首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, structural design and analysis of a composite boat hull was performed. A resin transfer molding manufacturing method was adopted for manufacturing the composite boat hull. The RTM process is an advanced composite manufacturing method that allows a much higher quality product than the hand lay-up process, and less manufacturing cost compared to the autoclave method. Therefore, the RTM manufacturing method was adopted. The mechanical properties of the various aramid fibers and polyester resin were investigated. Based on this, structural design of boat hull was performed using aramid fiber or polyester. After structural design, the optimized resin infusion analysis for RTM manufacturing method was performed. Through the resin infusion analysis, it is confirmed that the designed location of resin injection and outlet is acceptable for manufacturing.  相似文献   

2.
Massive composite components manufactured by autoclave curing in large framed molds are extensively used in the aerospace industry. The high temperature performance of the large framed mold is the key to achieving the desired composite part quality. This paper explores and summarizes the important thermal properties of metal and heat transfer fluid materials influencing the heating performance of large framed molds, with the aim of improving the mold temperature distribution. Considering the fluid–thermal–solid interaction inside the autoclave, a reliable computational fluid dynamics (CFD) simulation model was developed and verified by a temperature monitoring experiment to achieve the prediction of the temperature distribution of the large framed mold. Then, numerical simulations were designed on the basis of the CFD model, and the single-variable method was used to study the effects of the material thermal properties on the temperature performance of large framed molds. Our simulation predicts that when copper is used as the mold material, the temperature difference decreases by 30.63% relative to that for steel, and the heating rate increases by 3.45%. Further, when helium is used as the heat transfer medium, the temperature difference decreases by 68.27% relative to that for air, and the heating rate increases by 32.76%. This paper provides a reference for improvement of large framed mold manufacturing and autoclave process in terms of heating rate and temperature uniformity.  相似文献   

3.
Nickel-titanium alloys have been widely used in biomedical, aerospace and other fields due to their shape memory effect, superelastic effect, as well as biocompatible and elasto-thermal properties. Additive manufacturing (AM) technology can form complex and fine structures, which greatly expands the application range of Ni-Ti alloy. In this study, the development trend of additive manufactured Ni-Ti alloy was analyzed. Subsequently, the most widely used selective laser melting (SLM) process for forming Ni-Ti alloy was summarized. Especially, the relationship between Ni-Ti alloy materials, SLM processing parameters, microstructure and properties of Ni-Ti alloy formed by SLM was revealed. The research status of Ni-Ti alloy formed by wire arc additive manufacturing (WAAM), electron beam melting (EBM), directional energy dedication (DED), selective laser sintering (SLS) and other AM processes was briefly described, and its mechanical properties were emphatically expounded. Finally, several suggestions concerning Ni-Ti alloy material preparation, structure design, forming technology and forming equipment in the future were put forward in order to accelerate the engineering application process of additive manufactured Ni-Ti alloy. This study provides a useful reference for scientific research and engineering application of additive manufactured Ni-Ti alloys.  相似文献   

4.
The present study aims to evaluate the stress corrosion behavior of additively manufactured austenitic stainless steel produced by the wire arc additive manufacturing (WAAM) process. This was examined in comparison with its counterpart, wrought alloy, by electrochemical analysis in terms of potentiodynamic polarization and impedance spectroscopy and by slow strain rate testing (SSRT) in a corrosive environment. The microstructure assessment was performed using optical and scanning electron microscopy along with X-ray diffraction analysis. The obtained results indicated that in spite of the inherent differences in microstructure and mechanical properties between the additively manufactured austenitic stainless steel and its counterpart wrought alloy, their electrochemical performance and stress corrosion susceptibility were similar. The corrosion attack in the additively manufactured alloy was mainly concentrated at the interface between the austenitic matrix and the secondary ferritic phase. In the case of the counterpart wrought alloy with a single austenitic phase, the corrosion attack was manifested by uniform pitting evenly scattered at the external surface. Both alloys showed ductile failure in the form of “cap and cone” fractures in post-SSRT experiments in corrosive environment.  相似文献   

5.
Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control, which can prevent their successful application. In fact, the optimization of the AM process is impossible without considering structural characteristics as manufacturing accuracy, internal defects, as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of X-ray computed tomography (XCT). Several advanced image analysis workflows are presented to evaluate the effect of build orientation on wall thicknesses distribution, wall degradation, and surface roughness reduction due to the chemical etching of TPMSS. It is shown that the manufacturing accuracy differs for the structural elements printed parallel and orthogonal to the manufactured layers. Different strategies for chemical etching show different powder removal capabilities and both lead to the loss of material and hence the gradient of the wall thickness. This affects the mechanical performance under compression by reduction of the yield stress. The positive effect of the chemical etching is the reduction of the surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of retained powder with the pore size of the functionally graded TPMSS, which can further improve the manufacturing process.  相似文献   

