首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Catatonia is a transnosologic psychomotor syndrome with high prevalence in schizophrenia spectrum disorders (SSD). There is mounting neuroimaging evidence that catatonia is associated with aberrant frontoparietal, thalamic and cerebellar regions. Large‐scale brain network dynamics in catatonia have not been investigated so far. In this study, resting‐state fMRI data from 58 right‐handed SSD patients were considered. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate and test the underlying intrinsic components (ICs) in SSD patients with (NCRS total score ≥ 3; n = 30) and without (NCRS total score = 0; n = 28) catatonia. Functional network connectivity (FNC) during rest was calculated between pairs of ICs and transient changes in connectivity were estimated using sliding windowing and clustering (to capture both static and dynamic FNC). Catatonic patients showed increased static FNC in cerebellar networks along with decreased low frequency oscillations in basal ganglia (BG) networks. Catatonic patients had reduced state changes and dwelled more in a state characterized by high within‐network correlation of the sensorimotor, visual, and default‐mode network with respect to noncatatonic patients. Finally, in catatonic patients according to DSM‐IV‐TR (n = 44), there was a significant correlation between increased within FNC in cortico‐striatal state and NCRS motor scores. The data support a neuromechanistic model of catatonia that emphasizes a key role of disrupted sensorimotor network control during distinct functional states.  相似文献   

2.
A large proportion of patients with obsessive–compulsive disorder (OCD) respond unsatisfactorily to pharmacological and psychological treatments. An alternative novel treatment for these patients is repetitive transcranial magnetic stimulation (rTMS). This study aimed to investigate the underlying neural mechanism of rTMS treatment in OCD patients. A total of 37 patients with OCD were randomized to receive real or sham 1‐Hz rTMS (14 days, 30 min/day) over the right pre‐supplementary motor area (preSMA). Resting‐state functional magnetic resonance imaging data were collected before and after rTMS treatment. The individualized target was defined by a personalized functional connectivity map of the subthalamic nucleus. After treatment, patients in the real group showed a better improvement in the Yale–Brown Obsessive Compulsive Scale than the sham group (F 1,35 = 6.0, p = .019). To show the neural mechanism involved, we identified an “ideal target connectivity” before treatment. Leave‐one‐out cross‐validation indicated that this connectivity pattern can significantly predict patients'' symptom improvements (r = .60, p = .009). After real treatment, the average connectivity strength of the target network significantly decreased in the real but not in the sham group. This network‐level change was cross‐validated in three independent datasets. Altogether, these findings suggest that personalized magnetic stimulation on preSMA may alleviate obsessive–compulsive symptoms by decreasing the connectivity strength of the target network.  相似文献   

3.
Susceptibility to motion sickness varies greatly across individuals. However, the neural mechanisms underlying this susceptibility remain largely unclear. To address this gap, the current study aimed to identify the neural correlates of motion sickness susceptibility using multimodal MRI. First, we compared resting‐state functional connectivity between healthy individuals who were highly susceptible to motion sickness (N = 36) and age/sex‐matched controls who showed low susceptibility (N = 36). Seed‐based analysis revealed between‐group differences in functional connectivity of core vestibular regions in the left posterior Sylvian fissure. A data‐driven approach using intrinsic connectivity contrast found greater network centrality of the left intraparietal sulcus in high‐ rather than in low‐susceptible individuals. Moreover, exploratory structural connectivity analysis uncovered an association between motion sickness susceptibility and white matter integrity in the left inferior fronto‐occipital fasciculus. Taken together, our data indicate left parietal involvement in motion sickness susceptibility.  相似文献   

