首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
This review focuses on stereoselectivity of human cytochrome P450 (P450 or CYP) in the area of metabolism and inhibition. A meta-analysis was performed based on the reported values regarding (1) values of the Michaelis-Menten constant (K(m)), maximal velocity (V(max)), and intrinsic clearance (V(max)/K(m)) for 45 metabolic reactions of 19 substrates and (2) inhibition constants (K(i)) for 6 inhibitors. The median (R)/(S)-enantiomer ratios of the K(m), V(max), and V(max)/K(m) values for CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 were in the range of 0.80-1.53, whereas the median ratios of V(max), and V(max)/K(m) values for CYP2C9 were 0.43 and 0.60, respectively. In addition, the parameters for metabolic reactions (25-80%) of (R)-enantiomers of these P450s were comparable to those of (S)-enantiomers (the ratios were between 0.5 and 2), whereas 45-69% of V(max) and V(max)/K(m) values for the (R)-enantiomer in CYP2C9 were less than half of those for the (S)-enantiomer, although the kinetic behavior of the stereoselectivity depended on the metabolic reaction. There is a limited number of reports regarding stereoselective inhibition and induction in vitro. The present information gives insight into the contribution of stereoselectivity to metabolism mediated by P450s and the risk of adverse drug-drug interactions due to stereoselectivity.  相似文献   

2.
P450 and carcinogenesis   总被引:2,自引:0,他引:2  
Multiple forms of cytochrome P450 play important roles in metabolic activation of a variety of environmental procarcinogens. Large species differences in substrate specificities between experimental animals and humans are critical factors in evaluation of chemical safety. To study the role of human P450s in genotoxic activation of environmental chemicals, transgenic bacteria expressing both human P450s and P450 reductase have been developed for the mutagenicity test. Mice lacking CYP1A2, and CYP1B1, and CYP2E1 were prepared to investigate the mechanism of procarcinogen activation in vivo. The first human transgenic animals were mice carrying human fetus-specific CYP3A7. Using these transgenic mice, mutagenic activation of a natural mycotoxin, aflatoxin B1, catalyzed by CYP3A7 in vivo was demonstrated. This observation was clear in extrahepatic tissues that did not express mouse CYP3A enzymes. In conclusion, P450s are key factors involved in metabolic activation of environmental procarcinogens for their biological actions.  相似文献   

3.
Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (K(m) and V(max)) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (K(m) = 1.25 μM; V(max) = 9.78 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 1.03 μM; V(max) = 4.67 nmol · min(-1) · nmol P450(-1)), and CYP1A2 (K(m) = 1.96 μM; V(max) = 5.14 nmol · min(-1) · nmol P450(-1)), and the bioactivation of diazinon was mediated primarily by CYP1A1 (K(m) = 3.05 μM; V(max) = 2.35 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 7.74 μM; V(max) = 4.14 nmol · min(-1) · nmol P450(-1)), and CYP2B6 (K(m) = 14.83 μM; V(max) = 5.44 nmol · min(-1) · nmol P450(-1)). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (K(m) = 16.8 μM; V(max) = 1.38 nmol · min(-1) · nmol P450(-1)) and 3A4 (K(m) = 104 μM; V(max) = 5.15 nmol · min(-1) · nmol P450(-1)), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (K(m) = 5.04 μM; V(max) = 5.58 nmol · min(-1) · nmol P450(-1)). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure.  相似文献   