6.
This article presents the numerical analysis and experimental investigation for the manufacturing of a foam core sandwich spoiler by vacuum-assisted resin injection (VARI) process. To find an injection scheme that guarantees both a good impregnation of the preform and a filling time compatible with the process window, the finite element model (FEM) was applied to analyze the effect of different injection schemes on the resin flow front patterns. Based on the obtained results, two optimal injection schemes are selected to form the spoiler structure. The experimental results show that the best molding quality can be achieved from the thick-end injection with a thin-end exit scheme. The comparison between simulation and experimental results shows that the overall deviation of the numerical analysis on resin flow time is 15.9%.  相似文献   

7.
Polymer-based nanocomposites are being considered as replacements for conventional materials in medium to high-temperature applications. This article aims to discover the synergistic effects of reinforcements on the developed polymer-based nanocomposite. An epoxy-based polymer composite was manufactured by reinforcing graphene nanoplatelets (GNP) and h-boron nitride (h-BN) nanofillers. The composites were prepared by varying the reinforcements with the step of 0.1 from 0.1 to 0.6%. Ultrasonication was carried out to ensure the homogenous dispersion of reinforcements. Mechanical, thermal, functional, and scanning electron microscopy (SEM) analysis was carried out on the novel manufactured composites. The evaluation revealed that the polymer composite with GNP 0.2 by wt % has shown an increase in load-bearing capacity by 265% and flexural strength by 165% compared with the pristine form, and the polymer composite with GNP and h-BN 0.6 by wt % showed an increase in load-bearing capacity by 219% and flexural strength by 114% when compared with the pristine form. Furthermore, the evaluation showed that the novel prepared nanocomposite reinforced with GNP and h-BN withstands a higher temperature, around 340 °C, which is validated by thermogravimetric analysis (TGA) trials. The numerical simulation model is implemented to gather the synthesised nanocomposite’s best composition and mechanical properties. The minor error between the simulation and experimental data endorses the model’s validity. To demonstrate the industrial applicability of the presented material, a case study is proposed to predict the temperature range for compressor blades of gas turbine engines containing nanocomposite material as the substrate and graphene/h-BN as reinforcement particles.  相似文献   

8.
The aim of this in vitro study was to assess the effect of two different adhesive application methods on shear dentin bond strength (ISO 29022) using three various adhesive systems. A mid-coronal section of 77 intact third human molars with fully developed apices was made to create flat bonding substrates. The materials used in the study were Excite F (Ivoclar Vivadent), Prime&Bond Universal (Dentsply Sirona) and G-Premio Bond (GC). The application of each adhesion system was performed in two different ways. In the first group, the bonding agent was light cured immediately after the application (conventional method), while in the second group the adhesive and composite were cured concurrently (“co-curing” method). A total of 180 specimens were prepared (3 adhesives × 2 method of application × 30 specimens per experimental group), stored at 37 °C in distilled water and fractured in shear mode after 1 week. Statistical analysis was performed using ANOVA and Weibull statistics. The highest bond strength was obtained for Prime&Bond conventional (21.7 MPa), whilst the lowest bond strength was observed when co-curing was used (particularly, Excite F 12.2 MPa). The results showed a significant difference between conventional and co-curing methods in all materials. According to reliability analysis, the co-curing method diminished bond reliability. Different application techniques exhibit different bond strengths to dentin.  相似文献   

9.
The use of carbon fiber-reinforced plastics (CFRP) is markedly increasing, particularly for the manufacturing of automotive parts, to achieve better mechanical properties and a light weight. However, it is difficult to manufacture multi-material products because of the problems due to the adhesive between CFRP and steel. The prepreg compression molding (PCM) of laminated CFRP can reduce the production time and increase the flexibility of the manufacturing process. In this study, a new manufacturing process is proposed for CFRP reinforcement on a hot stamped B-pillar using PCM. A finite element (FE) simulation of the hot stamping process is conducted to predict the dimensions of the B-pillar. The feasibility of PCM manufacturing is explored by the simulation of the thermoforming of a CFRP set on a shaped B-pillar. The temperature conditions of the CFRP and B-pillar for the PCM are determined by considering the heat transfer between the CFRP and steel. Finally, the PCM of the B-pillar consisting of steel and CFRP was performed to compare with the analytical results for verification. The evaluation of the B-pillar was conducted by the observation of the cross-section for the B-pillar and interlayer by scanning electron microscopy (SEM). As a result, a steel/CFRP B-pillar assembly could be efficiently manufactured using the PCM process without an additional adhesive process.  相似文献   

