首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential regulation and properties of MAPKs   总被引:14,自引:0,他引:14  
Raman M  Chen W  Cobb MH 《Oncogene》2007,26(22):3100-3112
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.  相似文献   

2.
3.
Mitogen-activated protein kinases (MAPKs) are critical components of a complex intracellular signalling network that ultimately regulates gene expression in response to a variety of extracellular stimuli. By transducing the signals from the cell surface to the nucleus and activating there gene expression, MAPKs control cell proliferation, differentiation and cell death. In mammalian cells there are three major pathways of MAPKs: stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK), p38 kinase and extracellular signal-regulated kinase (ERK). Generally, SAPK/JNK and p38 are key mediators of stress and inflammation responses evoked by a variety of physical, chemical and biological stress stimuli, while ERK 1/2 cascade is mostly induced by growth factors. The importance of MAPKs activation in cell response to cis-diamminedichloroplatinum(II) (cisplatin; cDDP) and resistance development to this anti-cancer drug has been gradually appreciated in recent years. Today it is believed that MAPK activation is a major component deciding the cell fate in response to cisplatin. Their role in response to cisplatin is complex as these proteins, in most cases, are able to induce apoptosis, but also suppress it or have no role in this process. The final decision depends on the cell type, as well as proliferation and differentiation status of tumour cells. This review summarises current knowledge concerning the role of MAPK family members in cell response to cDDP, as well as their role in cisplatin-resistance.  相似文献   

4.
Owens DM  Keyse SM 《Oncogene》2007,26(22):3203-3213
  相似文献   

5.
6.
Presence of increased reactive oxygen species (ROS) has been observed in most high risk factors for brain tumor development. Our past study demonstrated that ROS could induce increased brain tumor cell proliferation. Growth effects of ROS may involve modifications of cellular proteins such as mitogen-activated protein kinases (MAPKs), which regulate cell proliferation. Here, we report effects of a ROS (hydrogen peroxide, H2O2) and an antioxidant (N-acetylcysteine, NAC) on MAPK activation in astrocytoma (U373-MG) cells. MAPKs are activated by phosphorylation that can be detected by Western blot analysis. The unphosphorylated/inactivated form of MAPK exhibits slower mobility on SDS-PAGE compared to the phosphorylated/activated form. Densitometric analysis was used to measure MAPK activation. Results indicate that H2O2 caused a dose and time-dependent increase in MAPK activation in astrocytoma cells. Furthermore, ROS-induced activation was almost completely suppressed by NAC. NAC also inhibited serum-induced MAPK activation indicating there may be an oxidant-sensitive component to serum-induced growth signaling. Modifications of MAPKs by H2O2 demonstrate that ROS-induced proliferation is via biochemical pathways similar to other known growth stimuli. Understanding of processes that link a proliferation signal (ROS) to cell proliferation can aid in the selection of therapy used to suppress brain tumor growth.  相似文献   

7.
Yang W  Chen Y  Zhang Y  Wang X  Yang N  Zhu D 《Cancer research》2006,66(3):1320-1326
The cytokines of transforming growth factor beta (TGF-beta) and its superfamily members are potent regulators of tumorigenesis and multiple cellular events. Myostatin is a member of TGF-beta superfamily and plays a negative role in the control of cell proliferation and differentiation. We now show that myostatin rapidly activated the extracellular signal-regulated kinase 1/2 (Erk1/2) cascade in C2C12 myoblasts. A more remarkable Erk1/2 activation stimulated by myostatin was observed in differentiating cells than proliferating cells. The results also showed that Ras was the upstream regulator and participated in myostatin-induced Erk1/2 activation because the expression of a dominant-negative Ras prevented myostatin-mediated inhibition of Erk1/2 activation and proliferation. Importantly, the myostatin-suppressed myotube fusion and differentiation marker gene expression were attenuated by blockade of Erk1/2 mitogen-activated protein kinase (MAPK) pathway through pretreatment with MAPK/Erk kinase 1 (MEK1) inhibitor PD98059, indicating that myostatin-stimulated activation of Erk1/2 negatively regulates myogenic differentiation. Activin receptor type IIb (ActRIIb) was previously suggested as the only type II membrane receptor triggering myostatin signaling. In this study, by using synthesized small interfering RNAs and dominant-negative ActRIIb, we show that myostatin failed to stimulate Erk1/2 phosphorylation and could not inhibit myoblast differentiation in ActRIIb-knockdown C2C12 cells, indicating that ActRIIb was required for myostatin-stimulated differentiation suppression. Altogether, our findings in this report provide the first evidence to reveal functional role of the Erk1/2 MAPK pathway in myostatin action as a negative regulator of muscle cell growth.  相似文献   