4.
Some substrates of cytochrome P450 (CYP) 3A4, the most abundant CYP in the human liver responsible for the metabolism of many structurally diverse therapeutic agents, do not obey classical Michaelis-Menten kinetics and demonstrate homotropic and/or heterotropic cooperativity. The unusual kinetics and differential effects observed between substrates of this enzyme confound the prediction of drug clearance and drug-drug interactions from in vitro data. We have investigated the hypothesis that CYP3A4 may bind multiple molecules simultaneously using diazepam (DZ) and testosterone (TS). Both substrates showed sigmoidal kinetics in B-lymphoblastoid microsomes containing a recombinant human CYP3A4 and reductase. When analyzed in combination, TS activated the formation of 3-hydroxydiazepam (3HDZ) and N-desmethyldiazepam (NDZ) (maximal activation 374 and 205%, respectively). For 3HDZ, V(max) values remained constant with increasing TS, whereas the S(50) and Hill values decreased, tending to make the data less sigmoidal. Similar trends were observed for the NDZ pathway. DZ inhibited the formation 6beta-hydroxytestosterone (maximal inhibition, 45% of control), causing a decrease in V(max) but no significant change to the S(50) and Hill values, suggesting that DZ may inhibit via a separate effector site. Multisite rate equation models have been derived to explore the analysis of such complex kinetic data and to allow accurate determination of the kinetic parameters for activation and inhibition. The data and models presented are consistent with proposals that CYP3A4 can bind and metabolize multiple substrate molecules simultaneously; they also provide a generic solution for the interpretation of the complex kinetic data derived from CYP3A4 substrates.  相似文献   

5.
Cytochrome P450 (P450 or CYP) 3A is one of the most important P450 subfamilies in terms of its broad substrate specificity and relatively high abundance in humans. The substrate specificities of CYP3A4 and CYP3A5 are generally overlapped, but sometimes could differ from each other. It is still important to understand drug interactions more precisely in individual subjects. However, there are few review articles regarding comparative drug oxidation rates catalyzed by CYP3A4 and CYP3A5 and/or substrate inhibition potential towards CYP3A4 and CYP3A5. In this article, we summarize 1) Michaelis-Menten constants (Km), maximal velocities (Vmax), and intrinsic clearance (Vmax/Km) values for 63 substrates (94 reactions) mediated by CYP3A4 and/or CYP3A5, 2) inhibition constants (Ki) and 50% inhibitory concentrations (IC50) of 18 substrates, and 3) maximum inactivation rate constants (kinact) of 14 inhibitors from the literature. The relative contribution of polymorphic CYP3A5 compared with inducible CYP3A4 varies with the substrates and the reaction positions of the substrates. Inhibitory effects of azole antifungal agents and macrolide antibiotics, with low Ki and/or IC50 values for CYP3A4, are likely to be determinant factors for predominant drug interactions in humans, although Asian subjects with relatively high frequency of genetic CYP3A5 expressers should be carefully treated with CYP3A substrates. The collective findings in our present survey provide fundamental and useful information for drug oxidations catalyzed by CYP3A4 and CYP3A5, in spite of some contradictive kinetic parameters for the same reactions reported from many laboratories in different conditions. To understand causal factor(s) and mechanism(s) for such different reports summarized here is still one of the hot research topics to be solved in current drug metabolism.  相似文献   

6.
Tumour cytochrome P450 and drug activation   总被引:11,自引:0,他引:11  
The expression of drug metabolising cytochrome P450s (CYPs) notably 1A, 1B, 2C, 3A, 2D subfamily members have been identified in a wide range of human cancers. Individual tumour types have distinct P450 profiles as studied by detection of P450 activity, identification of immunoreactive CYP protein and detection of CYP mRNA. Selected P450s, especially CYP1B1, are overexpressed in tumours including cancers of the lung, breast, liver, gastrointestinal tract, prostate, bladder. Several prodrug anti-tumour agents have retrospectively been identified as P450 substrates for which tumour CYP activation may hitherto have been underestimated. Those in clinical use include prodrug alkylating agents (cyclophosphamide, ifosphamide, dacarbazine, procarbazine), Tegafur, a prodrug fluoropyrimidine, methoxymorphylinodoxorubicin, a metabolically activated anthracycline, as well as flutamide and tamoxifen, two non-steroidal hormone receptor antagonists that are significantly more active following CYP-hydroxylation. More exciting is the prospect of developing new agents designed to be selectively dependent on tumour CYP activation. This can be illustrated with P450 activation of the 2-(4-aminophenyl)benzothiazoles exclusively in CYP1A1 inducible tumours. Also of interest is the bioreductive antitumour prodrug AQ4N, a CYP3A substrate that is activated to a cytotoxic metabolite specifically in hypoxic tumour regions.  相似文献   

