首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Narcolepsy is a chronic sleep disorder, characterized by excessive daytime sleepiness (EDS), cataplexy, sleep paralysis and hypnagogic hallucinations. Both sporadic (95%) and familial (5%) forms of narcolepsy exist in humans. The major pathophysiology of human narcolepsy has been recently discovered based on the discovery of narcolepsy genes in animals; the genes involved in the pathology of the hypocretin/orexin ligand and its receptor. Mutations in hypocretin-related genes are rare in humans, but hypocretin ligand deficiency is found in a large majority of narcolepsy with cataplexy. Hypocretin ligand deficiency in human narcolepsy is probably due to the post-natal cell death of hypocretin neurones. Although a close association between human leucocyte antigen (HLA) and human narcolepsy with cataplexy suggests an involvement of autoimmune mechanisms, this has not yet been proved. Hypocretin deficiency is also found in symptomatic cases of narcolepsy and EDS with various neurological conditions, including immune-mediated neurological disorders, such as Guillain–Barre syndrome, MA2-positive paraneoplastic syndrome and neuromyelitis optica (NMO)-related disorder. The findings in symptomatic narcoleptic cases may have significant clinical relevance to the understanding of the mechanisms of hypocretin cell death and choice of treatment option. The discoveries in human cases lead to the establishment of the new diagnostic test of narcolepsy (i.e. low cerebrospinal fluid hypocretin-1 levels for ‘narcolepsy with cataplexy’ and ‘narcolepsy due to medical condition’). As a large majority of human narcolepsy patients are ligand deficient, hypocretin replacement therapy may be a promising new therapeutic option, and animal experiments using gene therapy and cell transplantations are in progress.  相似文献   

2.
Histaminergic and orexin/hypocretin systems are components in the brain wake‐promoting system. Both are affected in the sleep disorder narcolepsy, but the role of histamine in narcolepsy is unclear. The histaminergic neurones are activated by the orexin/hypocretin system in rodents, and the development of the orexin/hypocretin neurones is bidirectionally regulated by the histaminergic system in zebrafish. This review summarizes the current knowledge of the interactions of these two systems in normal and pathological conditions in humans and different animal models.  相似文献   

3.
Narcolepsy is linked to a widespread loss of neurons containing the neuropeptide hypocretin (HCRT), also named orexin. A transgenic (TG) rat model has been developed to mimic the neuronal loss found in narcoleptic humans. In these rats, HCRT neurons gradually die as a result of the expression of a poly-glutamine repeat under the control of the HCRT promoter. To better characterize the changes in HCRT-1 levels in response to the gradual HCRT neuronal loss cerebrospinal fluid (CSF) HCRT-1 levels were measured in various age groups (2-82 weeks) of wild-type (WT) and TG Sprague-Dawley rats. TG rats showed a sharp decline in CSF HCRT-1 level at week 4 with levels remaining consistently low (26%+/-9%, mean+/-S.D.) thereafter compared with WT rats. In TG rats, HCRT-1 levels were dramatically lower in target regions such as the cortex and brainstem (100-fold), indicating decreased HCRT-1 levels at terminals. In TG rats, CSF HCRT-1 levels significantly increased in response to 6 h of prolonged waking, indicating that the remaining HCRT neurons can be stimulated to release more neuropeptide. Rapid eye movement (REM) sleep in TG rats (n=5) was consistent with a HCRT deficiency. In TG rats HCRT immunoreactive (HCRT-ir) neurons were present in the lateral hypothalamus (LH), even in old rats (24 months) but some HCRT-ir somata were in various stages of disintegration. The low output of these neurons is consistent with a widespread dysfunction of these neurons, and establishes this model as a tool to investigate the consequences of partial hypocretin deficiency.  相似文献   

4.
Burgess CR  Tse G  Gillis L  Peever JH 《Sleep》2010,33(10):1295-1304

Study Objectives:

To determine if the dopaminergic system modulates cataplexy, sleep attacks and sleep-wake behavior in narcoleptic mice.

Design:

Hypocretin/orexin knockout (i.e., narcoleptic) and wild-type mice were administered amphetamine and specific dopamine receptor modulators to determine their effects on sleep, cataplexy and sleep attacks.

Patients or Participants:

Hypocretin knockout (n = 17) and wild-type mice (n = 21).

