological diseases. We hereby report a 7-year-old boy from a Southern Italian family, presenting with epileptic encephalopathy, congenital microcephaly, global developmental delay, severe hypotonia, spasticity predominant at the lower limbs, and thin corpus callosum. Whole exome sequencing identified a novel segregating SLC1A4 gene homozygous mutation (c.1141G?>?A: p.Gly381Arg) as the likely cause of the disease in our family. In order to deeply characterize the electro-clinical and neurological phenotype in our index patient, long-term systematic video-electroencephalograms (EEG) as well as repeated brain imaging studies (which included tractographic reconstructions) were performed on a regular basis during a 7 years follow-up time.

In conclusion, we suggest to carefully considering SLC1A4 biallelic mutations in individuals presenting an early onset severe neurodevelopmental disorder with variable spasticity and seizures, regardless the patients’ ethnic background.  相似文献   

19.
We report on a patient with a congenital disorder of glycosylation type Id (CDG-Id) caused by a homozygous mutation in the ALG3 gene, which results from a de novo mutation in combination with a segmental maternal uniparental isodisomy (UPD). The patient presented with severe psychomotor delay, primary microcephaly, and opticus atrophy, compatible with a severe form of CDG. Isoelectric focusing of transferrin showed a type I pattern and lipid-linked oligosaccharide analysis showed an accumulation of dol-PP-GlcNAc2Man5 in patient's fibroblasts suggesting a defect in the ALG3 gene. A homozygous ALG3 missense mutation p.R266C (c.796C > T) was identified. Further evaluation revealed that neither the mother nor the father were carrier of the p.R266C mutation. Marker analysis revealed a segmental maternal isodisomy for the chromosomal region 3q21.3-3qter. UPD for this region has not been described before. More important, the combination of UPD with a de novo mutation is an exceptional coincidence and an extraordinary observation.  相似文献   

20.
Mucopolysaccharidosis type II (MPS II) or Hunter syndrome is a rare lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS). As MPS II is X-linked, patients are usually males with heterogeneous mutations ranging from point mutations to gross deletions and recombination. In 2003, we reported a mutation analysis of 25 patients with MPS II. In this study, 31 mutations in another 49 Korean patients (45 families) with MPS II are reported: 12 missense, nine deletions, four splicing, two nonsense, two insertions, one deletion/insertion, and IDS-IDS2 recombination mutations. Among these mutations, 11 were novel ones (4 missense mutations: Ser61Pro, Pro97Arg, Pro228Ala, and Pro261Ala; 5 deletions: c.344delA, c.420delG, c.768delT, c.1112delC and c.1402delC; 1 deletion/insertion: c.1222delinsTA; and 1 insertion mutation: c.359_360insATCC). The IDS-IDS2 recombination mutations were most frequently observed; all patients with this mutation had the severe MPS II phenotype. However, most of the patients (5/7) with the G374G splicing mutation had an attenuated phenotype, except for two sibling cases with the severe phenotype. Except for a few recurrent mutations such as the G374G, R443X, L522P, and recombination mutations, each patient had a unique individual mutation. Therefore, careful interpretation of genotype-phenotype correlations is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号