4.
Identifying a whole‐brain connectome‐based predictive model in drug‐naïve patients with Parkinson''s disease and verifying its predictions on drug‐managed patients would be useful in determining the intrinsic functional underpinnings of motor impairment and establishing general brain–behavior associations. In this study, we constructed a predictive model from the resting‐state functional data of 47 drug‐naïve patients by using a connectome‐based approach. This model was subsequently validated in 115 drug‐managed patients. The severity of motor impairment was assessed by calculating Unified Parkinson''s Disease Rating Scale Part III scores. The predictive performance of model was evaluated using the correlation coefficient (r true) between predicted and observed scores. As a result, a connectome‐based model for predicting individual motor impairment in drug‐naïve patients was identified with significant performance (r true = .845, p < .001, p permu = .002). Two patterns of connection were identified according to correlations between connection strength and the severity of motor impairment. The negative motor‐impairment‐related network contained more within‐network connections in the motor, visual‐related, and default mode networks, whereas the positive motor‐impairment‐related network was constructed mostly with between‐network connections coupling the motor‐visual, motor‐limbic, and motor‐basal ganglia networks. Finally, this predictive model constructed around drug‐naïve patients was confirmed with significant predictive efficacy on drug‐managed patients (r = .209, p = .025), suggesting a generalizability in Parkinson''s disease patients under long‐term drug influence. In conclusion, this study identified a whole‐brain connectome‐based model that could predict the severity of motor impairment in Parkinson''s patients and furthers our understanding of the functional underpinnings of the disease.  相似文献   

5.
Perceptions of spiteful behavior are common, distinct from rational fear, and may undergird persecutory ideation. To test this hypothesis and investigate neural mechanisms of persecutory ideation, we employed a novel economic social decision‐making task, the Minnesota Trust Game (MTG), during neuroimaging in patients with schizophrenia (n = 30) and community monozygotic (MZ) twins (n = 38; 19 pairs). We examined distinct forms of mistrust, task‐related brain activation and connectivity, and investigated relationships with persecutory ideation. We tested whether co‐twin discordance on these measurements was correlated to reflect a common source of underlying variance. Across samples persecutory ideation was associated with reduced trust only during the suspiciousness condition, which assessed spite sensitivity given partners had no monetary incentive to betray. Task‐based activation contrasts for specific forms of mistrust were limited and unrelated to persecutory ideation. However, task‐based connectivity contrasts revealed a dorsal cingulate anterior insula network sensitive to suspicious mistrust, a left frontal–parietal (lF‐P) network sensitive to rational mistrust, and a ventral medial/orbital prefrontal (vmPFC/OFC) network that was sensitive to the difference between these forms of mistrust (all p < .005). Higher persecutory ideation was predicted only by reduced connectivity between the vmPFC/OFC and lF‐P networks (p = .005), which was only observed when the intentions of the other player were relevant. Moreover, co‐twin differences in persecutory ideation predicted co‐twin differences in both spite sensitivity and in vmPFC/OFC–lF‐P connectivity. This work found that interconnectivity may be particularly important to the complex neurobiology underlying persecutory ideation, and that unique environmental variance causally linked persecutory ideation, decision‐making, and brain connectivity.  相似文献   

6.
Early‐onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early‐onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early‐onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early‐onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed‐effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen''s d = −0.39) and hippocampal (d = −0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early‐onset schizophrenia (d = −0.34) and affective psychosis (d = −0.42), and early‐onset schizophrenia showed lower hippocampal (d = −0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = −0.42). The findings demonstrate a similar pattern of brain alterations in early‐onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early‐onset psychosis.  相似文献   

7.
Neurodegeneration of the substantia nigra affects putamen activity in Parkinson''s disease (PD), yet in vivo evidence of how the substantia nigra modulates putamen glucose metabolism in humans is missing. We aimed to investigate how substantia nigra modulates the putamen glucose metabolism using a cross‐sectional design. Resting‐state fMRI, susceptibility‐weighted imaging, and [18F]‐fluorodeoxyglucose‐PET (FDG‐PET) data were acquired. Forty‐two PD patients and 25 healthy controls (HCs) were recruited for simultaneous PET/MRI scanning. The main measurements of the current study were R2* images representing iron deposition (28 PD and 25 HCs), standardized uptake value ratio (SUVr) images representing FDG‐uptake (33 PD and 25 HCs), and resting state functional connectivity maps from resting state fMRI (34 PD and 25 HCs). An interaction term based on the general linear model was used to investigate the joint modulation effect of nigral iron deposition and nigral‐putamen functional connectivity on putamen FDG‐uptake. Compared with HCs, we found increased iron deposition in the substantia nigra (p = .007), increased FDG‐uptake in the putamen (left: P FWE < 0.001; right: P FWE < 0.001), and decreased functional connectivity between the substantia nigra and the anterior putamen (left P FWE < 0.001, right: P FWE = 0.007). We then identified significant interaction effect of nigral iron deposition and nigral‐putamen connectivity on FDG‐uptake in the putamen (p = .004). The current study demonstrated joint modulation effect of the substantia nigra iron deposition and nigral‐putamen functional connectivity on putamen glucose metabolic distribution, thereby revealing in vivo pathological mechanism of nigrostriatal neurodegeneration of PD.  相似文献   