Interventions:

Cataplexy, sleep attacks and sleep-wake behavior were identified using electroencephalogram, electromyogram and videography. These behaviors were monitored for 4 hours after an i.p.injection of saline, amphetamine and specific dopamine receptor modulators (D1- and D2-like receptor modulators).

Measurements and Results:

Amphetamine (2mg/kg), which increases brain dopamine levels, decreased sleep attacks and cataplexy by 61% and 67%, suggesting that dopamine transmission modulates such behaviors. Dopamine receptor modulation also had powerful effects on sleep attacks and cataplexy. Activation (SKF 38393; 20mg/kg) and blockade (SCH 23390; 1mg/kg) of D1-like receptors decreased and increased sleep attacks by 77% and 88%, without affecting cataplexy. Pharmacological activation of D2-like receptors (quinpirole; 0.5mg/kg) increased cataplectic attacks by 172% and blockade of these receptors (eticlopride; 1mg/kg) potently suppressed them by 97%. Manipulation of D2-like receptors did not affect sleep attacks.

Conclusions:

We show that the dopaminergic system plays a role in regulating both cataplexy and sleep attacks in narcoleptic mice. We found that cataplexy is modulated by a D2-like receptor mechanism, whereas dopamine modulates sleep attacks by a D1-like receptor mechanism. These results support a role for the dopamine system in regulating sleep attacks and cataplexy in a murine model of narcolepsy.

Citation:

Burgess CR; Tse G; Gillis L; Peever JH. Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. SLEEP 2010;33(10):1295-1304.  相似文献   

5.

Study Objectives:

Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states.

Design:

We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions.

Measurements and Results:

OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal.

Conclusions:

State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders.

Citation:

Diniz Behn CG; Klerman EB; Mochizuki T; Lin S; Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. SLEEP 2010;33(3):297-306.  相似文献   

6.
Mishima K  Fujiki N  Yoshida Y  Sakurai T  Honda M  Mignot E  Nishino S 《Sleep》2008,31(8):1119-1126
STUDY OBJECTIVE: To determine whether hypocretin receptor gene (hcrtR1 and hcrtR2) expression is affected after long-term hypocretin ligand loss in humans and animal models of narcolepsy. DESIGN: Animal and human study. We measured hcrtR1 and hcrtR2 expression in the frontal cortex and pons using the RT-PCR method in murine models (8-week-old and 27-week-old orexin/ataxin-3 transgenic (TG) hypocretin cell ablated mice and wild-type mice from the same litter, 10 mice for each group), in canine models (8 genetically narcoleptic Dobermans with null mutations in the hcrtR2, 9 control Dobermans, 3 sporadic ligand-deficient narcoleptics, and 4 small breed controls), and in humans (5 narcolepsy-cataplexy patients with hypocretin deficiency (average age 77.0 years) and 5 control subjects (72.6 years). MEASUREMENT AND RESULTS: 27-week-old (but not 8-week-old) TG mice showed significant decreases in hcrtR1 expression, suggesting the influence of the long-term ligand loss on the receptor expression. Both sporadic narcoleptic dogs and human narcolepsy-cataplexy subjects showed a significant decrease in hcrtR1 expression, while declines in hcrtR2 expression were not significant in these cases. HcrtR2-mutated narcoleptic Dobermans (with normal ligand production) showed no alteration in hcrtR1 expression. CONCLUSIONS: Moderate declines in hcrtR expressions, possibly due to long-term postnatal loss of ligand production, were observed in hypocretin-ligand deficient narcoleptic subjects. These declines are not likely to be progressive and complete. The relative preservation of hcrtR2 expression also suggests that hypocretin based therapies are likely to be a viable therapeutic options in human narcolepsy-cataplexy.  相似文献   

7.
The orexin neurones play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurones promote arousal. Here we review anatomical, pharmacological and electrophysiological studies on how the orexin neurones may promote arousal by exciting cortically projecting neurones of the BF. Orexin fibres synapse on BF cholinergic neurones and orexin-A is released in the BF during waking. Local application of orexins excites BF cholinergic neurones, induces cortical release of acetylcholine and promotes wakefulness. The orexin neurones also contain and probably co-release the inhibitory neuropeptide dynorphin. We found that orexin-A and dynorphin have specific effects on different classes of BF neurones that project to the cortex. Cholinergic neurones were directly excited by orexin-A, but did not respond to dynorphin. Non-cholinergic BF neurones that project to the cortex seem to comprise at least two populations with some directly excited by orexin-A that may represent wake-active, GABAergic neurones, whereas others did not respond to orexin-A but were inhibited by dynorphin and may be sleep-active, GABAergic neurones. This evidence suggests that the BF is a key site through which orexins activate the cortex and promote behavioural arousal. In addition, orexins and dynorphin may act synergistically in the BF to promote arousal and improve cognitive performance.  相似文献   