7.
Artemisinin drugs have become the first-line antimalarials in areas of multidrug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of cytochrome P450 (P450)-mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction and metabolic drug-drug interactions (DDIs), we evaluated the P450s (particularly CYP2B6 and CYP3A4) inhibited or induced by two artemisinin drugs, Qing-hao-su (QHS) and dihydroartemisinin (DHA) using human liver microsome, recombinant P450 enzymes, and primary human hepatocytes. The results suggested that QHS was a weak reversible inhibitor of CYP2B6 (K(i) 4.6 μM), but not CYP3A4 (IC(50) ~ 50 μM) and did not show measurable time-dependent inhibition of either CYP2B6 or CYP3A4. DHA inhibited neither CYP2B6 nor CYP3A4 (IC(50) > 125 μM). In addition, it was found that QHS induced the activity of CYP3A4 (E(max) 3.5-fold and EC(50) 5.9 μM) and CYP2B6 (E(max) 1.9-fold and EC(50) 0.6 μM). Of the other P450s, UDP glucuronosyltransferases, and transporters studied, QHS and DHA had no significant effect except for minor induction of mRNA expression of CYP1A2 (E(max) 7.9-fold and EC(50) 5.2 μM) and CYP2A6 (E(max) 11.7-fold and EC(50) 4.0 μM) by QHS. Quantitative prediction of P450-mediated DDIs indicate autoinduction of QHS clearance with the AUC(i)/AUC ratio decreasing to 59%, as a result of a 1.9-fold increase in CYP3A4 and a 1.6-fold increase in CYP2B6 activity. These data suggest that QHS drugs are potential inducers of P450 enzymes, and the possible drug interactions (or lack thereof) with artemisinin drugs may be clinically relevant.  相似文献   

8.
It has been demonstrated that the activity of cytochrome P450 (CYP)3A4 in certain cases is stimulated by quinidine (positive heterotropic cooperativity). We report herein that the 4'- and 10-hydroxylation of S- and R-warfarin are enhanced in human liver microsomal incubations containing quinidine. These reactions were catalyzed by CYP3A4, based on data derived from immunoinhibitory studies, with 4'-hydroxylation being preferentially associated with S-warfarin and 10-hydroxylation with R-warfarin. The 4'-hydroxylation of S-warfarin and 10-hydroxylation of R-warfarin increased with increasing quinidine concentrations and maximized at ~3- and 5-fold the values of controls, respectively. Stimulatory effects of quinidine also were observed with recombinant CYP3A4, suggesting that increases in warfarin metabolism were due to quinidine-mediated enhancement of CYP3A4 activity. This positive cooperativity of CYP3A4 was characterized by a 2.5-fold increase in V(max) for the 4'-hydroxylation of S-warfarin and a 5-fold increase in V(max) for the 10-hydroxylation of R-warfarin, with little change in K(m) values. Conversely, V(max) for the 3-hydroxylation of quinidine was not influenced by the presence of warfarin. These results are consistent with previous findings suggesting the existence of more than one binding site in CYP3A4 through which interactions may occur between substrate and effector at the active site of the enzyme. Such interactions were subsequently illustrated by a kinetic model containing two binding domains, and a good regression fit was obtained for the experimental data. Finally, stimulation of warfarin metabolism by quinidine was investigated in suspensions of human hepatocytes, and increases in the formation of 4'- and 10-hydroxywarfarin again were observed in the presence of quinidine, indicating that this type of drug-drug interaction occurs in intact cells.  相似文献   

