首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, machine‐learning algorithms have been considered the most promising approach to reach a clinical diagnosis at the individual level. This study aimed to investigate whether the whole‐brain resting‐state functional connectivity (RSFC) metrics combined with machine‐learning algorithms could be used to identify essential tremor (ET) patients from healthy controls (HCs) and further revealed ET‐related brain network pathogenesis to establish the potential diagnostic biomarkers. The RSFC metrics obtained from 127 ET patients and 120 HCs were used as input features, then the Mann–Whitney U test and the least absolute shrinkage and selection operator (LASSO) methods were applied to reduce feature dimensionality. Four machine‐learning algorithms were adopted to identify ET from HCs. The accuracy, sensitivity, specificity and the area under the curve (AUC) were used to evaluate the classification performances. The support vector machine, gradient boosting decision tree, random forest and Gaussian naïve Bayes algorithms could achieve good classification performances with accuracy at 82.8%, 79.4%, 78.9% and 72.4%, respectively. The most discriminative features were primarily located in the cerebello‐thalamo‐motor and non‐motor circuits. Correlation analysis showed that two RSFC features were positively correlated with tremor frequency and four RSFC features were negatively correlated with tremor severity. The present study demonstrated that combining the RSFC matrices with multiple machine‐learning algorithms could not only achieve high classification accuracy for discriminating ET patients from HCs but also help us to reveal the potential brain network pathogenesis in ET.  相似文献   

2.
Neuroimaging studies have demonstrated that migraine is accompanied by spontaneous brain activity alterations in specific regions. However, these findings are inconsistent, thus hindering our understanding of the potential neuropathology. Hence, we performed a quantitative whole‐brain meta‐analysis of relevant resting‐state functional imaging studies to identify brain regions consistently involved in migraine. A systematic search of studies that investigated the differences in spontaneous brain activity patterns between migraineurs and healthy controls up to April 2022 was conducted. We then performed a whole‐brain voxel‐wise meta‐analysis using the anisotropic effect size version of seed‐based d mapping software. Complementary analyses including jackknife sensitivity analysis, heterogeneity test, publication bias test, subgroup analysis, and meta‐regression analysis were conducted as well. In total, 24 studies that reported 31 datasets were finally eligible for our meta‐analysis, including 748 patients and 690 controls. In contrast to healthy controls, migraineurs demonstrated consistent and robust decreased spontaneous brain activity in the angular gyrus, visual cortex, and cerebellum, while increased activity in the caudate, thalamus, pons, and prefrontal cortex. Results were robust and highly replicable in the following jackknife sensitivity analysis and subgroup analysis. Meta‐regression analyses revealed that a higher visual analog scale score in the patient sample was associated with increased spontaneous brain activity in the left thalamus. These findings provided not only a comprehensive overview of spontaneous brain activity patterns impairments, but also useful insights into the pathophysiology of dysfunction in migraine.  相似文献   

3.
Anorexia nervosa (AN) is a complex psychiatric disorder with poorly understood etiology. Numerous voxel‐based morphometry (VBM) and resting‐state functional imaging studies have provided strong evidence of abnormal brain structure and intrinsic and functional activities in AN, but with inconsistent conclusions. Herein, a whole‐brain meta‐analysis was conducted on VBM (660 patients with AN, and 740 controls) and resting‐state functional imaging (425 patients with AN, and 461 controls) studies that measured differences in the gray matter volume (GMV) and intrinsic functional activity between patients with AN and healthy controls (HCs). Overall, patients with AN displayed decreased GMV in the bilateral median cingulate cortex (extending to the bilateral anterior and posterior cingulate cortex), and left middle occipital gyrus (extending to the left inferior parietal lobe). In resting‐state functional imaging studies, patients with AN displayed decreased resting‐state functional activity in the bilateral anterior cingulate cortex and bilateral median cingulate cortex, and increased resting‐state functional activity in the right parahippocampal gyrus. This multimodal meta‐analysis identified reductions of gray matter and functional activity in the anterior and median cingulate in patients with AN, which contributes to further understanding of the pathophysiology of AN.  相似文献   