8.
Sleep deprivation (SD) is very common in modern society and regarded as a potential causal mechanism of several clinical disorders. Previous neuroimaging studies have explored the neural mechanisms of SD using magnetic resonance imaging (MRI) from static (comparing two MRI sessions [one after SD and one after resting wakefulness]) and dynamic (using repeated MRI during one night of SD) perspectives. Recent SD researches have focused on the dynamic functional brain organization during the resting‐state scan. Our present study adopted a novel metric (temporal variability), which has been successfully applied to many clinical diseases, to examine the dynamic functional connectivity after SD in 55 normal young subjects. We found that sleep‐deprived subjects showed increased regional‐level temporal variability in large‐scale brain regions, and decreased regional‐level temporal variability in several thalamus subregions. After SD, participants exhibited enhanced intra‐network temporal variability in the default mode network (DMN) and increased inter‐network temporal variability in numerous subnetwork pairs. Furthermore, we found that the inter‐network temporal variability between visual network and DMN was negative related with the slowest 10% respond speed (β = −.42, p = 5.57 × 10−4) of the psychomotor vigilance test after SD following the stepwise regression analysis. In conclusion, our findings suggested that sleep‐deprived subjects showed abnormal dynamic brain functional configuration, which provides new insights into the neural underpinnings of SD and contributes to our understanding of the pathophysiology of clinical disorders.  相似文献   

9.
Prediction of cognitive ability latent factors such as general intelligence from neuroimaging has elucidated questions pertaining to their neural origins. However, predicting general intelligence from functional connectivity limit hypotheses to that specific domain, being agnostic to time‐distributed features and dynamics. We used an ensemble of recurrent neural networks to circumvent this limitation, bypassing feature extraction, to predict general intelligence from resting‐state functional magnetic resonance imaging regional signals of a large sample (n = 873) of Human Connectome Project adult subjects. Ablating common resting‐state networks (RSNs) and measuring degradation in performance, we show that model reliance can be mostly explained by network size. Using our approach based on the temporal variance of saliencies, that is, gradients of outputs with regards to inputs, we identify a candidate set of networks that more reliably affect performance in the prediction of general intelligence than similarly sized RSNs. Our approach allows us to further test the effect of local alterations on data and the expected changes in derived metrics such as functional connectivity and instantaneous innovations.  相似文献   

10.
Obesity imposes serious health risks and involves alterations in resting‐state functional connectivity of brain networks involved in eating behavior. Bariatric surgery is an effective treatment, but its effects on functional connectivity are still under debate. In this pre‐registered study, we aimed to determine the effects of bariatric surgery on major resting‐state brain networks (reward and default mode network) in a longitudinal controlled design. Thirty‐three bariatric surgery patients and 15 obese waiting‐list control patients underwent magnetic resonance imaging at baseline, after 6 and 12 months. We conducted a pre‐registered whole‐brain time‐by‐group interaction analysis, and a time‐by‐group interaction analysis on within‐network connectivity. In exploratory analyses, we investigated the effects of weight loss and head motion. Bariatric surgery compared to waiting did not significantly affect functional connectivity of the reward network and the default mode network (FWE‐corrected p > .05), neither whole‐brain nor within‐network. In exploratory analyses, surgery‐related BMI decrease (FWE‐corrected p = .041) and higher average head motion (FWE‐corrected p = .021) resulted in significantly stronger connectivity of the reward network with medial posterior frontal regions. This pre‐registered well‐controlled study did not support a strong effect of bariatric surgery, compared to waiting, on major resting‐state brain networks after 6 months. Exploratory analyses indicated that head motion might have confounded the effects. Data pooling and more rigorous control of within‐scanner head motion during data acquisition are needed to substantiate effects of bariatric surgery on brain organization.  相似文献   