9.
3-Methylindole (3 MI) is a selective pulmonary toxicant, and cytochrome P450 (P450) bioactivation of 3 MI, through hydroxylation, epoxidation, or dehydrogenation pathways, is a prerequisite for toxicity. CYP2F1 and CYP2F3 exclusively catalyze the dehydrogenation of 3 MI to 3-methyleneindolenine, without detectable formation of the hydroxylation or epoxidation products. It was not known whether 3 MI is simply an excellent dehydrogenation substrate for all P450 enzymes, or whether certain cytochrome P450s responsible for 3 MI bioactivation have unique active sites that only catalyze the dehydrogenation of the molecule, while other P450s would catalyze only the oxygenation of 3 MI. Therefore, the kinetics of product formation by the CYP2F1 and CYP2F3 enzymes were compared with other cytochrome P450 enzymes. The enzymes tested were CYP1A1, CYP1A2, CYP1B1, and CYP2E1. The CYP1A1 and CYP1A2 enzymes produced all three 3 MI metabolites: the dehydrogenation product, 3-methyleneindolenine (V(max)/K(m) = 4 and 22, respectively); the hydroxylation product, indole-3-carbinol (V(max)/K(m) = 42 and 100, respectively); and the epoxidation product, 3-methyloxindole (V(max)/K(m) = 4 and 72, respectively). These CYP1A enzymes catalyzed oxygenation of 3 MI at much faster rates than dehydrogenation. CYP1B1 produced indole-3-carbinol (V(max)/K(m) = 85) and 3-methyloxindole (V(max)/K(m) = 7), and CYP2E1 only produced 3-methyloxindole (V(max)/K(m) = 98), but neither enzyme catalyzed the formation of the dehydrogenated product. Six additional P450 enzymes that were tested formed none of the dehydrogenation product. The ability of the various CYP1 family enzymes to catalyze the formation of all three major 3 MI metabolites, along with the specific oxygenation by CYP2E1, illustrates that dehydrogenation of 3 MI is not a substrate-directed process, but that the members of the CYP2F family possess unique active sites that specifically catalyze only the dehydrogenation mechanism.  相似文献   

10.
Cytochrome P450 (P450)-dependent metabolism of all-trans-retinoic acid (atRA) is important for the expression of its biological activity. Because the human P450s involved in the formation of the principal atRA metabolites have been only partially identified, the purpose of this study was to identify the human P450s involved in atRA metabolism. The use of phenotyped human liver microsomes (n = 16) allowed the identification of the following P450s: 2B6, 2C8, 3A4/5, and 2A6 were involved in the formation of 4-OH-RA and 4-oxo-RA; 2B6, 2C8, and 2A6 correlated with the formation of 18-OH-RA; and 2A6, 2B6, and 3A4/5 activities correlated with 5, 6-epoxy-RA formation (30-min incubation, 10 microM atRA, HPLC separation, UV detection 340 nm). The use of 15 cDNA-expressed human P450s from lymphoblast microsomes, showed the formation of 4-OH-RA by CYP3A7 > CYP3A5 > CYP2C18 > CYP2C8 > CYP3A4 > CYP2C9, whereas the 18-OH-RA formation involved CYPs 4A11 > 3A7 > 1A1 > 2C9 > 2C8 > 3A5 > 3A4 >2C18. Kinetic studies identified 3A7 as the most active P450 in the formation of three of the metabolites: for 4-OH-retinoic acid, 3A7 showed a V(max)/K(m) of 127.7, followed by 3A5 (V(max)/K(m) = 25.6), 2C8 (V(max)/K(m) = 24.5), 2C18 (V(max)/K(m) = 15.8), 3A4 (V(max)/K(m) = 5.7), 1A1 (V(max)/K(m) = 5.0), and 4A11 (V(max)/K(m) = 1.9); for 4-oxo-RA, 3A7 showed a V(max)/K(m) of 13.4, followed by a 10-fold lower activity for both 2C18 and 4A11 (V(max)/K(m) = 1.2); and for 18-OH-RA, 3A7 showed a V(max)/K(m) of 10.5 compared with a V(max)/K(m) of 2.1 for 4A11 and 2.0 for 2C8. 5,6-Epoxy-RA was only detected at high substrate concentrations in this system (>10 microM), and P450s 2C8, 2C9, and 1A1 were the most active in its formation. The use of embryonic kidney cells (293) stably transfected with human P450 cDNA confirmed the major involvement of P450s 3A7, 1A1, and 2C8 in the oxidation of atRA, and to a lesser extent, 1A2, 2C9, and 3A4. In conclusion, several human P450s involved in atRA metabolism have been identified, the expression of which was shown to direct atRA metabolism toward the formation of specific metabolites. The role of these human P450s in the biological and anticancer effects of atRA remains to be elucidated.  相似文献   

