首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an intercellular messenger regulating neuronal functions. To visualize NO signalling in the brain, we generated a novel fluorescent NO indicator, which consists of the heme-binding region (HBR) of soluble guanylyl cyclase and the green fluorescent protein. The indicator (HBR–GFP) was expressed in the Purkinje cells of the mouse cerebellum and we imaged NO signals in acute cerebellar slices upon parallel fibre (PF) activation with a train of burst stimulations (BS, each BS consisting of five pulses at 50 Hz). Our results showed that the intensity of synaptic NO signal decays steeply with the distance from the synaptic input near PF–Purkinje cell synapses and generates synapse-specific long-term potentiation (LTP). Furthermore, the NO release level has a bell-shaped dependence on the frequency of PF activity. At an optimal frequency (1 Hz), but not at a low frequency (0.25 Hz) of a train of 60 BS, NO release as well as LTP was induced. However, both NO release and LTP were significantly reduced at higher frequencies (2–4 Hz) of BS train due to cannabinoid receptor-mediated retrograde inhibition of NO generation at the PF terminals. These results suggest that synaptic NO signalling decodes the frequency of neuronal activity to mediate synaptic plasticity at the PF–Purkinje cell synapse.  相似文献   

2.
Dong Z  Cao J  Xu L 《Neuroscience》2007,144(3):845-854
Subiculum receives output of hippocampal CA1 neurons and projects glutamatergic synapses onto nucleus accumbens (NAc), the subicular-NAc pathway linking memory and reward system. It is unknown whether morphine withdrawal influences synaptic plasticity in the subicular-NAc pathway. Here, we recorded the field excitatory postsynaptic potential (EPSP) within the shell of NAc by stimulating ventral subiculum in anesthetized adult rats. We found that high frequency stimulation (HFS, 200 Hz) induced long-term potentiation (LTP) but low frequency stimulation (LFS, 1 Hz) failed to induce long-term depression (LTD) in control animals. However, behavioral stress enabled LFS to induce a reliable LTD (sLTD) that was dependent on the glucocorticoid receptors. Both LTP and sLTD were prevented by the N-methyl-d-aspartate receptor antagonist AP-5. After repeated morphine treatment for 12 days, acute withdrawal (12 h) impaired LTP but had no effect on sLTD; prolonged withdrawal (4 days) restored the LTP but impaired the sLTD. Remarkably, basal synaptic efficacy reflected by baseline EPSP amplitude was potentiated in acute withdrawal but was depressed in prolonged withdrawal. Thus, acute and prolonged opiate withdrawal may cause endogenous LTP and LTD in the subicular-NAc pathway that occludes the subsequent induction of synaptic plasticity, demonstrating adaptive changes of the NAc functions during opiate withdrawal.  相似文献   

3.
The calcium control hypothesis posits that postsynaptic calcium increases are required to trigger synaptic plasticity, with large increases inducing LTP and small increases inducing LTD. In CA1 of the hippocampus, however, LTD induced by chemical activation of metabotropic glutamate receptors (agonist-LTD) is independent of increases in postsynaptic calcium. Here we tested whether LTD induced by pairing of presynaptic stimulation with postsynaptic depolarization (synaptic-LTD) is similarly calcium-independent. This protocol induced an NMDA-dependent LTP when paired at 0mV, which was converted to mGluR-dependent LTD when paired at -20mV. The LTD was not blocked by calcium chelation, blockers of L- or T-type voltage-dependent calcium channels, or hyperpolarization to -70mV. We conclude that synaptically induced mGluR-dependent LTD, like agonist induced mGluR LTD, does not require calcium influx for its induction.  相似文献   

4.
The induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic currents was investigated in proximal synapses of layer 2/3 pyramidal cells of the rat medial prefrontal cortex. The spike timing-dependent plasticity (STDP) induction protocol of negative timing, with postsynaptic leading presynaptic stimulation of action potentials (APs), induced LTD as expected from the classical STDP rule. However, the positive STDP protocol of presynaptic leading postsynaptic stimulation of APs predominantly induced a presynaptically expressed LTD rather than the expected postsynaptically expressed LTP. Thus the induction of plasticity in layer 2/3 pyramidal cells does not obey the classical STDP rule for positive timing. This unusual STDP switched to a classical timing rule if the slow Ca(2+)-dependent, K(+)-mediated afterhyperpolarization (sAHP) was inhibited by the selective blocker N-trityl-3-pyridinemethanamine (UCL2077), by the β-adrenergic receptor agonist isoproterenol, or by the cholinergic agonist carbachol. Thus we demonstrate that neuromodulators can affect synaptic plasticity by inhibition of the sAHP. These findings shed light on a fundamental question in the field of memory research regarding how environmental and behavioral stimuli influence LTP, thereby contributing to the modulation of memory.  相似文献   

