首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: A photochemical treatment (PCT) system has been developed to inactivate a broad spectrum of pathogens and white blood cells in platelet (PLT) products. The system comprises PLT additive solution (PAS III), amotosalen HCl, a compound adsorption device (CAD), a microprocessor-controlled ultraviolet A light source, and a commercially assembled system of interconnected plastic containers. STUDY DESIGN AND METHODS: A clinical prototype of the PCT system was used in a large, randomized, controlled, double-blind, Phase III clinical trial (SPRINT) that compared the efficacy and safety of PCT apheresis PLTs to untreated apheresis PLTs. The ability of multiple users was assessed in a blood center setting to perform the PCT and meet target process specifications. RESULTS: Each parameter was evaluated for 2237 to 2855 PCT PLT products. PCT requirements with respect to mean PLT dose, volume, and plasma content were met. Transfused PCT PLT products contained a mean of 3.6 x 10(11) +/- 0.7 x 10(11) PLTs. The clinical process, which included trial-specific samples, resulted in a mean PLT loss of 0.8 x 10(11) +/- 0.6 x 10(11) PLTs per product. CAD treatment effectively reduced the amotosalen concentration from a mean of 31.9 +/- 5.3 micromol per L after illumination to a mean of 0.41 +/- 0.56 micromol per L after CAD. In general, there was little variation between sites for any parameter. CONCLUSIONS: The PCT process was successfully implemented by 12 blood centers in the United States to produce PCT PLTs used in a prospective, randomized trial where therapeutic efficacy of PCT PLTs was demonstrated. Process control was achieved under blood bank operating conditions.  相似文献   

2.
BACKGROUND: The SPRINT trial examined efficacy and safety of photochemically treated (PCT) platelets (PLTs). PCT PLTs were equivalent to untreated (control) PLTs for prevention of bleeding. Transfused PLT dose and corrected count increments (CIs), however, were lower and transfusion intervals were shorter for PCT PLTs, resulting in more PCT than control transfusions. PLT dose was analyzed to determine the impact of the number of PLTs transfused on transfusion requirements. STUDY DESIGN AND METHODS: Transfusion response was compared for patients with all doses of >or=3.0 x 10(11) and the complementary subset of patients with any dose of fewer than 3.0 x 10(11). Analyses included comparison of bleeding, number of PLT and red blood cell (RBC) transfusions, transfusion intervals, and CIs between PCT and control groups within each PLT dose subset. RESULTS: Mean PLT dose per transfusion in the PCT group was lower than in the control group (3.7 x 10(11) vs. 4.0 x 10(11); p<0.001). More PCT patients received PLT doses of fewer than 3.0 x 10(11) (n=190) than control patients (n=118; p<0.01). Comparisons of patients receiving comparable PLT doses showed no significant differences between PCT and control groups for bleeding or number of PLT or RBC transfusions; however, transfusion intervals and CIs were significantly better for the control group. CONCLUSIONS: When patients were supported with comparable doses of PCT or conventional PLTs, the mean number of PLT transfusions was similar. Lower CIs and shorter transfusion intervals for PCT PLTs suggest that some PLT injury may occur during PCT. This injury does not result in a detectable increase in bleeding, however.  相似文献   

3.
BACKGROUND: A photochemical treatment (PCT) method to inactivate pathogens in platelet concentrates has been developed. The system uses a psoralen, amotosalen HCl, coupled with ultraviolet A (UVA) illumination. STUDY DESIGN AND METHODS: Three sequential clinical trials evaluated viability of PCT platelets prepared with a prototype device. Posttransfusion recovery and lifespan of (111)Indium-labeled autologous 5 day-old platelets in healthy subjects was assessed. In the first study, 23 subjects received transfusions of autologous PCT and/or control platelets. In a second study, 16 of these subjects received PCT platelets processed with a Compound Adsorption Device (CAD) (PCT-CAD) to reduce patient exposure to residual amotosalen. In the third study, the effect of gamma-irradiation on PCT platelets was studied. Data from control transfusions from Study A were used for paired comparisons in the latter 2 studies. RESULTS: Mean PCT-CAD platelet recovery for the 16 subjects with paired data was 42.5 +/- 8.7% versus 50.3 +/- 7.7% for control platelets, mean difference of 7.8% (p < 0.01). Mean lifespan for PCT-CAD platelets was 4.8 days (+/-1.3) versus 6.0 days (+/-1.2) for control platelets, mean difference of 1.3 days (p < 0.01). Platelet recovery and lifespan were similar to PCT-CAD for PCT without CAD treatment and PCT-CAD with gamma-irradiation. CONCLUSION: Viability of 5 day-old PCT platelets was less than for control platelets. However, both were within ranges reported for 5 day-old platelets.  相似文献   