8.
9.
The Ras-Raf-MEK-ERK pathway in the treatment of cancer   总被引:15,自引:0,他引:15  
The mitogen activated protein kinases (MAPKs) are conserved proteins that regulate cell growth, division and death. Although activated in the cytosol, the MAPKs translocate to the nucleus upon activation and phosphorylate a large number of nuclear proteins. Investigating how Ras transmits extracellular growth signals, the MAPK pathway has emerged as the crucial route between membrane-bound Ras and the nucleus. The MAPK pathway represents a cascade of phosphorylation events including three pivotal kinases, namely Raf, MEK (MAP kinase kinase), and ERK (MAP kinase). These kinases present new opportunities for the development of novel anti-cancer drugs designed to be target-specific and probably less toxic than conventional chemotherapeutic agents. A number of drugs inhibiting Ras, Raf or MEK are currently under clinical investigation. This review addresses the rationale for targeting the MAP kinase pathway and the current status of various pharmacological approaches.  相似文献   

10.
PURPOSE: An increase in the activity of the mitogen-activated protein kinases (MAPKs) has been correlated with a more malignant phenotype in several tumor models in vitro and in vivo. A key regulatory mechanism of the MAPKs [extracellular signal-regulated kinase (ERK); c-jun NH(2)-terminal kinase (JNK); and p38] is the dual specificity phosphatase CL100, also called MAPK phosphatase-1 (MKP-1). This study was designed to examine the involvement of CL100/MKP-1 and stress-related MAPKs in lung cancer. EXPERIMENTAL DESIGN: We assessed the expression of CL100/MKP-1 and the activation of the MAPKs in a panel of 18 human cell lines [1 primary normal bronchial epithelium, 8 non-small cell lung cancer (NSCLC), 7 small cell lung cancer (SCLC), and 2 carcinoids] and in 108 NSCLC surgical specimens. RESULTS: In the cell lines, CL100/MKP-1 expression was substantially higher in NSCLC than in SCLC. P-ERK, P-JNK, and P-p38 were activated in SCLC and NSCLC, but the degree of their activation was variable. Immunohistochemistry in NSCLC resection specimens showed high levels of CL100/MKP-1 and activation of the three MAPK compared with normal lung. In univariate analysis, no relationship was found among CL100/MKP-1 expression and P-ERK, P-JNK, or P-p38. Interestingly, high CL100/MKP-1 expression levels independently predicted improved survival in multivariate analysis. JNK activation associated with T(1-2) and early stage, whereas ERK activation correlated with late stages and higher T and N. Neither JNK nor ERK activation were independent prognostic factors when studied for patient survival. CONCLUSIONS: Our data indicate the relevance of MAPKs and CL100/MKP-1 in lung cancer and point at CL100/MKP-1 as a potential positive prognostic factor in NSCLC. Finally, our study supports the search of new molecular targets for lung cancer therapy within the MAPK signaling pathway.  相似文献   

11.
Role of MAP kinase in tumor progression and invasion   总被引:23,自引:0,他引:23  
Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is a frequent event in tumorigenesis. MAPKs have been implicated in cell migration, proteinase-induction, regulation of apoptosis, and angiogenesis, events that are essential for successful completion of metastasis. In this review, we discuss the potential role that MAPKs play in metastasis by regulating cell migration, proteinase-induction and apoptosis.  相似文献   

