首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies suggest that viruses are the most numerous entities in the biosphere; bacteriophages, the viruses that infect Eubacteria and Archaea, constitute a substantial fraction of this population. In spite of their ubiquity, the vast majority of phages in the environment have never been studied and nothing is known about them. For the last 10 years our research has focused on an extremely widespread group of phages, the T4-type. It has now become evident that phage T4 has a myriad of relatives in nature that differ significantly in their host range. The genomes of all these phages have homology to the T4 genes that determine virion morphology. Although phylogenetically related, these T4-type phages can be subdivided into four groups that are increasingly distant from T4: the T-evens, the pseudo T-evens, the schizo T-evens and the exo T-evens. Genomic comparisons between the various T4-type phages and T4 indicate that these genomes share homology not only for virion structural components but also for most of the essential genes involved in the T4 life cycle. This suggests that horizontal transmission of the genetic information may have played a less general role in the evolution of these phages than has been supposed. Nevertheless, we have identified several regions of the T4-type genome, such as the segment containing the tail fiber genes that exhibit evidence of extensive modular shuffling during evolution. The T4-type genomes appear to be a mosaic containing a large and fixed group of essential genes as well as highly variable set of non-essential genes. These non-essential genes are probably important for the adaptation of these phages to their particular life-style. Furthermore, swapping autonomous domains within the essential proteins may slightly modify their function(s) and contribute to the adaptive ability of the T4-type phage family. Regulatory sequences also display considerable evolutionary plasticity and this too may facilitate the adaptation of phage gene expression to new environments and stresses.  相似文献   

2.
3.
Coat proteins of tailed, dsDNA phages and in herpesviruses include a conserved core similar to the bacteriophage HK97 subunit. This core is often embellished with other domains such as the telokin Ig-like domain of phage P22. Eighty-six P22-like phages and prophages with sequenced genomes share a similar set of virion assembly genes and, based on comparisons of twelve viral assembly proteins (structural and assembly/packaging chaperones), these phages are classified into three groups (P22-like, Sf6-like, and CUS-3-like). We used cryo-electron microscopy and 3D image reconstruction to determine the structures of Sf6 procapsids and virions (~ 7 Å resolution), and the structure of the entire, asymmetric Sf6 virion (16-Å resolution). The Sf6 coat protein is similar to that of P22 yet it has differences in the telokin domain and in its overall quaternary organization. Thermal stability and agarose gel experiments show that Sf6 virions are slightly less stable than those of P22. Finally, bacterial host outer membrane proteins A and C were identified in lipid vesicles that co-purify with Sf6 particles, but are not components of the capsid.  相似文献   

4.
We present a detailed analysis of the genome architecture, structural proteome and infection-related properties of three Pseudomonas phages, designated LUZ7, LIT1 and PEV2. These podoviruses encapsulate 72.5 to 74.9 kb genomes and lyse their host after 25 min aerobic infection. PEV2 can successfully infect under anaerobic conditions, but its latent period is tripled, the lysis proceeds far slower and the burst size decreases significantly. While the overall genome structure of these phages resembles the well-studied coliphage N4, these Pseudomonas phages encode a cluster of tail genes which displays significant similarity to a Pseudomonasaeruginosa (cryptic) prophage region. Using ESI-MS/MS, these tail proteins were shown to be part of the phage particle, as well as ten other proteins including a giant 370 kDa virion RNA polymerase. These phages are the first described representatives of a novel kind of obligatory lytic P. aeruginosa-infecting phages, belonging to the widespread “N4-like viruses” genus.  相似文献   

5.
Marker-rescue experiments with λ-P4 hybrid phages constructed in vitro have identified the locations of two P4 genes: the transactivation gene (δ) is in the left 10% of the genome, and the DNA replication gene (α) lies between 10 and 70% from the left end of the P4 genome. A λ-P4 hybrid phage which carries all of the essential genes of λ and the left 70% of the P4 genome can produce a P4-like phage which is indistinguishable in phenotype from the parental P4 vir1 phage. One of these P4-like phages has a P4-sized genome which is 70% homologous to P4 and produces λ-specific RNA. The existence of this phage and of two P4 deletion mutants suggests that the right 30% of the P4 genome contains no essential genes.  相似文献   

6.
《Research in microbiology》2018,169(9):505-514
To date, a small number of jumbo myoviruses have been reported to possess atypical whisker-like structures along the surface of their contractile tails. Erwinia amylovora phage vB_EamM_Y3 is another example. It possesses a genome of 261,365 kbp with 333 predicted ORFs. Using a combination of BLASTP, Interproscan and HHpred, about 21% of its putative proteins could be assigned functions involved in nucleotide metabolism, DNA replication, virion structure and cell wall degradation. The phage was found to have a signal-arrest-release (SAR) endolysin (Y3_301) possessing a soluble lytic transglycosylase domain. Like other SAR endolysins, inducible expression of Y3_301 caused Escherichia coli lysis, which is dependent on the presence of an N-terminal signal sequence. Phylogenetic analysis showed that its closest relatives are other jumbo phages including Pseudomonas aeruginosa phage PaBG and P. putida phage Lu11, sharing 105 and 87 homologous proteins respectively. Like these phages, Y3 also shares a distant relationship to Ralstonia solanacearum phage ΦRSL1 (sharing 55 homologous proteins). As these phages are unrelated to the Rak2-like group of hairy phages, Y3 along with Lu11 represent a second lineage of hairy myoviruses.  相似文献   