4.
5.
BACKGROUND: Photochemical treatment (PCT) with amotosalen HCl with ultraviolet A illumination inactivates pathogens and white blood cells in platelet (PLT) concentrates. STUDY DESIGN AND METHODS: In a Phase II crossover study, 32 patients with thrombocytopenia received one transfusion of PCT and/or one transfusion of untreated (reference) apheresis PLTs. Hemostatic efficacy was assessed with the cutaneous template bleeding time and clinical observations. RESULTS: Paired bleeding time data for PCT and reference transfusions were available for 10 patients. Mean pretransfusion bleeding times were 29.2 +/- 1.6 minutes in the PCT group and 28.7 +/- 2.5 minutes in the reference group. After transfusion of a dose of PLTs of at least 6.0 x 10(11), mean 1-hour posttransfusion template bleeding times corrected to 19.3 +/- 9.5 minutes in the PCT group and 14.3 +/- 6.5 minutes in the reference group (p = 0.25). In 29 patients receiving paired PCT and reference transfusions, mean 1-hour posttransfusion PLT count increments were 41.9 x 10(9) +/- 20.8 x 10(9) and 52.3 x 10(9) +/- 18.3 x 10(9) per L for PCT and reference, respectively (p = 0.007), and mean 1-hour posttransfusion PLT corrected count increments (CCIs) were 10.4 x 10(3) +/- 4.9 x 10(3) and 13.6 x 10(3) +/- 4.3 x 10(3) for PCT and reference, respectively (p < 0.001). The time to next PLT transfusion was 2.9 +/- 1.2 days after PCT transfusions versus 3.4 +/- 1.3 days after reference transfusions (p = 0.18). Clinical hemostasis was not significantly different after PCT and reference transfusions. CONCLUSION: PCT PLTs provided correction of prolonged bleeding times and transfusion intervals not significantly different than reference PLTs despite significantly lower PLT count increments and CCIs.  相似文献   

6.
7.
BACKGROUND: Amotosalen plus ultraviolet A light photochemical treatment (PCT) inactivates high titers of bacteria, and other pathogens, in platelet concentrates (PCs) potentially allowing the storage of platelets (PLTs) for up to 7 days. Adhesion and aggregation of PLTs to injured vascular surfaces are critical aspects of PLT hemostatic function. STUDY DESIGN AND METHODS: Two ABO-identical leukoreduced buffy coat-derived PCs in additive solution were mixed and divided: one-half underwent PCT (PCT-PCs) and the other was kept as a control (C-PCs); both were stored under standard conditions. The total number of paired PCs studied was nine. Samples were taken on Day 1 (before PCT) and after 5 and 7 days of storage. The adhesion and aggregation capacities were evaluated under flow conditions in a ex vivo perfusion model. RESULTS: Compared to control, PCT resulted in a decrease in PLT count of 6.5 percent (p = 0.004) and 10.2 percent (p = 0.008) after 5 and 7 days' storage, respectively (n = 9). PLT interaction with subendothelium was mainly in form of adhesion. The surface covered by PCT PLTs on Day 1 was 26.0 +/- 4.2 percent (mean +/- SEM). On Day 5, PCT-PCs showed a covered surface of 20.9 +/- 2.2 percent, and the C-PCs, 20.6 +/- 1.6 percent. After 7 days, PCT-PCs produced a nonsignificant higher PLT deposition compared to control (27.1 +/- 2.9% vs. 21.2 +/- 2.8%, p = 0.06). CONCLUSION: PCT of PCs and storage up to 7 days was associated with a 10.2 percent decrease in PLT count due to processing losses compared to C-PC. PLT adhesive and aggregating capacities under flow conditions of PCT-PCs were similar to C-PCs and remained well preserved for up to 7 days of storage.  相似文献   