11.
Inhibition kinetics of monoclonal antibodies against cytochromes P450.   总被引:1,自引:0,他引:1  
Monoclonal antibodies (MAbs) inhibitory to individual cytochromes P450 (P450s) are of tremendous utility in identification of P450s responsible for the metabolism of a given drug or drug candidate in pharmaceuticals. In the present study, two inhibitory MAbs against CYP2D6 (MAb(2D6-50,) IgG(2b) and MAb(2D6-184), IgG(2a)) were developed by hybridoma technology to exhibit their high specificity and potency. The MAbs were further employed to assess the quantitative role (47-93%) of CYP2D6 to the metabolism of bufuralol in human liver microsomes from seven donors. Together with the MAb inhibitory to CYP3A4 as previously reported (Mei et al., 1999), the MAbs were used to study the inhibition kinetics of dextromethorphan O-demethylation (CYP2D6), testosterone 6beta-hydroxylation (CYP3A4) and aflatoxin B1 3-hydroxylation (CYP3A4), respectively, with an adequate size of sample measurement. A kinetic model was proposed to fit the experimental observations with three-dimensional nonlinear regression, thereby resulting in a solution of kinetic parameters, i.e., K(I), K(S), V(max), alpha, and beta (changes in K(I) or K(S) and V(max) in the presence of the MAb). As a result, dissociation constants (K(I)) of the MAbs for the enzymes and the maximal inhibition (beta) values for the P450-catalyzed reactions were predicted to have 0.04 to 0.25 microM and > or =94%, respectively. The results have demonstrated that the model can accurately predict the kinetic parameters and provide some insights into the understanding of the mechanism of MAb interaction with P450 enzyme in nature and the applications of the MAbs in qualitative and quantitative identification of P450s involved in drug metabolism.  相似文献   

12.
Cyp3A regulation: from pharmacology to nuclear receptors.   总被引:6,自引:0,他引:6  
Among the human liver cytochrome P450s (P450s), a family of microsomal hemoproteins responsible for catalyzing the oxidative metabolism of clinically used drugs and environmental chemicals, attention has been focused on CYP3A, a form that is the most abundant and is inducible by many of its substrates. From early pharmacological studies that demonstrated induction of CYP3A by glucocorticoids and, paradoxically, by antiglucocorticoids, the existence of a nonclassical glucocorticoid receptor mechanism was inferred and prompted research that culminated in the identification of a unique member of the nuclear receptor family, the pregnane X receptor (PXR; NR1I2). It has become increasingly evident that PXR as well as other nuclear receptors mediate CYP3A induction in a unique and complex manner including inducibility by structurally diverse compounds and striking interspecies differences in induction profiles. Future understanding of the role of nuclear receptors in regulating expression of CYP3A and other genes of the P450 family offers an exciting promise of further defining the physiologic function and interindividual differences of CYP3A in health and disease.  相似文献   

13.
We recently proposed a possible stereoselective activation by lansoprazole of CYP2C9-catalyzed tolbutamide hydroxylation, as well as stereoselective inhibition of several cytochrome P450 (P450) isoforms. This study evaluated the effects of lansoprazole enantiomers on CYP2C9 activity in vitro, using several probe substrates. For tolbutamide 4-methylhydroxylation and phenytoin 4-hydroxylation, R-lansoprazole was an activator (140 and 550% of control at 100 microM R-lansoprazole, EC50 values of 19.9 and 30.2 microM, respectively). R-Lansoprazole-mediated activation of the formation of 4-hydroxyphenytoin was also seen with recombinant human CYP2C9. R-Lansoprazole increased the Michaelis-Menten-derived V(max) of phenytoin 4-hydroxylation from 0.024 to 0.121 pmol/min/pmol P450, and lowered its K(m) from 20.5 to 15.0 microM, suggesting that R-lansoprazole activates CYP2C9-mediated phenytoin metabolism without displacing phenytoin from the active site. Kinetic parameters were also estimated using the two-site binding equation, with alpha values <1 and beta values >1, indicative of activation. Additionally, phenytoin at 10 to 200 microM had no reciprocal effect on the hydroxylation of R-lansoprazole. Meanwhile, R-lansoprazole had no activation effect on diclofenac and S-warfarin metabolism in the incubation study using both recombinant CYP2C9 and human liver microsomes. These substrate-dependent activation effects suggest that phenytoin has a different binding orientation compared with diclofenac and S-warfarin. Overall, these results suggest that R-lansoprazole activates CYP2C9 in a stereospecific and substrate-specific manner, possibly by binding within the active site and inducing positive cooperativity. This is the first report to describe stereoselective activation of this cytochrome P450 isoform.  相似文献   