4.
BackgroundAttention‐deficit/hyperactivity disorder (ADHD) is a highly complex and heterogeneous disorder. Abnormal brain connectivity in ADHD might be influenced by developmental ages which might lead to the lacking of significant spatial convergence across studies. However, the developmental patterns and mechanisms of ADHD brain connectivity remain to be fully uncovered.MethodsIn the present study, we searched PubMed, Scopus, Web of Science, and Embase for seed‐based whole‐brain resting‐state functional connectivity studies of ADHD published through October 12th, 2020. The seeds meeting inclusion criteria were categorized into the cortex group and subcortex group, as previous studies suggested that the cortex and subcortex have different temporal patterns of development. Activation likelihood estimation meta‐analysis was performed to investigate the abnormal connectivity in different age groups (all‐age group, younger: <12 years, older: ≥12 years). Moreover, significant convergence of reported foci was used as seeds for validation with our independent dataset.ResultsAs with previous studies, scarce results were found in the all‐age group. However, we found that the younger group consistently exhibited hyper‐connectivity between different parts of the cortex and left middle frontal gyrus, and hypo‐connectivity between different parts of the cortex and left putamen/pallidus/amygdala. Whereas, the older group (mainly for adults) showed hyper‐connectivity between the cortex and right precuneus/sub‐gyral/cingulate gyrus. Besides, the abnormal cortico‐cortical and cortico‐subcortical functional connectivity in children, and the abnormal cortico‐cortical functional connectivity in adults were verified in our independent dataset.ConclusionOur study emphasizes the importance of developmental age effects on the study of brain networks in ADHD. Further, we proposed that cortico‐cortical and cortico‐subcortical connectivity might play an important role in the pathophysiology of children with ADHD, while abnormal cortico‐cortical connections were more important for adults with ADHD. This work provided a potential new insight to understand the neurodevelopmental mechanisms and possible clinical application of ADHD.  相似文献   

5.
Social cognition skills are typically acquired on the basis of visual information (e.g., the observation of gaze, facial expressions, gestures). In light of this, a critical issue is whether and how the lack of visual experience affects neurocognitive mechanisms underlying social skills. This issue has been largely neglected in the literature on blindness, despite difficulties in social interactions may be particular salient in the life of blind individuals (especially children). Here we provide a meta‐analysis of neuroimaging studies reporting brain activations associated to the representation of self and others'' in early blind individuals and in sighted controls. Our results indicate that early blindness does not critically impact on the development of the “social brain,” with social tasks performed on the basis of auditory or tactile information driving consistent activations in nodes of the action observation network, typically active during actual observation of others in sighted individuals. Interestingly though, activations along this network appeared more left‐lateralized in the blind than in sighted participants. These results may have important implications for the development of specific training programs to improve social skills in blind children and young adults.  相似文献   

6.
Individualized treatment of acute stroke depends on the timely detection of ischemia and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possible to characterize cerebral blood flow from blood‐oxygen‐level‐dependent (BOLD) signals without the administration of exogenous contrast agents. In this study, we applied spatial independent component analysis to resting‐state fMRI data of 37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received follow‐up scans the next day. Our analysis revealed “Hypoperfusion spatially‐Independent Components” (HICs) whose spatial patterns of BOLD signal resembled regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal features of HICs allowed them to be distinguished with high accuracy from other components in a user‐independent manner (area under the curve = 0.93, balanced accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore presents a new, noninvasive method for assessing blood flow in acute stroke that minimizes interpretative subjectivity and is robust to severe patient motion.  相似文献   