12.
Mitogen-activated protein kinases (MAPKs) are activated through the kinase cascades of MAPK, MAPK kinase (MAPKK) and MAPKK kinase (MAPKKK). MAPKKKs phosphorylate and activate their downstream MAPKKs, which in turn phosphorylate and activate their downstream MAPKs. MAPKKK proteins relay upstream signals through the MAPK cascades to induce cellular responses. However, the molecular mechanisms by which given MAPKKKs are regulated remain largely unknown. Here, we found that serine-threonine protein kinase 38, STK38, physically interacts with the MAPKKKs MEKK1 and MEKK2 (MEKK1/2). The carboxy terminus, including the catalytic domain, but not the amino terminus of MEKK1/2 was necessary for the interaction with STK38. STK38 inhibited MEKK1/2 activation without preventing MEKK1/2 binding to its substrate, SEK1. Importantly, STK38 suppressed the autophosphorylation of MEKK2 without interfering with MEKK2 dimer formation, and converted MEKK2 from its phosphorylated to its nonphosphorylated form. The negative regulation of MEKK1/2 was not due to its phosphorylation by STK38. On the other hand, stk38 short hairpin RNA enhanced sorbitol-induced activation of MEKK2 and phosphorylation of the downstream MAPKKs, MKK3/6. Taken together, our results indicate that STK38 negatively regulates the activation of MEKK1/2 by direct interaction with the catalytic domain of MEKK1/2, suggesting a novel mechanism of MEKK1/2 regulation.  相似文献   

13.
Activation of the epidermal growth factor (EGF) receptor regulates many processes associated with metastasis, including modulation of cell:cell and cell:substrate interactions, production of matrix-degrading proteinases, and cellular migration. We have demonstrated previously that EGF stimulates migration and matrix metalloproteinase (MMP)-9-dependent invasion of ovarian cancer cells. In this study, we compare the roles of EGF-induced phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) activities in regulation of cellular responses associated with ovarian tumor cell metastasis. Inhibition of PI3K and MAPK activity impairs EGF-stimulated cell migration, in vitro invasion, and MMP-9 production. PI3K activity is not required for growth factor disruption of cell:cell junctions, whereas inhibitors of extracellular signal-regulated kinase (ERK)1/ERK2 activation and p38 MAPK activity block EGF-dependent junction dissolution. EGF promotes pro-MMP-9 binding to the cell surface through a mechanism that is independent of extracellular enzyme concentration. Interestingly, inhibition of PI3K activity abolishes EGF-induced cell surface association of pro-MMP-9, whereas inhibitors of MAPKs only partially block the response. These data suggest that EGF receptor activation promotes a PI3K-dependent induction of a cell surface pro-MMP-9 binding component that may facilitate gelatinase-mediated cellular invasion and supports an expanded role for elevated PI3K activity in cellular responses associated with ovarian tumor metastasis. In addition, our findings support the hypothesis that divergent kinase activities regulate distinct cellular events associated with growth factor-induced invasion of ovarian cancer cells.  相似文献   

14.
We investigated the activation of two important signal transduction pathways in human glioblastoma cells and found a constitutive phosphorylation of either Akt or mitogen-activated protein kinase (MAPK) under serum free conditions. In all but one cell line Wortmannin-sensitive activation of Akt could be attributed to the loss of functional PTEN protein. All cell lines with Akt activation exhibited only weak phosphorylation of the MAPK signal pathway, whereas those without constitutive Akt activation demonstrated high levels of phosphorylated MAPK under serum free conditions. Our data might indicate the presence of two functional subtypes of glioblastoma multiforme, since Akt and MAPK are involved in cellular survival and proliferation signalling, respectively.  相似文献   