8.
BACKGROUND: Pathogen reduction technologies for platelet (PLT) components offer a means to address continued viral transmission risks and imperfect bacterial detection systems. The efficacy of apheresis PLTs treated with riboflavin (vitamin B2) plus ultraviolet (UV) light (Mirasol, Navigant Biotechnologies) was investigated in a single-blind, crossover study in comparison to untreated PLTs. STUDY DESIGN AND METHODS: Normal subjects (n = 24) donated PLTs by apheresis on two occasions at least 2 weeks apart. Units were randomized to control or test arms, the latter receiving the addition of 28 mL of 500 micromol per L B2 and exposure to 6.2 J per mL UV light. PLTs were stored for 5 days with biochemical and hematologic analyses performed before and after illumination on Day 0 and at the end of storage. An aliquot of each unit was radiolabeled and returned to determine recovery and survival. RESULTS: The PLT content of treated units was maintained from Day 0 (4.1 x 10(11) +/- 0.4 x 10(11)) to Day 5 (4.0 x 10(11) +/- 0.4 x 10(11)). Treatment with B2 plus UV light was associated with an increase in lactate production with concomitant increases in glucose consumption. pH (control, 7.38 +/- 0.07; test, 7.02 +/- 0.10) was well maintained throughout storage. Recovery of treated PLTs (50.0 +/- 18.9%) was reduced from that of control PLTs (66.5 +/- 13.4%); survival was similarly shortened (104 +/- 26 hr vs. 142 +/- 26 h; p < 0.001). CONCLUSIONS: PLTs treated with B2 plus UV light demonstrate some alterations in in vitro measures but retain in vitro and in vivo capabilities similar to pathogen-reduced and licensed PLT components that have been shown to have useful clinical applicability. The recovery, survival, and metabolic properties of Mirasol PLTs should provide sufficient hemostatic support in thrombocytopenia to justify patient clinical trials.  相似文献   

9.
BACKGROUND: Leishmania spp. are protozoans that cause skin and visceral diseases. Leishmania are obligate intracellular parasites of mononuclear phagocytes and have been documented to be transmitted by blood transfusion. STUDY DESIGN AND METHODS: This study examines whether Leishmania can be inactivated in human platelet (PLT) concentrates by a photochemical treatment process that is applicable to blood bank use. Human PLT concentrates were contaminated with Leishmania mexicana metacyclic promastigotes or mouse-derived Leishmania major amastigotes and were exposed to long-wavelength ultraviolet (UV) A light (320-400 nm) plus the psoralen amotosalen HCl. RESULTS: Neither treatment with amotosalen nor UVA alone had an effect on Leishmania viability; however, treatment with 150 micromol per L amotosalen plus 3 J per cm(2) UVA inactivated both metacyclic promastigotes and amastigotes to undetectable levels, more than a 10,000-fold reduction in viability. CONCLUSIONS: This study demonstrates the effectiveness of photochemical treatment to inactivate Leishmania in PLT concentrates intended for transfusion. Both metacylic promastigotes, which represent the infectious form from the sand fly vector, and amastigotes, which represent the form that grows in mononuclear phagocytes, were extremely susceptible to photochemical inactivation by this process. Thus, the photochemical treatment of PLT concentrates inactivates both forms of Leishmania that would be expected to circulate in blood products collected from infected donors.  相似文献   