7.
Essential tremor (ET) is a neurological disease with both motor and nonmotor manifestations; however, little is known about its underlying brain basis. Furthermore, the overall organization of the brain network in ET remains largely unexplored. We investigated the topological properties of brain functional network, derived from resting‐state functional magnetic resonance imaging (MRI) data, in 23 ET patients versus 23 healthy controls. Graph theory analysis was used to assess the functional network organization. At the global level, the functional network of ET patients was characterized by lower small‐worldness values than healthy controls—less clustered functionality of the brain. At the regional level, compared with the healthy controls, ET patients showed significantly higher values of global efficiency, cost and degree, and a shorter average path length in the left inferior frontal gyrus (pars opercularis), right inferior temporal gyrus (posterior division and temporo‐occipital part), right inferior lateral occipital cortex, left paracingulate, bilateral precuneus bilaterally, left lingual gyrus, right hippocampus, left amygdala, nucleus accumbens bilaterally, and left middle temporal gyrus (posterior part). In addition, ET patients showed significant higher local efficiency and clustering coefficient values in frontal medial cortex bilaterally, subcallosal cortex, posterior cingulate cortex, parahippocampal gyri bilaterally (posterior division), right lingual gyrus, right cerebellar flocculus, right postcentral gyrus, right inferior semilunar lobule of cerebellum and culmen of vermis. Finally, the right intracalcarine cortex and the left orbitofrontal cortex showed a shorter average path length in ET patients, while the left frontal operculum and the right planum polare showed a higher betweenness centrality in ET patients. In conclusion, the efficiency of the overall brain functional network in ET is disrupted. Further, our results support the concept that ET is a disorder that disrupts widespread brain regions, including those outside of the brain regions responsible for tremor.  相似文献   

8.
The amplitude of activation in brain resting state networks (RSNs), measured with resting‐state functional magnetic resonance imaging, is heritable and genetically correlated across RSNs, indicating pleiotropy. Recent univariate genome‐wide association studies (GWASs) explored the genetic underpinnings of individual variation in RSN activity. Yet univariate genomic analyses do not describe the pleiotropic nature of RSNs. In this study, we used a novel multivariate method called genomic structural equation modeling to model latent factors that capture the shared genomic influence on RSNs and to identify single nucleotide polymorphisms (SNPs) and genes driving this pleiotropy. Using summary statistics from GWAS of 21 RSNs reported in UK Biobank (N = 31,688), the genomic latent factor analysis was first conducted in a discovery sample (N = 21,081), and then tested in an independent sample from the same cohort (N = 10,607). In the discovery sample, we show that the genetic organization of RSNs can be best explained by two distinct but correlated genetic factors that divide multimodal association networks and sensory networks. Eleven of the 17 factor loadings were replicated in the independent sample. With the multivariate GWAS, we found and replicated nine independent SNPs associated with the joint architecture of RSNs. Further, by combining the discovery and replication samples, we discovered additional SNP and gene associations with the two factors of RSN amplitude. We conclude that modeling the genetic effects on brain function in a multivariate way is a powerful approach to learn more about the biological mechanisms involved in brain function.  相似文献   

9.
Music is known to induce emotions and activate associated memories, including musical memories. In adults, it is well known that music activates both working memory and limbic networks. We have recently discovered that as early as during the newborn period, familiar music is processed differently from unfamiliar music. The present study evaluates music listening effects at the brain level in newborns, by exploring the impact of familiar or first‐time music listening on the subsequent resting‐state functional connectivity in the brain. Using a connectome‐based framework, we describe resting‐state functional connectivity (RS‐FC) modulation after music listening in three groups of newborn infants, in preterm infants exposed to music during their neonatal‐intensive‐care‐unit (NICU) stay, in control preterm, and full‐term infants. We observed modulation of the RS‐FC between brain regions known to be implicated in music and emotions processing, immediately following music listening in all newborn infants. In the music exposed group, we found increased RS‐FC between brain regions known to be implicated in familiar and emotionally arousing music and multisensory processing, and therefore implying memory retrieval and associative memory. We demonstrate a positive correlation between the occurrence of the prior music exposure and increased RS‐FC in brain regions implicated in multisensory and emotional processing, indicating strong engagement of musical memories; and a negative correlation with the Default Mode Network, indicating disengagement due to the aforementioned cognitive processing. Our results describe the modulatory effect of music listening on brain RS‐FC that can be linked to brain correlates of musical memory engrams in preterm infants.  相似文献   

10.
The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting‐state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh‐field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters—amplitude of low‐frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long‐range connectivity)—in three RS networks, previously shown to play an important role in several psychiatric diseases—the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF‐MRI points to its applicability as a potentially useful tool in the search for disease‐relevant biomarkers.  相似文献   