10.
This paper presents the experimental results of composite rebars based on GFRP manufactured by a pultrusion system. The bending and radial compression strength of rods was determined. The elastic modulus of GFRP rebars is significantly lower than for steel rebars, while the static flexural properties are higher. The microstructure of the selected rebars was studied and discussed in light of the obtained results—failure processes such as the delamination and fibers fracture can be observed. The bending fatigue test was performed under a constant load amplitude sinusoidal waveform. All rebars were subjected to fatigue tests under the R = 0.1 condition. As a result, the S-N curve was obtained, and basic fatigue characteristics were determined. The fatigue mechanism of bar failure under bending was further analyzed using SEM microscopy. It is worth noting that the failure and fracture mechanism plays a crucial role as a material quality indicator in the manufacturing process. The main mechanism of failure under static and cyclic loading during the bending test is widely discussed in this paper. The results obtained from fatigue tests encourage further analysis. The diametral compression test reflects the weakest nature of the composite materials based on the interlaminar compressive strength. The proposed methodology allows us to invariantly describe the experimental transversal strength of the composite materials. Considering the expected durability of the structure, the failure mechanism is likely to significantly improve their fatigue behavior under the influence of cyclic bending. The reasonable direction of searching for reinforcements of composite structures should be the improvement of the bearing capacity of the outer layers. In comparison with steel rebars (fatigue tensile test), the obtained results for GFRP are comparable in the HCF regime. It is worth noting that in the near fatigue endurance regime (2–5 × 106 cycles) both rebars exhibit similar behavior.  相似文献   

11.
The present paper addresses experimental and numerical investigations of a Large Scale Additive Manufacturing (LSAM) process using polymers. By producing large components without geometrical constraints quickly and economically, LSAM processes have the capability to revolutionize many industries. Accurate prediction and control of the thermal history is key for a successful manufacturing process and for achieving high quality and good mechanical properties of the manufactured part. During the LSAM process, the heat emitted by the nozzle leads to an increase in the temperature of the previously deposited layer, which prepares the surface for better adhesion of the new layer. It is therefore necessary to take into account this part of heat source in the transient heat transfer equation to correctly and completely describe the process and predict the temperature field of the manufactured part. The present study contributes to experimental investigations and numerical analysis during the LSAM process. During the process, two types of measurements are performed: firstly, the heat emitted by the nozzle is measured via a radiative heat sensor; secondly, the temperature field is measured using an infrared camera while varying the process speed. At the same time, a numerical simulation model is developed in order to validate the experimental results. The temperature fields of the manufactured parts computed by numerical simulations are in very good agreement with the temperature fields measured by infrared thermograph with the contribution of the nozzle’s heat exchange.  相似文献   

12.
In this work, structural design and manufacturing of sandwich composite floor for automobile was performed. The tensile and compression strength of specimen were investigated. Based on this, structural design of floor board was performed. The sandwich composite floor board are subject to payload. The maximum load was analyzed in consideration of the safety factor. The structural design and analysis were performed in consideration of applied load. The finite element analysis method was applied to investigate structural safety. The stress, displacement, and buckling analysis was carried out. Through the structural analysis, it was confirmed that the designed floor board structure is safety. Based on the result, the manufacturing of prototype was conducted. Finally, test and evaluation of composite floor board was performed.  相似文献   

13.
The long cycle of manufacturing continuous carbon fiber-reinforced composite has significantly limited its application in mass vehicle production. High-pressure resin transfer molding (HP-RTM) is the process with the ability to manufacture composites in a relatively short forming cycle (<5 min) using fast reactive resin. The present study aims to investigate the influence of HP-RTM process variables including fiber volume fraction and resin injection flow rate on void characteristics, and flexural properties of manufactured CFRP components based on experiments and numerical simulations. An ultrasonic scanning system and optical microscope were selected to analyze defects, especially void characteristics. Quasi-static bending experiments were implemented for the CFRP specimens with different void contents to find their correlation with material’s flexural properties. The results showed that there was also a close correlation between void content and the flexural strength of manufactured laminates, as the flexural strength decreased by around 8% when the void content increased by ~0.5%. In most cases, the void size was smaller than 50 μm. The number of voids substantially increased with the increase in resin injection flow rate, while the potential effect of resin injection flow rate was far greater than the effect of fiber volume fraction on void contents. To form complicated CFRP components with better mechanical performance, resin injection flow rate should be carefully decided through simulations or preliminary experiments.  相似文献   