11.
Behavior‐associated structural connectivity (SC) and resting‐state functional connectivity (rsFC) networks undergo various changes in aging. To study these changes, we proposed a continuous dimension where at one end networks generalize well across age groups in terms of behavioral predictions (age‐general) and at the other end, they predict behaviors well in a specific age group but fare poorly in another age group (age‐specific). We examined how age generalizability/specificity of multimodal behavioral associated brain networks varies across behavioral domains and imaging modalities. Prediction models consisting of SC and/or rsFC networks were trained to predict a diverse range of 75 behavioral outcomes in a young adult sample (N = 92). These models were then used to predict behavioral outcomes in unseen young (N = 60) and old (N = 60) subjects. As expected, behavioral prediction models derived from the young age group, produced more accurate predictions in the unseen young than old subjects. These behavioral predictions also differed significantly across behavioral domains, but not imaging modalities. Networks associated with cognitive functions, except for a few mostly relating to semantic knowledge, fell toward the age‐specific end of the spectrum (i.e., poor young‐to‐old generalizability). These findings suggest behavior‐associated brain networks are malleable to different degrees in aging; such malleability is partly determined by the nature of the behavior.  相似文献   

12.
To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2 infected subjects with persisting olfactory impairment (hyposmia). Twenty‐seven previously SARS‐CoV‐2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID‐19 related hyposmia, and eighteen healthy, never SARS‐CoV‐2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting‐state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph‐theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus‐free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS‐CoV‐2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection when the olfactory loss was a residual COVID‐19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter‐individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia.  相似文献   

13.
Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)‐based resting‐state functional connectivity (rsFC) or task‐related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post‐stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state‐independent mechanisms of network reorganization rather than state‐specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post‐stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI‐based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state‐independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task‐specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.  相似文献   

14.
This study compared acoustic and neural changes accompanying two treatments matched for intensive dosage but having two different treatment targets (voice or articulation) to dissociate the effects of treatment target and intensive dosage in speech therapies. Nineteen participants with Parkinsonian dysphonia (11 F) were randomized to three groups: intensive treatment targeting voice (voice group, n = 6), targeting articulation (articulation group, n = 7), or an untreated group (no treatment, n = 6). The severity of dysphonia was assessed by the smoothed cepstral peak prominence (CPPS) and neuronal changes were evaluated by cerebral blood flow (CBF) recorded at baseline, posttreatment, and 7‐month follow‐up. Only the voice treatment resulted in significant posttreatment improvement in CPPS, which was maintained at 7 months. Following voice treatment, increased activity in left premotor and bilateral auditory cortices was observed at posttreatment, and in the left motor and auditory cortices at 7‐month follow‐up. Articulation treatment resulted in increased activity in bilateral premotor and left insular cortices that were sustained at a 7‐month follow‐up. Activation in the auditory cortices and a significant correlation between the CPPS and CBF in motor and auditory cortices was observed only in the voice group. The intensive dosage resulted in long‐lasting behavioral and neural effects as the no‐treatment group showed a progressive decrease in activity in areas of the speech motor network out to a 7‐month follow‐up. These results indicate that dysphonia and the speech motor network can be differentially modified by treatment targets, while intensive dosage contributes to long‐lasting effects of speech treatments.  相似文献   

