首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with 9q34.3 terminal deletion usually show a clinically recognizable phenotype characterized by specific facial features (microcephaly, flat face, arched eyebrows, hypertelorism, short nose, anteverted nostrils, carp mouth and protruding tongue) in combination with severe mental retardation, hypotonia, and other anomalies. We analyzed six unrelated patients with a various 9q34.3 terminal deletion. While having different-sized 9q34.3 deletions, all of these patients shared several distinctive anomalies. These anomalies are likely to arise from a commonly deleted region at distal 9q34.3. Fluorescence in situ hybridization (FISH) analysis using a dozen BAC clones mapped at the 9q34.13-q34.3 region defined the shortest region of deletion overlap (SRO) as a 1-Mb segment proximal to 9qter containing eight known genes. Possible candidate genes delineating specific phenotypes of the 9q34.3 terminal deletion syndrome are discussed.  相似文献   

2.
3.
Chromosome 4q deletion syndrome (4q- syndrome) is a rare condition, with an estimated incidence of 1 in 100,000. Although variable, the clinical spectrum commonly includes craniofacial, developmental, digital, skeletal, and cardiac involvement. Data on the genotype-phenotype correlation within the 4q arm are limited. We present detailed clinical and genetic information by array CGH on 20 patients with 4q deletions. We identified a patient who has a ~465?kb deletion (186,770,069-187,234,800, hg18 coordinates) in 4q35.1 with all clinical features for 4q deletion syndrome except for developmental delay, suggesting that this is a critical region for this condition and a specific gene responsible for orofacial clefts and congenital heart defects resides in this region. Since the patients with terminal deletions all had cleft palate, our results provide further evidence that a gene associated with clefts is located on the terminal segment of 4q. By comparing and contrasting our patients' genetic information and clinical features, we found significant genotype-phenotype correlations at a single gene level linking specific phenotypes to individual genes. Based on these data, we constructed a hypothetical partial phenotype-genotype map for chromosome 4q which includes BMP3, SEC31A, MAPK10, SPARCL1, DMP1, IBSP, PKD2, GRID2, PITX2, NEUROG2, ANK2, FGF2, HAND2, and DUX4 genes. ? 2012 Wiley Periodicals, Inc.  相似文献   

4.
We report on an infant with Robin sequence; mild developmental delay; a left ulnar ray defect with absent ulna and associated metacarpals, carpals and phalanges; and a right ulnar nerve hypoplasia. He had a de novo interstitial deletion of 4q32-->q34. The critical region involved in the 4q terminal deletion syndrome may be 4q33. This conclusion was suggested by showing that del(4)(q31qter), del(4)(q32qter), and del(4)(q33qter) result in a similarly severe phenotype. In addition, we propose that genes for distal arm development, in particular for development of the left ulnar ray, central nervous system development, and cleft lip and palate, may be located at 4q33.  相似文献   

5.
We described three unrelated children with cryptic 9q34.3 rearrangements and similar clinical manifestations: two with 9q34.3 terminal deletions and the other with an unbalanced translocation involving 9q34.3-qter monosomy and 6p25-pter trisomy. Common features among the three we studied and the other six patients with 9q34.3 deletions in the literature include microcephaly, mental retardation (MR), hypotonic, and epileptic seizures. Their facial characteristics included flat face, arched eyebrows, synophrys, hypertelorism, short nose, anteverted nostrils, carp mouth, protruding tongue, micrognathia, and pointed chin. Other frequent abnormalities were cardiac abnormalities, cryptorchidism or hypospadias, and abnormal toes. These findings are characteristic enough to be a clinically recognizable syndrome.  相似文献   

6.
Interstitial deletions of the long arm of chromosome 12 are rare and only few cases have been reported in literature so far, with different phenotypic features related to size and gene content of deleted regions. Five patients reported a 12q15-q21 deletion, sharing a 1.3 Mb small region of overlap (SRO) and presenting with developmental delay, nasal speech and mild dysmorphic features.We identified by microarray analysis a new case of 12q15 deletion. Our patient clinical features allow the refinement of the SRO to CNOT2, KCNMB4, and PTPRB genes, improving genotype-phenotype correlations.  相似文献   