8.
The neuropeptide hypocretin is synthesized exclusively in the lateral hypothalamus and participates in many brain functions critical for animal survival, particularly in the promotion and maintenance of arousal in animals – a core process in animal behaviours. Consistent with its arousal-promoting role in animals, the neurones synthesizing hypocretin receive extensive innervations encoding physiological, psychological and environmental cues and send final outputs to key arousal-promoting brain areas. The activity in hypocretin neurones fluctuates and correlates with the behavioural state of animals and intensive activity has been detected in hypocretin neurones during wakefulness, foraging for food and craving for addictive drugs. Therefore, it is likely that hypocretin neurones undergo experience-dependent changes resulting from intensive activations by stimuli encoding changes in the internal and external environments. This review summarizes the most recent evidence supporting experience-dependent plasticity in hypocretin neurones. Current data suggest that nutritional and behavioural factors lead to synaptic plasticity and re-organization of synaptic architecture in hypocretin neurones. This may be the substrate of enhanced levels of arousal resulting from behavioural changes in animals and may help to explain the mechanisms underlying the changes in arousal levels induced by physiological, psychological and environmental factors.  相似文献   

9.
Narcolepsy with hypocretin deficiency is known to alter cardiovascular control during sleep, but its aetiology is disputed. As cardiovascular control differs between sleep states, and narcolepsy affects sleep architecture, controlling for both duration and transitions of sleep states is necessary. This study therefore aimed to assess heart rate and its variability in narcolepsy during sleep taking these factors into account. The study included 12 medication‐naïve patients with narcolepsy with cataplexy and hypocretin deficiency (11 male, 16–53 years old), and 12 sex‐ and age‐matched healthy controls (11 male, 19–55 years). All subjects underwent 1‐night ambulatory polysomnography recording. Cardiovascular parameters were calculated for each 30‐s epoch. Heart rate was significantly higher in patients with narcolepsy than in controls in all sleep states and during wakefulness prior to sleep. Groups did not differ in heart rate variability measures. The effects of sleep state duration on heart rate and its variability were similar between patients and controls. In conclusion, heart rate was consistently higher in patients with narcolepsy than controls, independent of sleep stage and sleep fragmentation. A direct effect of hypocretin deficiency therefore seems probable.  相似文献   

10.
Orexins are neuropeptides produced in the lateral hypothalamus and implicated in regulation of sleep-wake cycle. Selective loss of orexin neurons is found in the brain of patients with narcolepsy, but the mechanisms of this pathological change are unclear. A previous study showed that excessive stimulation of N-methyl-d-aspartate (NMDA) receptors by quinolinic acid (QA) caused selective loss of orexin neurons in rat hypothalamic slice culture. Here we examined QA toxicity on orexin neurons and melanin-concentrating hormone (MCH) neurons in vivo. Contrary to the expectation, injection of QA (60 and 120 nmol) into the lateral hypothalamus of male C57BL/6 mice caused selective loss of MCH neurons rather than orexin neurons, and this toxicity of QA was attenuated by MK-801, an NMDA receptor antagonist. Selective loss of MCH neurons with preserved orexin neurons was observed even when GABAA receptor antagonists such as bicuculline and picrotoxin were injected with QA. A significant decrease in the number of orexin neurons was induced when QA injection was performed in the dark phase of diurnal cycle, but the degree of the decrease was still lower than that in the number of MCH neurons. Finally, QA (60 nmol) induced selective loss of MCH neurons also in young rats at 3–4 weeks of age. These results do not support the hypothesis that acute excitotoxicity mediated by NMDA receptors is responsible for the pathogenesis of narcolepsy.  相似文献   