15.
Magnetic resonance spectroscopy (MRS) measures cerebral metabolite concentrations, which can inform our understanding of the neurobiological processes associated with stroke recovery. Here, we investigated whether metabolite concentrations in primary motor and somatosensory cortices (sensorimotor cortex) are impacted by stroke and relate to upper‐extremity motor impairment in 45 individuals with chronic stroke. Cerebral metabolite estimates were adjusted for cerebrospinal fluid and brain tissue composition in the MRS voxel. Upper‐extremity motor impairment was indexed with the Fugl‐Meyer (FM) scale. N‐acetylaspartate (NAA) concentration was reduced bilaterally in stroke participants with right hemisphere lesions (n = 23), relative to right‐handed healthy older adults (n = 15; p = .006). Within the entire stroke sample (n = 45) NAA and glutamate/glutamine (GLX) were lower in the ipsilesional sensorimotor cortex, relative to the contralesional cortex (NAA: p < .001; GLX: p = .003). Lower ipsilesional NAA was related to greater extent of corticospinal tract (CST) injury, quantified by a weighted CST lesion load (p = .006). Cortical NAA and GLX concentrations did not relate to the severity of chronic upper‐extremity impairment (p > .05), including after a sensitivity analysis imputing missing metabolite data for individuals with large cortical lesions (n = 5). Our results suggest that NAA, a marker of neuronal integrity, is sensitive to stroke‐related cortical damage and may provide mechanistic insights into cellular processes of cortical adaptation to stroke. However, cortical MRS metabolites may have limited clinical utility as prospective biomarkers of upper‐extremity outcomes in chronic stroke.  相似文献   

16.
The aim of the current study was to explore the whole‐brain dynamic functional connectivity patterns in acute ischemic stroke (AIS) patients and their relation to short and long‐term stroke severity. We investigated resting‐state functional MRI‐based dynamic functional connectivity of 41 AIS patients two to five days after symptom onset. Re‐occurring dynamic connectivity configurations were obtained using a sliding window approach and k‐means clustering. We evaluated differences in dynamic patterns between three NIHSS‐stroke severity defined groups (mildly, moderately, and severely affected patients). Furthermore, we built Bayesian hierarchical models to evaluate the predictive capacity of dynamic connectivity and examine the interrelation with clinical measures, such as white matter hyperintensity lesions. Finally, we established correlation analyses between dynamic connectivity and AIS severity as well as 90‐day neurological recovery (ΔNIHSS). We identified three distinct dynamic connectivity configurations acutely post‐stroke. More severely affected patients spent significantly more time in a configuration that was characterized by particularly strong connectivity and isolated processing of functional brain domains (three‐level ANOVA: p < .05, post hoc t tests: p < .05, FDR‐corrected). Configuration‐specific time estimates possessed predictive capacity of stroke severity in addition to the one of clinical measures. Recovery, as indexed by the realized change of the NIHSS over time, was significantly linked to the dynamic connectivity between bilateral intraparietal lobule and left angular gyrus (Pearson''s r = −.68, p = .003, FDR‐corrected). Our findings demonstrate transiently increased isolated information processing in multiple functional domains in case of severe AIS. Dynamic connectivity involving default mode network components significantly correlated with recovery in the first 3 months poststroke.  相似文献   

17.
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease‐pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra‐strong‐gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion‐weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region‐specific alterations across callosal segments with well‐characterized early‐ and late‐myelinating axon populations, while brain‐wise differences were explored with tract‐based cluster analysis (TBCA). Behavioral measures were included to explore disease‐associated brain‐function relationships. We detected lower MTR in patients'' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients'' mutation‐size and MTR were positively correlated (all p‐values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico‐spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra‐strong gradient MRI study in HD provides novel evidence of mutation‐driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.  相似文献   