11.
How the brain''s white‐matter anatomy constrains brain activity is an open question that might give insights into the mechanisms that underlie mental disorders such as schizophrenia. Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder with an extremely high risk for psychosis providing a test case to study developmental aspects of schizophrenia. In this study, we used principles from network control theory to probe the implications of aberrant structural connectivity for the brain''s functional dynamics in 22q11DS. We retrieved brain states from resting‐state functional magnetic resonance images of 78 patients with 22q11DS and 85 healthy controls. Then, we compared them in terms of persistence control energy; that is, the control energy that would be required to persist in each of these states based on individual structural connectivity and a dynamic model. Persistence control energy was altered in a broad pattern of brain states including both energetically more demanding and less demanding brain states in 22q11DS. Further, we found a negative relationship between persistence control energy and resting‐state activation time, which suggests that the brain reduces energy by spending less time in energetically demanding brain states. In patients with 22q11DS, this behavior was less pronounced, suggesting a deficiency in the ability to reduce energy through brain activation. In summary, our results provide initial insights into the functional implications of altered structural connectivity in 22q11DS, which might improve our understanding of the mechanisms underlying the disease.  相似文献   

12.
Trait impulsivity is a multifaceted personality characteristic that contributes to maladaptive life outcomes. Although a growing body of neuroimaging studies have investigated the structural correlates of trait impulsivity, the findings remain highly inconsistent and heterogeneous. Herein, we performed a systematic review to depict an integrated delineation of gray matter (GM) substrates of trait impulsivity and a meta‐analysis to examine concurrence across previous whole‐brain voxel‐based morphometry studies. The systematic review summarized the diverse findings in GM morphometry in the past literature, and the quantitative meta‐analysis revealed impulsivity‐related volumetric GM alterations in prefrontal, temporal, and parietal cortices. In addition, we identified the modulatory effects of age and gender in impulsivity‐GM volume associations. The present study advances understanding of brain GM morphometry features underlying trait impulsivity. The findings may have practical implications in the clinical diagnosis of and intervention for impulsivity‐related disorders.  相似文献   

13.
AimsThis study aimed to use resting‐state functional magnetic resonance imaging (rs‐fMRI) to determine the temporal features of functional connectivity states and changes in connectivity strength in sleep‐related hypermotor epilepsy (SHE).MethodsHigh‐resolution T1 and rs‐fMRI scanning were performed on all the subjects. We used a sliding‐window approach to construct a dynamic functional connectivity (dFC) network. The k‐means clustering method was performed to analyze specific FC states and related temporal properties. Finally, the connectivity strength between the components was analyzed using network‐based statistics (NBS) analysis. The correlations between the abovementioned measures and disease duration were analyzed.ResultsAfter k‐means clustering, the SHE patients mainly exhibited two dFC states. The frequency of state 1 was higher, which was characterized by stronger connections within the networks; state 2 occurred at a relatively low frequency, characterized by stronger connections between networks. SHE patients had greater fractional time and a mean dwell time in state 2 and had a larger number of state transitions. The NBS results showed that SHE patients had increased connectivity strength between networks. None of the properties was correlated with illness duration among patients with SHE.ConclusionThe patterns of dFC patterns may represent an adaptive and protective mode of the brain to deal with epileptic seizures.  相似文献   

14.
As a critical component of cortico‐striato‐thalamo‐cortical loop in addiction, our understanding of the thalamus in impaired cognition of heroin users (HU) has been limited. Due to the complex thalamic connection with cortical and subcortical regions, thalamus was divided into prefrontal (PFC), occipital (OC), premotor, primary motor, sensory, temporal, and posterior parietal association subregions according to white matter tractography. We adopted seven subregions of bilateral thalamus as regions of interest to systematically study the implications of distinct thalamic nuclei in acute abstinent HU. The volume and resting‐state functional connectivity (RSFC) differences of the thalamus were investigated between age‐, gender‐, and alcohol‐matched 37 HU and 33 healthy controls (HCs). Trail making test‐A (TMT‐A) was adopted to assess cognitive function deficits, which were then correlated with neuroimaging findings. Although no significant different volumes were found, HU group showed decreased RSFC between left PFC_thalamus and middle temporal gyrus as well as between left OC_thalamus and inferior frontal gyrus and supplementary motor area relative to HCs. Meanwhile, the higher TMT‐A scores in HU were negatively correlated with PFC_thalamic RSFC with inferior temporal gyrus, fusiform, and precuneus. Craving scores were negatively correlated with OC_thalamic RSFC with accumbens, hippocampus, and insula. Opiate Withdrawal Scale scores were negatively correlated with left PFC/OC_thalamic RSFC with orbitofrontal cortex and medial PFC. We indicated two thalamus subregions separately involvement in cognitive control and craving to reveal the implications of thalamic subnucleus in pathology of acute abstinent HU.  相似文献   