5.
Activity-dependent long-term synaptic changes were investigated at glutamatergic synapses in the supraoptic nucleus (SON) of the rat hypothalamus. In acute hypothalamic slices, high frequency stimulation (HFS) of afferent fibres caused long-term potentiation (LTP) of the amplitude of AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) recorded with the whole-cell patch-clamp technique. LTP was also obtained in response to membrane depolarization paired with mild afferent stimulation. On the other hand, stimulating the inputs at 5 Hz for 3 min at resting membrane potential caused long-term depression (LTD) of excitatory transmission in the SON. These forms of synaptic plasticity required the activation of NMDA receptors since they were abolished in the presence of d -AP5 or ifenprodil, two selective blockers of these receptors. Analysis of paired-pulse facilitation and trial-to-trial variability indicated that LTP and LTD were not associated with changes in the probability of transmitter release, thereby suggesting that the locus of expression of these phenomena was postsynaptic. Using sharp microelectrode recordings in a hypothalamic explant preparation, we found that HFS also generates LTP at functionally defined glutamatergic synapses formed between the organum vasculosum lamina terminalis and SON neurons. Taken together, our findings indicate that glutamatergic synapses in the SON exhibit activity-dependent long-term synaptic changes similar to those prevailing in other brain areas. Such forms of plasticity could play an important role in the context of physiological responses, like dehydration or lactation, where the activity of presynaptic glutamatergic neurons is strongly increased.  相似文献   

6.
In the dorsal cochlear nucleus, long-term synaptic plasticity can be induced at the parallel fiber inputs that synapse onto both fusiform principal neurons and cartwheel feedforward inhibitory interneurons. Here we report that in mouse fusiform cells, spikes evoked 5 ms after parallel-fiber excitatory postsynaptic potentials (EPSPs) led to long-term potentiation (LTP), whereas spikes evoked 5 ms before EPSPs led to long-term depression (LTD) of the synapse. The EPSP-spike protocol led to LTD in cartwheel cells, but no synaptic changes resulted from the reverse sequence (spike-EPSP). Plasticity in fusiform and cartwheel cells therefore followed Hebbian and anti-Hebbian learning rules, respectively. Similarly, spikes generated by summing EPSPs from different groups of parallel fibers produced LTP in fusiform cells, and LTD in cartwheel cells. LTD could also be induced in glutamatergic inputs of cartwheel cells by pairing parallel-fiber EPSPs with depolarizing glycinergic PSPs from neighboring cartwheel cells. Thus, synaptic learning rules vary with the postsynaptic cell, and may require the interaction of different transmitter systems.  相似文献   

7.
It is generally assumed that long lasting synaptic potentiation (long-term potentiation, LTP) and depression (long-term depression, LTD) result from distinct patterns of afferent activity, with high and low frequency activity favouring LTP and LTD, respectively. However, a novel form of N-methyl-d-aspartate (NMDA) receptor-dependent synaptic potentiation in the hippocampal CA1 area in vivo induced by low frequency afferent stimulation has recently been demonstrated. Here, we further characterize the mechanisms mediating this low frequency stimulation (LFS)-induced LTP in area CA1 of intact, urethane-anesthetized preparations. Consistent with previous reports, alternating, low frequency (1 Hz) stimulation of CA1 afferents originating in the contralateral CA3 area and the medial septum resulted in gradually developing, long lasting (>2 h) LTP of field excitatory postsynaptic potentials (fEPSPs) recorded in CA1. Local application of the protein synthesis inhibitor anisomycin in CA1 blocked LFS-induced LTP, as did application of H89, an inhibitor of protein kinase A. Given the apparent overlap in molecular mechanisms mediating LFS-LTP and “classic” high-frequency stimulation (HFS)-induced LTP in CA1, we examined the relation between these forms of LTP by means of occlusion experiments. LFS, delivered to synapses saturated by initial HFS, resulted in a gradually developing LTD, rather than the normally seen LTP. Conversely, initial induction of LFS-LTP reduced the amount of subsequent HFS-LTP. Together, these experiments reveal a surprising similarity in the molecular mechanisms (dependence on NMDA receptors, protein kinase A, protein synthesis) mediating LTP induced by highly distinct (1 vs. 100 Hz) induction protocols. Importantly, these findings further challenge the “high-frequency-LTP, low-frequency LTD” dogma by demonstrating that this dichotomy does not account for all types of plasticity phenomena at central synapses.  相似文献   