11.
In 1998, two groups independently identified the hypocretins, also known as orexins, as two hypothalamic peptides derived from the same precursor expressed in a few thousand neurones restricted to the perifornical area. A decade later, an amazing set of discoveries has demonstrated a key role for this neurotransmitter system in arousal and beyond. Here I review some of the experiments that led to these discoveries and the implications in the neurobiology of the hypothalamus and our understanding of brain arousal.  相似文献   

12.
Appropriate wake and sleep cycles are important to physical well-being, and are modulated by neuronal networks in the brain. A variety of medical conditions can disrupt sleep or cause excessive daytime sleepiness. Clinical diagnostic classification schemes have historically lumped genetic disorders together into a category that considers the sleep dysfunction to be secondary to a medical condition. The unique nature of sleep endophenotypes that occur more frequently in particular genetic disorders has been underappreciated. Increased understanding of the pathophysiology of wake/sleep dysfunction in rare genetic disorders could inform studies of the neurological mechanisms that underlie more common forms of wake and sleep dysfunction. In this review, we highlight genetic developmental disorders in which sleep endophenotypes have been described, and then consider genetic neurodegenerative disorders with sleep characteristics that set them apart from the disruptions to sleep that are typically associated with aging and dementia.  相似文献   

13.
In the absence of a golden standard for the diagnosis of narcolepsy, the clinical spectrum of disorder remains controversial. The aims of this study were (1) to determine frequency and characteristics of sleep-wake symptoms in patients with narcolepsy with cataplexy, (2) to compare clinical characteristics with results of ancillary tests, and (3) to identify factors that discriminate narcolepsy from other conditions with excessive daytime sleepiness (EDS). We prospectively studied 57 narcoleptics with cataplexy, 56 patients with non-narcoleptic hypersomnia (H), and 40 normal controls (No). Based on suggested and published criteria, we differentiated between narcoleptics with definite cataplexy (N) and narcoleptics without definite cataplexy (possible cataplexy, NpC). Assessment consisted of questionnaires [all patients and controls, including the Ullanlinna Narcolepsy Score (UNS)], polysomnography (all patients), multiple sleep latency test (MSLT) and human leukocyte antigen typing (in most narcoleptics). A new narcolepsy score based on five questions was developed. Data were compared with those of 12 hypocretin-deficient narcoleptics (N-hd). There were significant differences between N and NpC (including mean sleep latency on MSLT), but none between N and N-hd. A score of sleep propensity during active situations (SPAS) and the frequency of sleep paralysis/hallucinations at sleep onset, dreams of flying, and history of sleep shouting discriminated N from H and No (P < 0.001). Cataplexy-like symptoms in H (18%) and No (8%) could be discriminated from 'true' cataplexy in N on the basis of topography of motor effects, triggering emotions and triggering situations (P < 0.001). Our narcolepsy score had a similar sensitivity (96% versus 98%) but a higher specificity (98% versus 56%) than the UNS. Analysis of co-occurring symptoms in narcolepsy revealed two symptom complexes: EDS, cataplexy, automatic behaviors; and sleep paralysis, hallucinations, parasomnias. Low/undetectable cerebrospinal fluid hypocretin-1 levels and a history of definite cataplexy identify similar subgroups of narcoleptics. Specific questions on severity of EDS (SPAS score) and characteristics of cataplexy allow the recognition of subgroups of narcoleptics and their differentiation from non-narcoleptic EDS patients, including those reporting cataplexy-like episodes. The existence of co-occurring symptoms supports the hypothesis of a distinct pathophysiology of single narcoleptic symptoms.  相似文献   

14.
The binding sites for agonists and antagonist of orexin receptors are not know, hampering progressive drug design approaches. In the current study, we utilized chimaeric orexin receptor approach to map the receptor areas contributing to the selectivity of the classical antagonist, SB-334867, for OX1 receptors. Altogether ten chimaeras between OX1 and OX2 orexin receptors were utilized. The receptors were transiently expressed in HEK-293 cells. The ability (KB) of SB-334867 to inhibit orexin-A-induced inositol phosphate release (phospholipase C activity) was measured. The results, in synthesis, suggest that there are several possible interactions contributing to the high affinity binding, all of which are not required simultaneously. This is indicated by the fact that most of the chimaeras display affinity (at least somewhat) higher than OX2. As previously shown for the agonist distinction, the second quarter of the receptor, from the C-terminal part of the transmembrane helix 2 to the transmembrane helix 4 seems to be most central also for SB-334867 binding, but also the third quarter, from the transmembrane helix 4 to the transmembrane helix 6 is able to contribute (and compensate for loss of other sites). A previous study has suggested that amino acids conserved between OX1 and OX2 receptors would somehow confer selectivity for subtype-selective antagonists. In contrast to previous findings, our results indicate that the amino acids distinct between the receptor subtypes are in key position.  相似文献   