7.
We report on an infant with Robin sequence; mild developmental delay; a left ulnar ray defect with absent ulna and associated metacarpals, carpals and phalanges; and a right ulnar nerve hypoplasia. He had a de novo interstitial deletion of 4q32→q34. The critical region involved in the 4q terminal deletion syndrome may be 4q33. This conclusion was suggested by showing that del(4)(q31qter), del(4)(q32qter), and del(4)(q33qter) result in a similarly severe phenotype. In addition, we propose that genes for distal arm development, in particular for development of the left ulnar ray, central nervous system development, and cleft lip and palate, may be located at 4q33. © 2001 Wiley‐Liss, Inc.  相似文献   

8.
The pure 3.5 Mb subtelomeric deletion syndrome is very rare but causes a recognizable phenotype characterized by prenatal lymphedema with increased nuchal translucency, pronounced muscular hypotonia in infancy, borderline intelligence, postnatal short stature with delayed bone age due to growth hormone deficiency, and multiple minor anomalies including mildly bell-shaped chest, minor congenital heart defects, and a distinct facial gestalt. Terminal deletions including the adjacent approximately 2 Mb NSD1-locus show a compound phenotype with overlap to Sotos syndrome. Larger terminal deletions including also chromosomal bands 5q35.1 and 5q35.2 cause a more severe phenotype with normal body length, significant congenital heart defect, microcephaly, profound developmental retardation or early death due to respiratory failure. Heart defects in the latter are explained by haploinsufficiency of the NKX2.5 gene at 5q35.1. The deletion breakpoint of the 3.5 Mb subtelomeric microdeletion maps to a low copy repeat which is identical to the distal copy of two highly similar regions flanking the recurrent interstitial NSD1 microdeletion. As meiotic mispairing between these low copy repeats seem to be much more likely than a terminal aberration, these neighborhood may prevent occurrence of the subtelomeric deletion syndrome, which could explain the rareness of the latter.  相似文献   

9.
10.
The distal hereditary motor neuropathy (dHMN) is a rare genetically and clinically heterogeneous disorder characterized by weakness and wasting of distal limb muscles in absence of overt sensory abnormalities. Recently, pyramidal signs have been also described in some patients with dominant or recessive dHMN, and two different loci have been identified in families affected by dHMN complicated with pyramidal dysfunction. We investigated an Italian family affected by an autosomal dominant dHMN complicated by pyramidal signs in order to map a new gene locus. The disease maps to a novel locus in a 26-cM region flanked by D4S1552 and D4S2930 on chromosome 4q34.3-35.2. Three candidate genes ( SNX25 , CASP3 and TUBB4Q ) located in the critical region were screened for the presence of mutations by heteroduplex analysis. No mutations have been detected in the analyzed genes. In conclusion, the new private genetic locus we reported further confirms the wide heterogeneity of dHMN.  相似文献   

11.
Chromosome 22q11.2 deletion syndrome is the most common microdeletion syndrome in humans. The effects are protean and highly variable, making a unified approach difficult. Nevertheless, commonalities have been identified and white papers with recommended evaluations and anticipatory guidance have been published. This review will cover the immune system in detail and discuss both the primary features and the secondary features related to thymic hypoplasia. A brief discussion of the other organ system involvement will be provided for context. The immune system, percolating throughout the body can impact the function of other organs through allergy or autoimmune disease affecting organs in deleterious manners. Our work has shown that the primary effect of thymic hypoplasia is to restrict T cell production. Subsequent homeostatic proliferation and perhaps other factors drive a Th2 polarization, most obvious in adulthood. This contributes to atopic risk in this population. Thymic hypoplasia also contributes to low regulatory T cells and this may be part of the overall increased risk of autoimmunity. Collectively, the effects are complex and often age‐dependent. Future goals of improving thymic function or augmenting thymic volume may offer a direct intervention to ameliorate infections, atopy, and autoimmunity.  相似文献   