14.
Strategies for the prediction of in vivo drug clearance from in vitro drug metabolite kinetic data are well established for the rat. In this animal species, metabolism rate-substrate concentration relationships can commonly be described by the classic hyperbola consistent with the Michaelis-Menten model and simple scaling of the parameter intrinsic clearance (CL(int) - the ratio of V(max) to K(m)) is particularly valuable. The in vitro scaling of kinetic data from human tissue is more complex, particularly as many substrates for cytochrome P450 (CYP) 3A4, the dominant human CYP, show nonhyperbolic metabolism rate-substrate concentration curves. This review critically examines these types of data, which require the adoption of an enzyme model with multiple sites showing cooperative binding for the drug substrate, and considers the constraints this kinetic behavior places on the prediction of in vivo pharmacokinetic characteristics, such as metabolic stability and inhibitory drug interaction potential. The cases of autoactivation and autoinhibition are discussed; the former results in an initial lag in the rate-substrate concentration profile to generate a sigmoidal curve whereas the latter is characterized by a convex curve as V(max) is not maintained at high substrate concentrations. When positive cooperativity occurs, we suggest the use of CL(max), the maximal clearance resulting from autoactivation, as a substitute for CL(int). The impact of heteroactivation on this approach is also of importance. In the case of negative cooperativity, care in using the V(max)/K(m) approach to CL(int) determination must be taken. Examples of substrates displaying each type of kinetic behavior are discussed for various recombinant CYP enzymes, and possible artifactual sources of atypical rate-concentration curves are outlined. Finally, the consequences of ignoring atypical Michaelis-Menten kinetic relationships are examined, and the inconsistencies reported for both different substrates and sources of recombinant CYP3A noted.  相似文献   

15.
16.
Cytochrome P450 (P450) enzymes are major catalysts involved in the metabolism of xenobiotics and endogenous substrates such as testosterone (TST). Major TST metabolites formed by human liver microsomes include 6beta-hydroxytestosterone (6beta-OHTST), 2beta-hydroxytestosterone (2beta-OHTST), and 15beta-hydroxytestosterone (15beta-OHTST). A screen of 16 cDNA-expressed human P450 isoforms demonstrated that 94% of all TST metabolites are produced by members of the CYP3A subfamily with 6beta-OHTST accounting for 86% of all TST metabolites. Similar K(m) values were observed for production of 6beta-, 2beta-, and 15beta-OHTST with human liver microsomes (HLM) and CYP3A4. However, V(max) and CL(int) were significantly higher for 6beta-OHTST than 2beta-OHTST (approximately 18-fold) and 15beta-OHTST (approximately 40-fold). Preincubation of HLM with a variety of ligands, including chemicals used in military deployments, resulted in varying levels of inhibition or activation of TST metabolism. The greatest inhibition of TST metabolism in HLM was following preincubation with organophosphorus compounds, including chlorpyrifos, phorate, and fonofos, with up to 80% inhibition noticed for several metabolites including 6beta-OHTST. Preincubation of CYP3A4 with chlorpyrifos, but not chlorpyrifos-oxon, resulted in 98% inhibition of TST metabolism. Phorate and fonofos also inhibited the production of most primary metabolites of CYP3A4. Kinetic analysis indicated that chlorpyrifos was one of the most potent inhibitors of major TST metabolites followed by fonofos and phorate. Chlorpyrifos, fonofos, and phorate inhibited major TST metabolites noncompetitively and irreversibly. Conversely, preincubation of CYP3A4 with pyridostigmine bromide increased metabolite levels of 6beta-OHTST and 2beta-OHTST. Preincubation of human aromatase (CYP19) with the test chemicals had no effect on the production of the endogenous estrogen, 17beta-estradiol.  相似文献   