8.
Priming-induced shift in synaptic plasticity in the rat hippocampus   总被引:9,自引:0,他引:9  
The activity history of a given neuron has been suggested to influence its future responses to synaptic input in one prominent model of experience-dependent synaptic plasticity proposed by Bienenstock, Cooper, and Munro (BCM theory). Because plasticity of synaptic plasticity (i.e., metaplasticity) is similar in concept to aspects of the BCM proposal, we have tested the possibility that a form of metaplasticity induced by a priming stimulation protocol might exhibit BCM-like characteristics. CA1 field excitatory postsynaptic potentials (EPSPs) obtained from rat hippocampal slices were used to monitor synaptic responses before and after conditioning stimuli (3-100 Hz) of the Schaffer collateral inputs. A substantial rightward shift (>5-fold) in the frequency threshold between long-term depression (LTD) and long-term potentiation (LTP) was observed <1 h after priming. This change in the LTD/P crossover point occurred at both primed and unprimed synaptic pathways. These results provide new support for the existence of a rapid, heterosynaptic, experience-dependent mechanism that is capable of modifying the synaptic plasticity phenomena that are commonly proposed to be important for developmental and learning/memory processes in the brain.  相似文献   

9.
Long-term plasticity of dendritic integration is induced in parallel with long-term potentiation (LTP) or depression (LTD) based on presynaptic activity patterns. It is, however, not clear whether synaptic plasticity induced by temporal pairing of pre- and postsynaptic activity is also associated with synergistic modification in dendritic integration. We show here that the spike timing-dependent plasticity (STDP) rule accounts for long-term changes in dendritic integration in CA1 pyramidal neurons in vitro . Positively correlated pre- and postsynaptic activity (delay: +5/+50 ms) induced LTP and facilitated dendritic integration. Negatively correlated activity (delay: −5/−50 ms) induced LTD and depressed dendritic integration. These changes were not observed following positive or negative pairing with long delays (> ±50 ms) or when NMDA receptors were blocked. The amplitude–slope relation of the EPSP was facilitated after LTP and depressed after LTD. These effects could be mimicked by voltage-gated channel blockers, suggesting that the induced changes in EPSP waveform involve the regulation of voltage-gated channel activity. Importantly, amplitude–slope changes induced by STDP were found to be input specific, indicating that the underlying changes in excitability are restricted to a limited portion of the dendrites. We conclude that STDP is a common learning rule for long-term plasticity of both synaptic transmission and dendritic integration, thus constituting a form of functional redundancy that insures significant changes in the neuronal output when synaptic plasticity is induced.  相似文献   

10.
Inhibitory control of LTP and LTD: stability of synapse strength   总被引:5,自引:0,他引:5  
Although much is known about the induction of synaptic plasticity, the persistence of memories suggests the importance of understanding factors that maintain synaptic strength and prevent unwanted synaptic changes. Here we present evidence that recurrent inhibitory connections in the CA1 region of hippocampus may contribute to this task by modulating the relative ability to induce long-term potentiation and depression (LTP and LTD). Bath application of the gamma-aminobutyric acid (GABA) type A agonist muscimol to hippocampal slices increased the range of frequencies that produce LTD, whereas in the presence of the GABA type A antagonist picrotoxin LTD was induced only at very low stimulation frequencies (0.25-0.5 Hz). Because one source of GABAergic input to CA1 pyramidal cells is via recurrent inhibition, we tested the prediction that elevated postsynaptic spike activity would increase feedback GABA inhibition and favor the induction of LTD. By using an induction stimulation of 8 Hz, which alone produced no net change in synaptic strength, we found that stimulation presented during antidromic activation of pyramidal cell spikes induced LTD. This effect was blocked by picrotoxin. The influence of recurrent inhibition on LTP and LTD displays properties that may decrease the potential for self-reinforcing, runaway changes in synapse strength. A mechanism of this sort may help maintain patterns of synaptic strengths despite the ongoing opportunities for plasticity produced by synapse activation.  相似文献   