12.
13.
Most patients with an interstitial deletion of 6q16 have Prader-Willi-like phenotype, featuring obesity, hypotonia, short hands and feet, and developmental delay. In all reported studies, the chromosome rearrangement was detected by karyotype analysis, which provides an overview of the entire genome but has limited resolution. Here we describe a detailed clinical presentation of five patients, two of whom were previously reported, with overlapping interstitial 6q16 deletions and Prader-Willi-like phenotype. Our patients share the following main features with previously reported cases: global developmental delay, hypotonia, obesity, hyperphagia, and eye/vision anomalies. All rearrangement breakpoints have been accurately defined through array-CGH at about 100 Kb resolution. We were able to narrow the shortest region of deletion overlap for the presumed gene(s) involved in the Prader-Willi-like syndrome to 4.1 Mb located at 6q16.1q16.2. Our results support the evidence that haploinsufficiency of the SIM1 gene is responsible for obesity in these patients. A possible involvement of the GRIK2 gene in autistic-like behaviour, of POPDC3 in heart development, and of MCHR2 in the control of feeding behaviour and energy metabolism is also hypothesized.  相似文献   

14.
Submicroscopic deletions involving chromosome 1q43-q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43-q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion.  相似文献   

15.
DiGeorge syndrome, or chromosome 22q11.2 deletion syndrome, is a disorder affecting multiple organ systems. The immunologist may be called on to coordinate complex medical care tailored to the specific needs and unique clinical features of each patient. This article focuses on the immune system, but patients require a holistic approach. Attention to cardiac, nutritional, and developmental needs in early infancy is important, and it is critical to identify the rare infants who require either a lymphocyte or thymus transplant. Later, speech and school issues dominate the picture. Allergies and autoimmune disorders also may be troubling for some school-age children.  相似文献   

16.
16q21 is critical for 16q deletion syndrome   总被引:1,自引:0,他引:1  
A 1-year-old girl with an interstitial deletion of the long arm of chromosome 16 is reported. She was characterized by a distinct craniofacial dysmorphism, meningoencephalocele, mild hydrocephalus, short neck, broad great toes and abnormally positioned toes. High resolution GTG and RBG banding analyses revealed a karyotype: 46,XX,del(16) (q13q22) de novo. An analysis of the smallest region of overlap revealed that the critical band region for 16q deletion syndrome is 16q21.  相似文献   

17.
Neural tube defects (NTD) are common findings in the 13q deletion syndrome, but the relationship between the 13q- syndrome and NTDs is poorly understood. We present a child with a 13q deletion and lumbosacral myelomeningocele. This was a boy with microcephaly, telecanthus, minor facial anomalies, and ambiguous genitalia. Cytogenetic and fluorescence in situ hybridization analysis showed a de novo 46,XY,del(13)(q33.2-->qter) with no visible translocation. By using microsatellite markers, the deletion breakpoint was mapped to a 350-kb region between D13S274 and D13S1311 and was paternal in origin. An analysis of 13q deletions with NTDs, including the present case, suggests that a deletion in 13q33-34 is sufficient to cause an NTD. The deletions associated with NTDs are distal to and nonoverlapping with the previously defined critical region in 13q32 for the major malformation syndrome [Brown et al., 1999: Am J Hum Genet 57: 859-866]. Our analysis also suggests that one or more genes in 13q33-34 produces NTDs by haploinsufficiency.  相似文献   

18.
In this report, we describe two unrelated patients with mental retardation and brachydactyly E classified as patients suffering from Albright hereditary osteodystrophy-like (AHO-like) syndrome. Fluorescence in situ hybridization (FISH) analysis using 8 different subtelomeric probes in 2q36-37 proved that the patients had subtelomeric 2qter deletions of similar size. The recently proposed candidate gene glypican 1 (GPC1) is deleted in both reported patients.  相似文献   

19.
20.
Patients with distal deletions of chromosome 1q have a recognizable syndrome that includes microcephaly, hypoplasia or agenesis of the corpus callosum, and psychomotor retardation. Although these symptoms have been attributed to deletions of 1q42-1q44, the minimal chromosomal region involved has not been identified. Using microsatellite and single nucleotide polymorphism (SNP) markers, we have mapped the deleted regions in seven patients with terminal deletions of chromosome 1q to define a 2.0-Mb microcephaly critical region including the 1q43-1q44 boundary and no more than 11 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号