15.
The neurons of the lateral hypothalamus that contain hypocretin/orexin (hcrt/orx) are thought to promote arousal through the excitatory action they exert on the multiple areas to which they project within the CNS. We show here that the hcrt/orx peptides can also exert a strong action on the amygdala, a structure known for its implication in emotional aspects of behavior. Indeed, the hcrt/orx peptides, applied in acute rat brain slices, excite a specific class of "low threshold burst" neurons in the central medial (CeM) nucleus which is considered as a major output of the amygdala. These excitatory effects are postsynaptic, mediated by Hcrt2/OX2 receptors and result from the closure of a potassium conductance. They occur on a class of neurons that are also excited by vasopressin acting through V1a receptors. These results suggest that the hcrt/orx system can act through the amygdala to augment arousal and evoke the autonomic and behavioral responses associated with fear, stress or emotion.  相似文献   

16.
The distribution of hypothalamic neurons expressing the peptides melanin-concentrating hormone (MCH; ‘MCH neurons’) or hypocretin/orexin (H/O; ‘H/O neurons’) was assessed with immunocytochemistry in male rats at high spatial resolution. Data were plotted on a rat brain atlas that includes a recently revised parcellation scheme for the lateral hypothalamic zone. Quantitative analysis revealed approximately three times more MCH neurons than H/O neurons in the hypothalamus, and approximately twice as many within the parcellations of the lateral hypothalamic area (LHA). The LHA contained 60% of MCH neurons and 81% of H/O neurons, and the same five LHA regions contained the vast majority of MCH (87%) or H/O (93%) neurons present within the LHA: namely the LHA dorsal region (LHAd: 31% of H/O; 38% of MCH), suprafornical region (LHAs: 28% of H/O; 11% of MCH), ventral region medial zone (LHAvm: 15% of H/O; 16% of MCH), juxtadorsomedial region (LHAjd: 14% of H/O and MCH) and magnocellular nucleus (LHAm: 5% of H/O; 7% of MCH). The zona incerta (ZI) contained 18% of MCH neurons. A high co-abundance of MCH and H/O neurons outside of the LHA was present in the posterior hypothalamic nucleus (PH: 11% of H/O; 9% of MCH). Morphological analysis revealed MCH and H/O neurons as typically tri-polar with irregularly shaped somata. These data provide a quantitative analysis of neurons expressing either MCH or H/O peptides within the rat hypothalamus, and they clarify differences in the distribution pattern for different subsets of these neuron types, especially within the LHA.  相似文献   

17.
Study ObjectivesEvaluate efficacy and safety of lower-sodium oxybate (LXB), a novel oxybate medication with 92% less sodium than sodium oxybate (SXB).MethodsAdults aged 18–70 years with narcolepsy with cataplexy were eligible. The study included a ≤30-day screening period; a 12-week, open-label, optimized treatment and titration period to transition to LXB from previous medications for the treatment of cataplexy; a 2-week stable-dose period (SDP); a 2-week, double-blind, randomized withdrawal period (DBRWP); and a 2-week safety follow-up. During DBRWP, participants were randomized 1:1 to placebo or to continue LXB treatment.ResultsEfficacy was assessed in 134 participants who received randomized treatment, and safety was assessed in all enrolled participants (N = 201). Statistically significant worsening of symptoms was observed in participants randomized to placebo, with median (first quartile [Q1], third quartile [Q3]) change in weekly number of cataplexy attacks from SDP to DBRWP (primary efficacy endpoint) in the placebo group of 2.35 (0.00, 11.61) versus 0.00 (−0.49, 1.75) in the LXB group (p < 0.0001; mean [standard deviation, SD] change: 11.46 [24.751] vs 0.12 [5.772]), and median (Q1, Q3) change in Epworth Sleepiness Scale score (key secondary efficacy endpoint) of 2.0 (0.0, 5.0) in the placebo group versus 0.0 (−1.0, 1.0) in the LXB group (p < 0.0001; mean [SD] change: 3.0 [4.68] vs 0.0 [2.90]). The most common treatment-emergent adverse events with LXB were headache (20.4%), nausea (12.9%), and dizziness (10.4%).ConclusionsEfficacy of LXB for the treatment of cataplexy and excessive daytime sleepiness was demonstrated. The safety profile of LXB was consistent with SXB.Clinical trial registrationNCT03030599.  相似文献   