7.
A newly identified virulent phage (named phiAS4) infecting Aeromonas salmonicida subsp. salmonicida was isolated from river water in Korea. Morphological analysis of phiAS4 by transmission electron microscopy revealed that it belonged to the family Myoviridae. The genome of phiAS4 comprised a linear double-stranded DNA of 163,875 bp with a G + C content of 41.3%, and genomic analysis revealed 271 putative ORFs, 67 putative promoters, 25 putative terminator regions, and 16 tRNA-encoding genes. Most of the ORFs of phiAS4 showed a high degree of similarity to those of Aeromonas phage 25, which belongs to the T4-like group. Moreover, the comparison of the genome of phiAS4 with those of its relatives demonstrated that phage phiAS4 is closely related to members of the T4-like group and can be classified as a new member of the T4-like phages infecting bacteria of the family Aeromonadaceae.  相似文献   

8.
Pseudomonas chlororaphis phage 201varphi2-1 is a relative of Pseudomonas aeruginosa myovirus phiKZ. Phage 201 phi2-1 was examined by complete genomic sequencing (316,674 bp), by a comprehensive mass spectrometry survey of its virion proteins and by electron microscopy. Seventy-six proteins, of which at least 69 have homologues in phiKZ, were identified by mass spectrometry. Eight proteins, in addition to the major head, tail sheath and tail tube proteins, are abundant in the virion. Electron microscopy of 201 phi2-1 revealed a multitude of long, fine fibers apparently decorating the tail sheath protein. Among the less abundant virion proteins are three homologues to RNA polymerase beta or beta' subunits. Comparison between the genomes of 201 phi2-1 and phiKZ revealed substantial conservation of the genome plan, and a large region with an especially high rate of gene replacement. The phiKZ-like phages exhibited a two-fold higher rate of divergence than for T4-like phages or host genomes.  相似文献   

9.
Bacteriophage P4: a satellite virus depending on a helper such as prophage P2   总被引:39,自引:0,他引:39  
E W Six  C A Klug 《Virology》1973,51(2):327-344
Bacteriophage P4 was isolated from cultures of Escherichia coli strain K-235, and two spontaneous mutants, P4 imp and P4 vir1, were obtained from P4 wild type. P4 was found to be a satellite virus, depending on a helper genome for the completion of its lytic life cycle. Genomes of phage P2 and of P2-related phages can serve as helpers. They are able to assist P4 either if present in the host as a prophage or if introduced by coinfection. P4 does not depend on a helper for lysogenizing its host. A specific P4 prophage site was recognized on the host chromosome. P4 depends on its helper for the expression of genes with late functions. This is indicated by the finding that the P4 virion reflects in certain of its properties, for example, host range and neutralizability, the genotype of its most recent helper. P4 production in cells lysogenic for a helper and infected with P4 proceeds without induction of the helper prophage and without lifting the (helper-specific) immunity of such cells. It is proposed that P4 produces a transactivating factor that triggers the expression of the helper genes that have to fulfill the late functions needed by P4. Some other findings concerning the propagation of P4 and properties of P4 lysogens are also reported.  相似文献   

10.
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its “close” relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.  相似文献   

11.
Evolution of T4-related phages   总被引:11,自引:0,他引:11  
Much progress has been made in understanding T-even phage biology in the last 50 years. We now know the entire sequence of T4, encoding nearly 300 genes, only 69 of which have been shown to be essential under standard laboratory conditions; no specific function is yet known for about 140 of them. The origin of most phage genes is unclear, and only 42 genes in T4 have significant similarity to anything currently included in GenBank. Comparative analysis of related phages is now being used to gain insight into both the evolutionary origins and interrelationships of these phage genes, and the functions of their protein products. The genomes of phages isolated from Tbilisi hospitals, Long Island sewage plants, the Denver zoo, and Khabarovsk show basic similarity. However, these phages show substantial insertions and deletions in a number of regions relative to each other, and closer investigation of specific sequences often reveals much more complex relationships. There are only a few cases in T4-related phages in which there is evidence for evolution through DNA duplication. These include the fibrous products of genes 12, 34, and 37; head proteins gp23 and gp24; and the Alt enzyme and its downstream neighbors. T4 also contains 13 apparent relatives of group I and group II intron homing endonucleases. Distal portions of the tail fibers of various T-even phages contain segments closely related to tail-fiber regions of other DNA coliphages, such as Mu, P1, P2, and lambda. Horizontal gene transfer clearly emerges as a major factor in the evolution of at least the tail-fiber regions, where site-specific recombination probably is involved in the exchange of host-range determinants.  相似文献   