18.
Depression associated with structural brain abnormalities is hypothesized to be related with accelerated brain aging. However, there is far from a unified conclusion because of clinical variations such as medication status, cumulative illness burden. To explore whether brain age is accelerated in never‐treated first‐episode patients with depression and its association with clinical characteristics, we constructed a prediction model where gray matter volumes measured by voxel‐based morphometry derived from T1‐weighted MRI scans were treated as features. The prediction model was first validated using healthy controls (HCs) in two Chinese Han datasets (Dataset 1, N = 130 for HCs and N = 195 for patients with depression; Dataset 2, N = 270 for HCs) separately or jointly, then the trained prediction model using HCs (N = 400) was applied to never‐treated first‐episode patients with depression (N = 195). The brain‐predicted age difference (brain‐PAD) scores defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with age‐, gender‐, educational level‐matched HCs in Dataset 1. Overall, patients presented higher brain‐PAD scores suggesting patients with depression having an “older” brain than expected. More specially, this difference occurred at illness onset (illness duration <3 months) and following 2 years then disappeared as the illness further advanced (>2 years) in patients. This phenomenon was verified by another data‐driven method and significant correlation between brain‐PAD scores and illness duration in patients. Our results reveal that accelerated brain aging occurs at illness onset and suggest it is a stage‐dependent phenomenon in depression.  相似文献   

19.
This study investigated whether current state‐of‐the‐art deep reasoning network analysis on psychometry‐driven diffusion tractography connectome can accurately predict expressive and receptive language scores in a cohort of young children with persistent language concerns (n = 31, age: 4.25 ± 2.38 years). A dilated convolutional neural network combined with a relational network (dilated CNN + RN) was trained to reason the nonlinear relationship between “dilated CNN features of language network” and “clinically acquired language score”. Three‐fold cross‐validation was then used to compare the Pearson correlation and mean absolute error (MAE) between dilated CNN + RN‐predicted and actual language scores. The dilated CNN + RN outperformed other methods providing the most significant correlation between predicted and actual scores (i.e., Pearson''s R/p‐value: 1.00/<.001 and .99/<.001 for expressive and receptive language scores, respectively) and yielding MAE: 0.28 and 0.28 for the same scores. The strength of the relationship suggests elevated probability in the prediction of both expressive and receptive language scores (i.e., 1.00 and 1.00, respectively). Specifically, sparse connectivity not only within the right precentral gyrus but also involving the right caudate had the strongest relationship between deficit in both the expressive and receptive language domains. Subsequent subgroup analyses inferred that the effectiveness of the dilated CNN + RN‐based prediction of language score(s) was independent of time interval (between MRI and language assessment) and age of MRI, suggesting that the dilated CNN + RN using psychometry‐driven diffusion tractography connectome may be useful for prediction of the presence of language disorder, and possibly provide a better understanding of the neurological mechanisms of language deficits in young children.  相似文献   

20.
Neuromodulation treatment effect size for bothersome tinnitus may be larger and more predictable by adopting a target selection approach guided by personalized striatal networks or functional connectivity maps. Several corticostriatal mechanisms are likely to play a role in tinnitus, including the dorsal/ventral striatum and the putamen. We examined whether significant tinnitus treatment response by deep brain stimulation (DBS) of the caudate nucleus may be related to striatal network increased functional connectivity with tinnitus networks that involve the auditory cortex or ventral cerebellum. The first study was a cross‐sectional 2‐by‐2 factorial design (tinnitus, no tinnitus; hearing loss, normal hearing, n = 68) to define cohort level abnormal functional connectivity maps using high‐field 7.0 T resting‐state fMRI. The second study was a pilot case–control series (n = 2) to examine whether tinnitus modulation response to caudate tail subdivision stimulation would be contingent on individual level striatal connectivity map relationships with tinnitus networks. Resting‐state fMRI identified five caudate subdivisions with abnormal cohort level functional connectivity maps. Of those, two connectivity maps exhibited increased connectivity with tinnitus networks—dorsal caudate head with Heschl''s gyrus and caudate tail with the ventral cerebellum. DBS of the caudate tail in the case‐series responder resulted in dramatic reductions in tinnitus severity and loudness, in contrast to the nonresponder who showed no tinnitus modulation. The individual level connectivity map of the responder was in alignment with the cohort expectation connectivity map, where the caudate tail exhibited increased connectivity with tinnitus networks, whereas the nonresponder individual level connectivity map did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号