14.
The paper is devoted to studying the chemical elements distribution in the material’s structure depending on the manufacturing technological parameters and their effect on properties of a new self-lubricating antifriction composite based on powder nickel alloy EP975 with CaF2 solid lubricant for operation at temperature 800 °C and loads up to 5.0 MPa, in air. The study is focused on the features of alloying elements distribution in the composite matrix, which depends on the manufacturing technology. A uniform distribution of all alloying elements in the studied composite was shown. The chemical elements’ uniform distribution in the material is associated with one of the most important preparatory technological operations in the general manufacturing technology used. This is a technological operation of mixing powders with subsequent analysis of the finished mixture. The uniform distribution of chemical elements determines the uniform arrangement of carbides and intermetallics in the composite. General manufacturing technology, which includes the main operations, such as hot isostatic pressing technology and hardening heat treatment, contributed to the obtainment of a practically isotropic composite with almost the same properties in the longitudinal and transverse directions. Because of the composite’s structural homogeneity, without texturing, characteristics are isotropic. Improving the material’s structural homogeneity helps to keep its mechanical and anti-friction qualities stable at high temperatures and stresses in the air. The performed studies demonstrated the correctness of the developed manufacturing technology that was confirmed by the electron microscopy method, micro-X-ray spectral analysis, mechanical and tribological tests. The developed high-temperature antifriction composite can be recommended for severe operating conditions, such as friction units of turbines, gas pumping stations, and high-temperature units of foundry metallurgical equipment.  相似文献   

15.
This paper aims to experimentally determine the properties of the poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]—(PHBV)—30% hemp fiber biocomposite, which is important in terms of numerical simulations of product manufacturing, and to evaluate the mechanical properties by means of micromechanical modeling. The biocomposite was manufactured using a single-screw extruder. Specimens for testing were produced by applying the injection molding technology. Utilizing the simulation results of the plastic flow, carried out by the Moldflow Insight 2016 commercial software and the results of experimental tests, the forecasts of selected composite mechanical properties were performed by means of both numerical and analytical homogenization methods. For this purpose, the Digimat software was applied. The necessary experimental data to perform the calculations for the polymer matrix, fibers, and the biocomposite were obtained by rheological and thermal studies as well as elementary mechanical tests. In the paper, the method of determining selected properties of the biocomposite and the method of forecasting its other properties are discussed. It shows the dependence of the predicted, selected properties of the biocomposite on the filler geometry assumed in the calculations and the homogenization method adopted for the calculations. The results of the work allow for the prediction of properties of the PHBV biocomposites—hemp fiber for any amount of filler used. Moreover, the results allow for the estimation of the usefulness of homogenization methods for the prediction of properties of the PHBV-hemp fiber biocomposites. Furthermore, it was found that for the developed and tested biocomposites, the most effective possibility of mechanical properties prediction is using the Mori-Tanaka homogenization model, which unfortunately has some limitations.  相似文献   

16.
Modular structural systems have been used increasingly for low- and mid-rise structures such as schools and apartment buildings, and applications are extending to high-rise buildings. To provide sufficient resistance and economical construction of the high-rise modular structural system, the steel-concrete composite unit modular structure was proposed. The proposed composite unit modular system consists of the composite beam and the partially encased nonsymmetrical composite column. The outside steel member of the composite column has an open section, and is manufactured using a pressed forming procedure so that easy joining connecting work and manufacturing cost reductions are possible. However, the design methods are complicated due to the inherent nonsymmetrical properties of the section. Therefore, in this study, the focus was made on the strength evaluation and development of design methods for the partially encased nonsymmetrical steel-concrete composite column. Four full-scale specimens were constructed and tested. The experimental study focused on the effect of the slenderness ratio of the column, eccentricity, and the through bars on the strength of such columns. Additionally, the PM interaction curve to estimate the strength of the proposed composite column under general combined loading was developed based on the plastic stress distribution method. The results indicate that the through bars are needed to delay the local buckling and distribute the loading uniformly throughout the composite column. Finally, the proposed design methods provide a conservative strength prediction of the proposed composite column.  相似文献   