15.
AimsDeep brain stimulation (DBS) in the ventral intermediate nucleus (Vim‐DBS) is the preferred surgical therapy for essential tremor (ET). Tolerance and disease progression are considered to be the two main reasons underlying the loss of long‐term efficacy of Vim‐DBS. This study aimed to explore whether Vim‐DBS shows long‐term loss of efficacy and to evaluate the reasons for this diminished efficacy from different aspects.MethodsIn a repeated‐measures meta‐analysis of 533 patients from 18 studies, Vim‐DBS efficacy was evaluated at ≤6 months, 7–12 months, 1–3 years, and ≥4 years. The primary outcomes were the score changes in different components of the Fahn‐Tolosa‐Marin Tremor Rating Scale (TRS; total score, motor score, hand‐function score, and activities of daily living [ADL] score). Secondary outcomes were the long‐term predictive factors.ResultsThe TRS total, motor, and ADL scores showed significant deterioration with disease progression (p = 0.002, p = 0.047, and p < 0.001, respectively), while the TRS total (p < 0.001), hand‐function (p = 0.036), and ADL (p = 0.004) scores indicated a significant long‐term reduction in DBS efficacy, although the motor subscore indicated no loss of efficacy. Hand‐function (p < 0.001) and ADL (p = 0.028) scores indicated DBS tolerance, while the TRS total and motor scores did not. Stimulation frequency and preoperative score were predictive factors for long‐term results.ConclusionThis study provides level 3a evidence that long‐term Vim‐DBS is effective in controlling motor symptoms without waning benefits. The efficacy reduction for hand function was caused by DBS tolerance, while that for ADL was caused by DBS tolerance and disease progression. More attention should be given to actual functional recovery rather than changes in motor scores in patients with ET.  相似文献   

16.
This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia (FRDA) affects the sub‐second dynamics of resting‐state brain networks, (ii) the main determinants of their dynamic alterations, and (iii) how these alterations are linked with FRDA‐related changes in resting‐state functional brain connectivity (rsFC) over long timescales. For that purpose, 5 min of resting‐state MEG activity were recorded in 16 FRDA patients (mean age: 27 years, range: 12–51 years; 10 females) and matched healthy subjects. Transient brain network dynamics was assessed using hidden Markov modeling (HMM). Post hoc median‐split, nonparametric permutations and Spearman rank correlations were used for statistics. In FRDA patients, a positive correlation was found between the age of symptoms onset (ASO) and the temporal dynamics of two HMM states involving the posterior default mode network (DMN) and the temporo‐parietal junctions (TPJ). FRDA patients with an ASO <11 years presented altered temporal dynamics of those two HMM states compared with FRDA patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the DMN state also correlated with minute‐long DMN rsFC. This study demonstrates that ASO is the main determinant of alterations in the sub‐second dynamics of posterior associative neocortices in FRDA patients and substantiates a direct link between sub‐second network activity and functional brain integration over long timescales.  相似文献   

17.
Prediction of cognitive ability latent factors such as general intelligence from neuroimaging has elucidated questions pertaining to their neural origins. However, predicting general intelligence from functional connectivity limit hypotheses to that specific domain, being agnostic to time‐distributed features and dynamics. We used an ensemble of recurrent neural networks to circumvent this limitation, bypassing feature extraction, to predict general intelligence from resting‐state functional magnetic resonance imaging regional signals of a large sample (n = 873) of Human Connectome Project adult subjects. Ablating common resting‐state networks (RSNs) and measuring degradation in performance, we show that model reliance can be mostly explained by network size. Using our approach based on the temporal variance of saliencies, that is, gradients of outputs with regards to inputs, we identify a candidate set of networks that more reliably affect performance in the prediction of general intelligence than similarly sized RSNs. Our approach allows us to further test the effect of local alterations on data and the expected changes in derived metrics such as functional connectivity and instantaneous innovations.  相似文献   