18.
Study ObjectivesThe diagnosis of narcolepsy type 1 (NT1) is based upon the presence of cataplexy and/or a cerebrospinal fluid (CSF) hypocretin-1/orexin-A level ≤ 110 pg/mL. We determined the clinical and diagnostic characteristics of patients with intermediate hypocretin-1 levels (111–200 pg/mL) and the diagnostic value of cataplexy characteristics in individuals with central disorders of hypersomnolence.MethodsRetrospective cross-sectional study of 355 people with known CSF hypocretin-1 levels who visited specialized Sleep-Wake Centers in the Netherlands. For n = 271, we had full data on cataplexy type (“typical” or “atypical” cataplexy).ResultsCompared to those with normal hypocretin-1 levels (>200 pg/mL), a higher percentage of individuals with intermediate hypocretin-1 levels had typical cataplexy (75% or 12/16 vs 9% or 8/88, p < .05), and/or met the diagnostic polysomnographic (PSG) and Multiple Sleep Latency Test (MSLT) criteria for narcolepsy (50 vs 6%, p < .001). Of those with typical cataplexy, 88% had low, 7% intermediate, and 5% normal hypocretin-1 levels (p < .001). Atypical cataplexy was also associated with hypocretin deficiency but to a lesser extent. A hypocretin-1 cutoff of 150 pg/mL best predicted the presence of typical cataplexy and/or positive PSG and MSLT findings.ConclusionIndividuals with intermediate hypocretin-1 levels or typical cataplexy more often have outcomes fitting the PSG and MSLT criteria for narcolepsy than those with normal levels or atypical cataplexy. In addition, typical cataplexy has a much stronger association with hypocretin-1 deficiency than atypical cataplexy. We suggest increasing the NT1 diagnostic hypocretin-1 cutoff and adding the presence of clearly defined typical cataplexy to the diagnostic criteria of NT1. Clinical trial information: This study is not registered in a clinical trial register, as it has a retrospective database design.  相似文献   

19.
The hypocretin (orexin) neurons in the lateral hypothalamus play a crucial role in the promotion of arousal. Adenosine, an endogenous sleep-promoting factor, modulates both neuronal excitatory and synaptic transmission in the CNS. In this study, the involvement of endogenous adenosine in the regulation of excitatory glutamatergic synaptic transmission to hypocretin neurons was investigated in the hypothalamic slices from transgenic mice by using different frequencies of stimulation. A train of low-frequency stimulation (0.033, 1 Hz) had no effect on the amplitude of evoked excitatory postsynaptic currents (evEPSCs) in hypocretin neurons. Blockade of adenosine A1 receptors with selective A1 receptor antagonist 8-cyclopentyltheophylline (CPT), the amplitude of evEPSCs did not change during 0.033 and 1 Hz stimuli. When the frequency of stimulation was increased upto 2 Hz, a time-dependent depression of amplitude was recorded in hypocretin neurons. Administration of CPT caused no significant change in depressed synaptic response induced by 2 Hz stimulus. While depression induced by 10 and 100 Hz stimuli was partially inhibited by the CPT but not by the selective A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl)xanthine. Further findings have demonstrated that high-frequency stimulation could induce long-term potentiation (LTP) of glutamatergic synaptic transmission to hypocretin neurons in acute hypothalamic slices. The experiments with CPT suggested that A1 receptor antagonist could facilitate the induction of LTP, indicating that endogenous adenosine, acting through A1 receptors, may suppress the induction of LTP of excitatory synaptic transmission to hypocretin neurons. These results suggest that in the hypothalamus, endogenous adenosine will be released into extracellular space in an activity-dependent manner inhibiting both basal excitatory synaptic transmission and LTP in hypocretin neurons via A1 receptors. Our data provide further support for the notion that hypocretin neurons in the lateral hypothalamus may be another important target involved in the endogenous adenosine modulating the sleep and wakefulness cycle in the mammalian CNS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号