12.
The complete genome sequence of the T4-related low-temperature Escherichia coli bacteriophage vB_EcoM-VR7 was determined. The genome sequence is 169,285 bp long, with a G+C content of 40.3%. Overall, 95% of the phage genome is coding. It encodes 293 putative protein-encoding open reading frames (ORFs) and tRNAMet. More than half (59%) of the genomic DNA lacks significant homology with the DNA of T4, but once translated, 72% of the vB_EcoM-VR7 genome (211 ORFs) encodes protein homologues of T4 genes. Overall, 46 vB_EcoM-VR7 ORFs have no homologues in T4 but are derived from other T4-related phages, nine ORFs show similarities to bacterial or non-T4-related phage genes, and 27 ORFs are unique to vB_EcoM-VR7. This phage lacks several T4 enzymes involved in host DNA degradation; however, there is extensive representation of the DNA replication, recombination and repair enzymes as well as the viral capsid and tail structural genes.  相似文献   

13.
14.
15.
A gene encoding a polydnavirus structural polypeptide is not encapsidated   总被引:3,自引:0,他引:3  
Deng L  Stoltz DB  Webb BA 《Virology》2000,269(2):440-450
Polydnaviruses are symbiotic viruses associated with some parasitic Hymenoptera that are vertically transmitted as proviruses within wasp genomes. To study this symbiotic association a gene encoding an abundant Campoletis sonorensis polydnavirus virion protein was characterized. This gene is not encapsidated but resides in the wasp genome where it is expressed only during virus replication. Immunolocalization studies detected the encoded 44-kDa protein only in oviduct tissue with ultrastructural studies detecting epitopes between or on virion envelopes. Expression and localization of the 44-kDa protein are consistent with its being a viral structural protein but localization of the gene only within the wasp genome is atypical, raising the possibility that this protein is adventitiously packaged during virion assembly. To address this possibility, quantitative dot blot and genomic Southern blot hybridizations were performed to determine whether the copy number of the p44 gene increased disproportionately during replication, as would be expected for a gene encoding a virion protein. The copy number of the p44 gene increases in tissues supporting virus replication but is unchanged in other tissues, suggesting that this gene is amplified in replicative cells. The data indicate that genes encoding polydnavirus virion proteins may be distributed between wasp and encapsidated viral genomes.  相似文献   

16.
The structural genes of P2-like phages are almost identical between different isolates of Escherichia coli, whereas the regulatory genes and host integration sites are more variable. The variation in P2-like phages infecting other gamma-proteobacteria is broader, but their structural genes seem to follow the evolution of their host bacteria. Taken together, this suggests that P2-like phages and their hosts are coevolving.  相似文献   

17.
Summary. The complete 36,466-bp genome sequence of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus was determined. The linear dsDNA with a GC-content of 44.2% contained 3′ single-stranded cohesive ends of 12 nucleotides. A total of 51 putative open reading frames (orfs) were predicted. Lc-Nu showed to be evolutionary closely related to the temperate Lactobacillus casei phages phi AT3 and A2. High DNA homology with phi AT3 was shared over the late transcribed genes, and the highest homology with A2 was within the genetic switch region. The truncated cI-like repressor was the only lysogeny related gene left, which strongly suggested Lc-Nu to be recently evolved from a temperate origin. Three putative methylases and endonucleases were detected from the region of early-transcribed genes. The putative origin of replication within the putative gene orf34 homologous to replisome organizers resembled to that of lambdoid phages. The present study suggested Lc-Nu to be a new candidate for the proposed Sfi21-like species.  相似文献   

18.
19.
Genomic analysis of Feldmannia sp. virus 158, the second phaeovirus to be sequenced in its entirety, provides further evidence that large double-stranded DNA viruses share similar evolutionary pressures as cellular organisms. Reductive evolution is clearly evident within the phaeoviruses which occurred via several routes: the loss of genes from an ancestral virus core genome most likely through genetic drift; and as a result of relatively large recombination events that caused wholesale loss of genes. The entire genome is 154,641 bp in length and has 150 predicted coding sequences of which 87% have amino acid sequence similarities to other algal virus coding sequences within the family Phycodnaviridae. Significant similarities were found, for thirty eight coding sequences (25%), to genes in gene databanks that are known to be involved in processes that include DNA replication, DNA methylation, signal transduction, viral integration and transposition, and protein-protein interactions. Unsurprisingly, the greatest similarity was observed between the two known viruses that infect Feldmannia, indicating the taxonomic linkage of these two viruses with their hosts. Moreover, comparative analysis of phycodnaviral genomic sequences revealed the smallest set of core genes (10 out of a possible 31) required to make a functional nucleocytoplasmic large dsDNA virus.  相似文献   

20.
Bacteriophage PM2 was isolated from the Pacific Ocean off the coast of Chile in the late 1960s. It was a new virus type, later classified as Corticoviridae, and also the first bacterial virus for which it was demonstrated that lipids are part of the virion structure. Here we report the determination and analysis of the 10, 079-bp circular dsDNA genome sequence. Noteworthy discoveries are the replication initiation system, which is related to the rolling circle mechanism described for phages such as φX174 and P2, and a 1.2-kb sequence that is similar to the maintenance region of a plasmid found in a marine Pseudoalteromonas sp. strain A28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号