11.
Supragranular long-term potentiation (LTP) and depression (LTD) are continuously induced in the pathway from layer 4 during the critical period in the rodent primary visual cortex, which limits the use of supragranular long-term synaptic plasticity as a synaptic model for the mechanism of ocular dominance (OD) plasticity. The results of the present study demonstrate that the pulse duration of extracellular stimulation to evoke a field potential (FP) is critical to induction of LTP and LTD in this pathway. LTP and LTD were induced in the pathway from layer 4 to layer 2/3 in slices from 3-wk-old rats when FPs were evoked by 0.1- and 0.2-ms pulses. LTP and LTD were induced in slices from 5-wk-old rats when evoked by stimulation with a 0.2-ms pulse but not by stimulation with a 0.1-ms pulse. Both the inhibitory component of FP and the inhibitory/excitatory postsynaptic potential amplitude ratio evoked by stimulation with a 0.1-ms pulse were greater than the values elicited by a 0.2-ms pulse. Stimulation with a 0.1-ms pulse at various intensities that showed the similar inhibitory FP component with the 0.2-ms pulse induced both LTD and LTP in 5-wk-old rats. Thus extracellular stimulation with shorter-duration pulses at higher intensity resulted in greater inhibition than that observed with longer-duration pulses at low intensity. This increased inhibition might be involved in the age-dependent decline of synaptic plasticity during the critical period. These results provide an alternative synaptic model for the mechanism of OD plasticity.  相似文献   

12.
The induction of mossy fiber-CA3 long-term potentiation (LTP) and depression (LTD) has been variously described as being dependent on either pre- or postsynaptic factors. Some of the postsynaptic factors for LTP induction include ephrin-B receptor tyrosine kinases and a rise in postsynaptic Ca2+ ([Ca2+]i). Ca2+ is also believed to be involved in the induction of the various forms of LTD at this synapse. We used photolysis of caged Ca2+ compounds to test whether a postsynaptic rise in [Ca2+]i is sufficient to induce changes in synaptic transmission at mossy fiber synapses onto rat hippocampal CA3 pyramidal neurons. We were able to elevate postsynaptic [Ca2+]i to approximately 1 microm for a few seconds in pyramidal cell somata and dendrites. We estimate that CA3 pyramidal neurons have approximately fivefold greater endogenous Ca2+ buffer capacity than CA1 neurons, limiting the rise in [Ca2+]i achievable by photolysis. This [Ca2+]i rise induced either a potentiation or a depression at mossy fiber synapses in different preparations. Neither the potentiation nor the depression was accompanied by consistent changes in paired-pulse facilitation, suggesting that these forms of plasticity may be distinct from synaptically induced LTP and LTD at this synapse. Our results are consistent with a postsynaptic locus for the induction of at least some forms of synaptic plasticity at mossy fiber synapses.  相似文献   

13.
Cerebellar long-term depression (LTD) is a calcium-dependent process in which coincident activity of parallel fiber (PF) and climbing fiber (CF) synapses causes a long-lasting decrease in PF synaptic strength onto Purkinje cells. Here we show that pairing CF activation with bursts of PF activity triggers large (>10 microM) calcium signals in Purkinje cell dendrites. When PFs are densely activated, signals span whole dendritic branchlets and are mediated by voltage-dependent calcium entry. When PFs are sparsely activated, however, signals are restricted to single spines and blocked by metabotropic glutamate receptor antagonists. Single-spine signals and sparse-stimulation LTD are also blocked by thapsigargin, indicating that calcium must be released from stores. Single-spine signals and sparse-stimulation LTD are greatest when PF activation precedes the CF activation within 50-200 ms. This timing rule matches the properties of several forms of motor learning, providing a link between behavior and functional properties of cerebellar synaptic plasticity.  相似文献   

14.
Altered hippocampal synaptic plasticity may underlie age-related memory impairment. In acute hippocampal slices from aged (22-24 mo) and young adult (1-12 mo) male Brown Norway rats, extracellular excitatory postsynaptic field potentials were recorded in CA1 stratum radiatum evoked by Schaffer collateral stimulation. We used enhanced Ca(2+) to Mg(2+) ratio and paired-pulse stimulation protocol to induce maximum changes in the synaptic plasticity. Six episodes of theta-burst stimulation (TBS) or nine episodes of paired low-frequency stimulation (pLFS) were used to generate asymptotic long-term potentiation (LTP) and long-term depression (LTD), respectively. In addition, long-term depotentiation (LTdeP) or de-depression (LTdeD) from maximal LTP and LTD were examined using two episodes of pLFS or TBS. Multiple episodes of TBS or pLFS produced significant LTP or LTD in aged and young adult rats; this was not different between age groups. Moreover, there was no significant difference in the amount of LTdeP or LTdeD between aged and young adult rats. Our results show no age differences in the asymptotic magnitude of LTP or LTD, rate of synaptic modifications, development rates, reversal, or decay after postconditioning. Thus impairment of the basic synaptic mechanisms responsible for expression of these forms of plasticity is not likely to account for decline in memory function within this age range.  相似文献   