17.
Additive manufacturing (AM) becomes a more and more standard process in different fields of industry. There is still only limited knowledge of the relationship between measured material data and the overall behaviour of directed energy deposition (DED)-processed complex structures. The understanding of the structural performance, including flow curves and local damage properties of additively manufactured parts by DED, becomes increasingly important. DED can be used for creating functional surfaces, component repairing using multiple powder feeders, and creating a heterogeneous structure with defined chemical composition. For thin parts that are used with the as-deposited surface, this evaluation is even highly crucial. The main goal of the study was to predict the behaviour of thin-walled structures manufactured by the DED process under static loading by finite element analysis (FEA). Moreover, in this study, the mechanical performance of partly machined and fully machined miniaturized samples produced from the structure was compared. The structure studied in this research resembles a honeycomb shape made of austenitic stainless steel AISI 316L, which is characterized by high strength and ductility. The uncoupled damage models based on a hybrid experimental-numerical approach were used. The microstructure and hardness were examined to comprehend the structural behaviour.  相似文献   

18.
The depletion of natural resources and increased demand for wood and wood-based materials have directed researchers and the industry towards alternative raw materials for composite manufacturing, such as agricultural waste and wood residues as substitutes of traditional wood. The potential of reusing walnut (Juglans regia L.) wood residues as an alternative raw material in particleboard manufacturing is investigated in this work. Three-layer particleboard was manufactured in the laboratory with a thickness of 16 mm, target density of 650 kg∙m−3 and three different levels (0%, 25% and 50%) of walnut wood particles, bonded with urea-formaldehyde (UF) resin. The physical properties (thickness swelling after 24 h) and mechanical properties (bending strength, modulus of elasticity and internal bond strength) were evaluated in accordance with the European standards. The effect of UF resin content and nominal applied pressure on the properties of the particleboard was also investigated. Markedly, the laboratory panels, manufactured with 50% walnut wood residues, exhibited flexural properties and internal bond strength, fulfilling the European standard requirements to particleboards used in load-bearing applications. However, none of the boards met the technical standard requirements for thickness swelling (24 h). Conclusively, walnut wood residues as a waste or by-product of the wood-processing industry can be efficiently utilized in the production of particleboard in terms of enhancing its mechanical properties.  相似文献   

19.
In the performance optimization of the additive manufacturing of Ti6Al4V components, conventional control methods have difficulty taking into account the requirements of quality and mechanical properties of components, resulting in insufficient mechanical properties and a small control range. Therefore, combining the advantages of porous structure and alloy composition control, this paper proposed a structure–composition composite control method for selective laser-fused titanium alloy components by coupling the effects of porous structure parameters and boron content on the properties of Ti6Al4V components. Based on the Gibson–Ashby formula, the compression test of porous Ti6Al4V alloy and the tensile test of boron-containing Ti6Al4V alloy were carried out by SLM forming technology. The parameters C and n related to the pore parameters of porous structure were solved by the experimental data, and the analytical relationship between the pore parameters and the mechanical properties of Ti6Al4V alloy was established. The analytical relationship between boron content (t wt%) and mechanical properties of the alloy was established by tensile test. Finally, the Gibson–Ashby formula was used to combine the above analytical relationship, and a composite regulation model of compressive strength was obtained. The results show that the control range of the composite model ranges from 19.46–416.47 MPa, which was 45.53% higher than that obtained by controlling only pore parameters, and performance improved by 42.49%. The mechanical properties of the model are verified and the deviation between calculated values and experimental values was less than 1.3%. Taking aviation rocker arm as an example, the optimized design can improve the strength and reduce the mass of rocker arm by 51.94%. This method provides a theoretical basis for expanding the application of Ti6Al4V additive manufacturing components in aerospace and other fields.  相似文献   

20.
To study the influence of structure size and composite forms on the mechanical properties of the composite double honeycomb sandwich structure, a composite double honeycomb sandwich structure was initially designed. The dynamic response of a composite double-layer honeycomb sandwich structure under high-speed impact was studied through theoretical analysis and numerical simulation. Ls-dyna software was used to simulate the initially designed composite structure. According to the numerical simulation results and the proposed method for calculating the fracture energy of the composite double honeycomb sandwich structure, the effects of different composite forms on the mechanical properties were analyzed. The results show that the proposed fracture energy calculation method can effectively describe the variation trend of the honeycomb structure and the micro-element fracture situation in the valid time. The fracture energy curve has a high sensitivity to cell density and material, and the strength of the top core has a great influence on the overall energy absorption. Compared with the traditional honeycomb protection structure, the energy absorption of the initially designed composite honeycomb sandwich structure was improved effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号