17.
细胞色素氧化酶P450及其遗传多态性   总被引:18,自引:4,他引:14  
细胞色素氧化酶P45 0是药物代谢中的一个重要的酶系。近年来 ,对细胞色素P45 0氧化酶与药物氧化代谢多态性的关系进行了研究。CYP2C19与CYP2D6等在表型和基因型水平上均发现存在氧化代谢多态性 ,并对其分子机制有了深入的了解 ,而CYP2C9,CYP1A1等其他酶可能存在多态性 ,但其分子机制尚不清楚。本文综述了这些P45 0酶的底物 ,种族差异 ,遗传多态性 ,以及其对药物代谢和疾病易感性的影响  相似文献   

18.
Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.  相似文献   

19.
Pathogenesis of lung diseases, such as lung cancer and chronic obstructive pulmonary disease, is tightly linked to exposure to environmental chemicals, most notably tobacco smoke. Many of the compounds associated with these diseases require an enzymatic activation to exert their deleterious effects on pulmonary cells. These activation reactions are mostly catalyzed by cytochrome P450 (CYP) enzymes. Interindividual differences in the in situ activation and inactivation of chemical toxicants may contribute to the risk of developing lung diseases associated with these compounds. This review summarizes in detail the expression of individual CYP forms in human pulmonary tissue and gives a view on the significance of the pulmonary expression of CYP enzymes. The localization of individual CYP enzymes in various cell types of human lung and the emerging field of regulation of human pulmonary CYP enzymes are discussed. At least CYP1A1 (in smokers), CYP1B1, CYP2B6, CYP2E1, CYP2J2, and CYP3A5 proteins are expressed in human lung, and also other CYP forms are likely to be expressed. Xenobiotic-metabolizing CYP enzymes are mostly expressed in bronchial and bronchiolar epithelium, Clara cells, type II pneumocytes, and alveolar macrophages in human lung, although individual CYP forms have different patterns of localization in pulmonary tissues. Problems in animal to human lung toxicity extrapolation and several specific aspects requiring more detailed assessment are identified.  相似文献   

20.
Different roles of individual forms of human cytochrome P-450 (CYP) in the oxidation of 7-ethoxycoumarin and chlorzoxazone were investigated in liver microsomes of different human samples, and the microsomal activities thus obtained were predicted with kinetic parameters obtained from cDNA-derived recombinant CYP enzymes in microsomes of Trichoplusia ni cells. Of 14 forms of recombinant CYP examined, CYP1A1 had the highest activities (V(max)/K(m) ratio) in catalyzing 7-ethoxycoumarin O-deethylation followed by CYP1A2, 2E1, 2A6, and 2B6, although CYP1A1 has been shown to be an extrahepatic enzyme. With these kinetic parameters (excluding CYP1A1) we found that CYP1A2 and 2E1 were the major enzymes catalyzing 7-ethoxycoumarin; the contributions of these two forms were dependent on the contents of these CYPs in liver microsomes of different humans. Similarly, chlorzoxazone 6-hydroxylation activities of liver microsomes were predicted with kinetic parameters of recombinant human CYP enzymes and it was found that CYP3A4 as well as CYP1A2 and 2E1 were involved in chlorzoxazone hydroxylation, depending on the contents of these CYP forms in the livers. Recombinant CYP2A6 and 2B6 and CYP2D6 had considerable roles (V(max)/K(m) ratio) for 7-ethoxycoumarin O-deethylation and chlorzoxazone 6-hydroxylation, respectively; however, these CYP forms had relatively minor roles in the reactions, probably due to low expression in human livers. These results support the view that the roles of individual CYP enzymes in the oxidation of xenobiotic chemicals in human liver microsomes could be predicted by kinetic parameters of individual CYP enzymes and by the levels of each of the CYP enzymes in liver microsomes of human samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号