15.
Hippocampal CA1 inhibitory interneurones control the excitability and synchronization of pyramidal cells, and participate in hippocampal synaptic plasticity. Pairing theta-burst stimulation (TBS) with postsynaptic depolarization, we induced long-term potentiation (LTP) of putative single-fibre excitatory postsynaptic currents (EPSCs) in stratum oriens/alveus (O/A) interneurones of mouse hippocampal slices. LTP induction was absent in metabotropic glutamate receptor 1 (mGluR1) knockout mice, was correlated with the postsynaptic presence of mGluR1a, and required a postsynaptic Ca2+ rise. Changes in paired-pulse facilitation and coefficient of variation indicated that LTP expression involved presynaptic mechanisms. LTP was synapse specific, occurring selectively at synapses modulated by presynaptic group II, but not group III, mGluRs. Furthermore, the TBS protocol applied in O/A induced a long-term increase of polysynaptic inhibitory responses in CA1 pyramidal cells, that was absent in mGluR1 knockout mice. These results uncover the mechanisms of a novel form of interneurone synaptic plasticity that can adaptively regulate inhibition of hippocampal pyramidal cells.  相似文献   

16.
Cao J  Chen N  Xu T  Xu L 《Neuroscience research》2004,49(2):229-239
Long-term potentiation (LTP) and long-term depression (LTD) of the excitatory synaptic inputs plasticity in the hippocampus is believed to underlie certain types of learning and memory. Especially, stressful experiences, well known to produce long-lasting strong memories of the event themselves, enable LTD by low frequency stimulation (LFS, 3 Hz) but block LTP induction by high frequency stimulation (HFS, 200 Hz). However, it is unknown whether stress-affected synaptic plasticity has an impact on the output plasticity. Thus, we have simultaneously studied the effects of stress on synaptic plasticity and neuronal output in the hippocampal CA1 region of anesthetized Wistar rats. Our results revealed that stress increased basal power spectrum of the evoked synchronized-spikes and enabled LTD induction by LFS. The induction of stress-facilitated LTD but not LFS induced persistent decreases of the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges; However, HFS induced LTP in non-stressed animals and increased the power spectrum of the synchronized-spikes, without affecting the frequency of the spontaneous unitary discharges, but HFS failed to induce LTP in stressed animals without affecting the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges. These observations that stress-facilitated LTD induces the output plasticity through the synchronized-spikes and spontaneous unitary discharges suggest that these types of stress-related plasticity may play significant roles in distribution, amplification and integration of encoded information to other brain structures under stressful conditions.  相似文献   

17.
Previous in vitro studies demonstrated that long-term potentiation (LTP) could be elicited at medial perforant path (MPP) synapses onto hippocampal granule cells in slices from 7-day-old rats. In contrast, in vivo studies suggested that LTP at perforant path synapses could not be induced until at least days 9 or 10 and then in only a small percentage of animals. Because several characteristics of the oldest granule cells are adult-like on day 7, we re-examined the possibility of eliciting LTP in 7-day-old rats in vivo. We also recorded from 8- and 9-day-old rats to further elucidate the occurrence and magnitude of LTP in neonates. With halothane anesthesia, all animals in each age group exhibited synaptic plasticity of the excitatory postsynaptic potential following high-frequency stimulation of the MPP. In 7-day-old rats, LTP was elicited in 40% of the animals and had an average magnitude of 143%. Long-term depression (LTD) alone (magnitude of 84%) was induced in 40% of the animals, while short-term potentiation (STP) alone (magnitude of 123%) was induced in 10%. STP followed by LTD was elicited in the remaining 10%. Data were similar for all ages combined. In addition, the N-methyl-d-aspartate (NMDA) antagonist (R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) blocked the occurrence of LTP at each age and doubled the percentage of animals expressing LTD alone for all ages combined. These results demonstrate that tetanic stimulation can elicit LTP or LTD at MPP synapses in 7-day-old rats, supporting our premise that at least a portion of the dentate gyrus is functional at this early age.  相似文献   