15.
PURPOSE: Chelerythrine, a widely used broad-range protein kinase C inhibitor, induces apoptosis in many cell types. In this study, the mechanism of chelerythrine-induced apoptosis in osteosarcoma was investigated. EXPERIMENTAL DESIGN: Signaling pathways activated by chelerythrine in osteosarcoma were detected by Western blots. Impacts of RAF/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK MAPK on apoptosis and cell survival were studied using genetic approaches and pharmacologic pathway-specific inhibitors. RESULTS: Osteosarcoma cells underwent apoptosis rapidly after treatment with chelerythrine. Three parallel MAPKs pathways, including the ERKs, c-Jun NH(2) kinases, and p38, were activated by chelerythrine in a dose-dependent and time-dependent fashion. For the ERKs, the activation was evident at the earliest time point tested (2 minutes) and sustained for >4 hours. Introduction of a dominant-negative H-RAS mutant (17N) partially attenuated ERK activation and delayed the onset of apoptosis induced by chelerythrine. The ERK activation and apoptotic effects of chelerythrine were greatly abrogated by the pharmaceutical inhibitors of MEK, but not by those of c-Jun NH(2) kinase or p38. Moreover, osteosarcoma cells were sensitized to chelerythrine by transient transfection with wild-type MEK1 or constitutively active MEK1 and became resistant with dominant-negative MEK1. Other protein kinase C inhibitors, including GF109203X or G?6976, did not cause ERK activation or apoptosis in the same timeframe tested. CONCLUSION: In osteosarcoma, chelerythrine-induced apoptosis is mediated through activation of the RAF/MEK/ERK pathway. These findings suggest that activating the ERK MAPK, as opposed to inhibiting it, may be a therapeutic strategy in osteosarcoma.  相似文献   

16.
17.
The role of MAPK pathways in the action of chemotherapeutic drugs   总被引:10,自引:0,他引:10  
Boldt S  Weidle UH  Kolch W 《Carcinogenesis》2002,23(11):1831-1838
In this study we have investigated the role of mitogen-induced and stress-activated MAP kinase pathways in the cellular response to taxol, etoposide and ceramide in three different human cancer cell lines: HeLa cervical carcinoma, MCF7 breast cancer and A431 squamous carcinoma cells. The mitogen-induced ERK MAPKs were linked to cell proliferation and survival, whereas the stress-activated MAPKs, p38 and JNK, were connected with apoptosis. Our results show that all drugs activated MAPKs, but that the extent and kinetics of activation were different. In order to assay the biological consequences of drug-induced MAPK activation we employed selective MAPK inhibitors and measured both long-term clonogenic survival as well as short-term parameters including apoptosis, mitochondrial metabolic integrity and cell cycle progression. Our results show that drug induced toxicity is not correlated with any singular parameter, but rather a combination of effects on cell cycle and apoptosis. In certain constellations the modulation of MAPK pathways could enhance or decrease drug efficacies. These effects mainly pertained to the regulation of apoptosis and clonogenic survival, but they were highly dependent on the combination of drug and cell line without any clear patterns of correlations emerging. These results suggest that the modulation of MAPK pathways to enhance the efficacy of chemotherapeutic drugs is of limited value unless it is tailored to the specific combination of drug and cancer.  相似文献   