18.
Neuroticism is major higher‐order personality trait and has been robustly associated with mental and physical health outcomes. Although a growing body of studies have identified neurostructural markers of neuroticism, the results remained highly inconsistent. To characterize robust associations between neuroticism and variations in gray matter (GM) structures, the present meta‐analysis investigated the concurrence across voxel‐based morphometry (VBM) studies using the anisotropic effect size signed differential mapping (AES‐SDM). A total of 13 studies comprising 2,278 healthy subjects (1,275 females, 29.20 ± 14.17 years old) were included. Our analysis revealed that neuroticism was consistently associated with the GM structure of a cluster spanning the bilateral dorsal anterior cingulate cortex and extending to the adjacent medial prefrontal cortex (dACC/mPFC). Meta‐regression analyses indicated that the neuroticism‐GM associations were not confounded by age and gender. Overall, our study is the first whole‐brain meta‐analysis exploring the brain structural correlates of neuroticism, and the findings may have implications for the intervention of high‐neuroticism individuals, who are at risk of mental disorders, by targeting the dACC/mPFC.  相似文献   

19.
Resting‐state functional connectivity in the human brain is heritable, and previous studies have investigated the genetic basis underlying functional connectivity. However, at present, the molecular mechanisms associated with functional network centrality are still largely unknown. In this study, functional networks were constructed, and the graph‐theory method was employed to calculate network centrality in 100 healthy young adults from the Human Connectome Project. Specifically, functional connectivity strength (FCS), also known as the “degree centrality” of weighted networks, is calculated to measure functional network centrality. A multivariate technique of partial least squares regression (PLSR) was then conducted to identify genes whose spatial expression profiles best predicted the FCS distribution. We found that FCS spatial distribution was significantly positively correlated with the expression of genes defined by the first PLSR component. The FCS‐related genes we identified were significantly enriched for ion channels, axon guidance, and synaptic transmission. Moreover, FCS‐related genes were preferentially expressed in cortical neurons and young adulthood and were enriched in numerous neurodegenerative and neuropsychiatric disorders. Furthermore, a series of validation and robustness analyses demonstrated the reliability of the results. Overall, our results suggest that the spatial distribution of FCS is modulated by the expression of a set of genes associated with ion channels, axon guidance, and synaptic transmission.  相似文献   

20.
Prior studies suggest that methylphenidate, the primary pharmacological treatment for attention‐deficit/hyperactivity disorder (ADHD), alters functional brain connectivity. As the neurotransmitter systems targeted by methylphenidate undergo significant alterations throughout development, the effects of methylphenidate on functional connectivity may also be modulated by age. Therefore, we assessed the effects of a single methylphenidate challenge on brain network connectivity in stimulant‐treatment naïve children and adults with ADHD. We obtained resting‐state functional MRI from 50 boys (10–12 years of age) and 49 men (23–40 years of age) with ADHD (DSM IV, all subtypes), before and after an oral challenge with 0.5 mg/kg methylphenidate; and from 11 boys and 12 men as typically developing controls. Connectivity strength (CS), eigenvector centrality (EC), and betweenness centrality (BC) were calculated for the striatum, thalamus, dorsal anterior cingulate cortex (dACC), and prefrontal cortex (PFC). In line with our hypotheses, we found that methylphenidate decreased measures of connectivity and centrality in the striatum and thalamus in children with ADHD, but increased the same metrics in adults with ADHD. Surprisingly, we found no major effects of methylphenidate in the dACC and PFC in either children or adults. Interestingly, pre‐methylphenidate, participants with ADHD showed aberrant connectivity and centrality compared to controls predominantly in frontal regions. Our findings demonstrate that methylphenidate''s effects on connectivity of subcortical regions are age‐dependent in stimulant‐treatment naïve participants with ADHD, likely due to ongoing maturation of dopamine and noradrenaline systems. These findings highlight the importance for future studies to take a developmental perspective when studying the effects of methylphenidate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号