18.
LTP of GABAergic synapses in the ventral tegmental area and beyond   总被引:1,自引:1,他引:0  
One of the mechanisms by which the experience-dependent reorganization of neural circuitry can occur is through changes in synaptic strength. Almost every excitatory synapse in the mammalian brain exhibits LTP (long-term potentiation) or LTD (long-term depression), two cellular mechanisms of synaptic plasticity. However, LTP and LTD have been reported much more rarely at fast inhibitory GABAA receptor synapses. Our recent study suggests that in vivo morphine initiates a long-lasting alteration of GABAergic synapses in the ventral tegmental area (VTA) by blocking the mechanisms required for LTP of GABAergic synapses. Here we put this work into the context of other examples of synaptic plasticity at GABAergic synapses.  相似文献   

19.
Flupirtine is a centrally acting nonopioid analgesic with muscle-relaxant properties. Flupirtine has been found to activate inwardly rectifying potassium conductances and hence to indirectly inhibit the activation of NMDA receptors. NMDA receptor activation is crucial for the induction of long-term potentiation (LTP) of synaptic transmission, which is considered as cellular correlate of learning and memory and of central sensitization in chronic pain states. Although flupirtine has been widely used for the management of pain, its effects on synaptic plasticity have not yet been investigated. We, therefore, performed extracellular and whole-cell patch-clamp recordings in hippocampal slices of mice to examine the effects of flupirtine on synaptic plasticity and neuronal membrane properties. Excitatory postsynaptic potentials (EPSPs) in the CA1 region were evoked alternately by stimulating two independent Schaffer collateral-commissural inputs. LTP and long-term depression (LTD) were induced by different stimulation paradigms (100 Hz, 10 Hz, 5 Hz, and 1 Hz). Flupirtine (30 μM) diminished the degree of LTP and enhanced LTD. This effect is most likely due to the hyperpolarization of CA1 pyramidal neurons and the reduction of their input resistance found after application of flupirtine. The observed effects on synaptic strength could underly the beneficial effects of flupirtine on different types of chronic pain.  相似文献   

20.
The direction of plasticity at CA3-CA1 hippocampal synapses is determined by the strength of afferent stimulation. Weak stimuli lead to long-term depression (LTD) and strong stimuli to long-term potentiation (LTP), but both require activation of synaptic N-methyl-D-aspartate receptors (NMDARs). These receptors are therefore necessary and required for the induction of plasticity at CA3-CA1 synapses even though they carry little of the current responsible for the basal excitatory post-synaptic potential (EPSP). The influx of Ca(2+) via NMDARs triggers the subsequent and persistent changes in the expression of alpha-amino-3-hydroxy-5 methylisoxazole-4-proprionic acid receptors (AMPARs) and these receptors are responsible for the major part of the basal EPSP. The degree of activity of NMDARs is determined in part by extracellular Mg(2+) and by the co-agonists for this receptor, glycine and D-serine. During strong stimulation, a relief of the voltage-dependent block of NMDARs by Mg(2+) provides a positive feedback for NMDAR Ca(2+) influx into postsynaptic CA1 spines. In this review, we discuss how the induction of LTP at CA3-CA1 synapses requires further signal amplification of NMDAR activity. We discuss how the regulation of NMDARs by protein kinases and phosphatases is brought into play. Evidence is presented that Src family kinases (SFKs) play a "core" role in the induction of LTP by enhancing the function and expression of NMDARs. At CA3-CA1 synapses, NMDARs are largely composed of NR1 (NMDA receptor subunit 1)-NR2A or NR1-NR2B containing subunits. Recent, but controversial, evidence has correlated NR1-NR2A receptors with the induction of LTP and NR1-NR2B receptors with LTD. However, LTP can be induced by activation of either subtype of NMDAR and the ratio of NR2A:NR2B receptors has been proposed as an alternative determinant of the direction of synaptic plasticity. Many transmitters and signal pathways can modify NMDAR function and expression and, for a given stimulus strength, they can potentially lead to a change in the balance between LTP and LTD. As opposed to the "core" mechanisms of LTP and LTD, the resulting alterations in this balance underlie "meta-plasticity." Thus, in addition to their contribution to core mechanisms, we will also discuss how Src-family kinases could preferentially target NR1-NR2A or NR1-NR2B receptors to alter the relative contribution of these receptor subtypes to synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号