18.
The clinically relevant polyamine analogue N(1),N(11)-diethylnorspermine (DENSPM) inhibits cell growth by down-regulating polyamine biosynthesis, up-regulating polyamine catabolism at the level of spermidine/spermine N(1)-acetyltransferase (SSAT), and depleting intracellular polyamine pools. Among human melanoma cell lines, the analogue causes rapid apoptosis in SK-MEL-28 cells and a sharp G(1) arrest in MALME-3M cells. This study reveals that DENSPM potently activates the mitogen-activated protein kinase (MAPK) pathways in melanoma cells and investigates the role of this response in determining cellular outcomes. Onset of apoptosis was preceded by an intense phosphorylation of the MAPKs, including extracellular signal-regulated kinase 1/2, c-Jun NH(2)-terminal kinase, and p38 in both SK-MEL-28 and MALME-3M cells. A panel of DENSPM analogues differing only in their ability to induce SSAT was used to show that MAPK activation was causally linked to induction of SSAT activity and related oxidative events. The latter was confirmed with the polyamine oxidase inhibitor MDL-75275 and the antioxidant N-acetyl-L-cysteine, which when used in combination with DENSPM, decreased MAPK activation and as previously shown, reduced apoptosis. The MAP/extracellular signal-regulated kinase-1 inhibitor PD 98059 reduced activation of all three kinases but failed to alter apoptosis in DENSPM-treated SK-MEL-28 cells. By contrast, the inhibitor prevented p21(waf1/cip1) induction and enhanced apoptosis in MALME-3M cells as indicated by accelerated caspase-3 activation and positive annexin V staining. The generality of this effect was demonstrated in DENSPM-treated A375 and LOX human melanoma cells. Taken together, the importance of the MAPK pathways in determining the biological response to DENSPM treatment is dependent on the genetic environment of the cell.  相似文献   

19.
Although ionizing radiation (IR) activates multiple cellular factors that vary depending on dose and tissue specificity, the activation of NF-kappaB appears to be a well-conserved response in tumor cells exposed to IR. Recently, it also has been demonstrated that nonsteroidal anti-inflammatory agents inhibit tumor necrosis factor and interleukin-1-induced NF-kappaB activation and act as radiosensitizing agents. These observations reinforce the growing notion that NF-kappaB may be a protective cellular factor responding to the cytotoxicity of IR and other damaging stimuli. As such, we addressed the idea and mechanism that NF-kappaB is a downstream target of the nonsteroidal anti-inflammatory agent indomethacin and is involved in the process of radiosensitization. In this study, we report that indomethacin inhibited IR-induced activation of NF-kappaB and sensitized HeLa cells to IR-induced cytotoxicity at similar concentrations. Pretreatment of HeLa cells with SB 203580, a pyridinyl imidazole compound that specifically inhibits p38 mitogen-activated protein kinase (MAPK), abrogated the ability of indomethacin to inhibit IR-induced activation of NF-kappaB and diminished the indomethacin radiosensitizing effect. In addition, the transient genetic activation of p38(MAPK) inhibited IR induction of NF-kappaB gene expression in the absence of indomethacin. Finally, permanently transfected cell lines genetically unable to activate NF-kappaB, because of expression of a dominant negative I-kappaBalpha gene, demonstrated increased sensitivity to IR-induced cytotoxicity. Taken together, these results suggest that p38 MAPK is a target involved in indomethacin-induced radiosensitization and that NF-kappaB may be one downstream target in this process.  相似文献   

20.
The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in apoptosis induction by phenethyl isothiocyanate (PEITC), a cruciferous vegetable-derived cancer chemopreventive agent, with DU145 and LNCaP human prostate cancer cells as a model. The MAPK family of serine/threonine kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-jun N-terminal kinase1/2/3 (JNK1/2/3), and p38 MAPK play an important role in cell proliferation and apoptosis in response to different stimuli. Exposure of DU145 and LNCaP cells to growth suppressive concentrations of PEITC resulted in activation of ERK1/2 and JNKs, but not p38 MAPK, in both cell lines. In DU145 cells, the apoptosis induction by PEITC was statistically significantly attenuated by pharmacological inhibition of JNKs with SP600125. Adenovirus-mediated overexpression of Flag-tagged JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1), an inhibitor of JNK, also inhibited PEITC-induced apoptosis in DU145 cells. On the other hand, inhibition of ERK1/2 activation with MEK1 inhibitor PD98059 failed to offer protection against PEITC-induced apoptosis in DU145 cells. In LNCaP cells, the PEITC-induced cell death was not affected by either pretreatment with PD98059 or SP600125 or overexpression of JBD of JIP-1. These results indicate that involvement of MAPKs in apoptosis induction by PEITC in human prostate cancer cells is cell line-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号