10.
11.
BACKGROUND: This study evaluated the efficacy of photochemical treatment (PCT) with amotosalen and ultraviolet A (UVA) light to inactivate Trypanosoma cruzi in contaminated platelet (PLT) components. STUDY DESIGN AND METHODS: Fifteen pools of buffy-coat PLTs (BC-PLTs) were inoculated with approximately 5 x 10(3) to 5 x 10(5) per mL of viable T. cruzi of the G, Tulahuen (T), or Y strains. Samples from BC-PLTs were assayed for infectivity before and after PCT with 150 micromol per L amotosalen and 3 J per cm(2) UVA light. Infectivity was determined with three different methods: 1) in vitro culture to detect viable epimastigotes, 2) [(3)H]thymidine incorporation in culture, and 3) in vivo inoculation into interferon-gamma receptor (IFN-gammaR)-deficient mice. RESULTS: The in vitro assay yielded viable parasite titers of 3.9 x 10(5), 2.8 x 10(4), and 5.6 x 10(3) per mL (corresponding to 5.6, 4.4, and 3.8 logs/mL) for the Y, T, and G strains, respectively. PCT was able to inactivate all three strains of T. cruzi to below the limit of detection (10 parasites/mL) in the sensitive in vivo assay. Because 10-mL samples, each concentrated into a 1-mL sample for inoculation, were tested in the in vivo assay, log reductions achieved were greater than 5.6, greater than 4.4, and greater than 3.8 for the Y, T, and G strains of T. cruzi, respectively. CONCLUSIONS: The pathogen reduction system with amotosalen HCl and UVA demonstrated robust efficacy for inactivation of high doses of three different strains of T. cruzi and offers the potential to make the PLT supply safer.  相似文献   

12.
13.
Picker SM  Speer R  Gathof BS 《Transfusion》2004,44(3):320-329
BACKGROUND: One blood system for PLTs (INTERCEPT, Baxter Transfusion Therapies) is based on photochemical treatment (PCT) with small molecules that target cross-link nucleic acids (Helinx technology, Cerus Corp.) with amotosalen-HCl (S-59) and UVA light (320-400 nm) to inactivate pathogens and WBCs. STUDY DESIGN AND METHODS: A two-arm in vitro study was conducted to compare pooled buffy-coat-derived PLT concentrates (PCs) treated with the INTERCEPT blood system, resuspended in PLT additive solution (PAS) III (InterSol, Baxter Transfusion Therapies), and stored for up to 7 days (test units, n = 20) with unpaired, nontreated PCs, resuspended in PAS II (T-Sol, Baxter Transfusion Therapies), and prepared at the same center in the same manner (control units, n = 18). RESULTS: PLT dose (x 1011/unit +/- SD) on Day 1 immediately following PCT was 3.0 +/- 0.4 for test units and 3.2 +/- 0.4 for control units. After 7 days of storage, the pH of all test units was maintained above 6.8. No marked trend was observed in the hypotonic shock response (HSR). Values among study groups were similar at the end of observation period: 68 +/- 11 percent for control unites versus 67 +/- 8 percent for test units (p > 0.05). Aggregation response to ristocetin was slightly lower in test units: at Day 7, 65 +/- 10 percent versus 76 +/- 6 percent (p < 0.05). Significantly higher (p < 0.001) glucose consumption, lactate production, and CD62P expression were observed in test units. CONCLUSION: Compared to nontreated PLTs, the PCT process was associated with a variety of differences of in vitro analyses. Although significant, these changes were relatively small in most cases. Characteristics correlated with survival in vivo such as HSR and swirling were comparable between both study groups, indicating that the viability of the majority of cells appears to have persisted throughout 7 days of storage. The impact of this finding, however, remains to be investigated in clinical trials performed with 7-day stored PLTs.  相似文献   

14.
BACKGROUND: Photochemical treatment (PCT) of platelets (PLTs) with amotosalen and ultraviolet A light to inactivate bacteria may facilitate extension of storage from 5 to 7 days. STUDY DESIGN AND METHODS: A randomized, double-blinded, crossover, noninferiority, single-site pilot study utilizing pooled buffy-coat PLTs was conducted. The primary endpoint was the 1-hour corrected count increment (CCI) after one transfusion each of 7-day-old PCT and reference (R) PLT components. Secondary endpoints included 1-hour count increment, time to next transfusion, hemostasis, transfusion reactions, and serious adverse events. RESULTS: Twenty patients with thrombocytopenia were randomly assigned: 9 to the PCT-R sequence and 11 to the R-PCT sequence. A significant treatment-by-period interaction was observed. Therefore, the first period only was also analyzed for the primary endpoint. Including both treatment periods, mean 1-hour CCI was 6587 +/- 4531 for PCT versus 8935 +/- 5478 for R-PLTs. For the first period only, mean 1-hour CCI was 8739 +/- 3785 for PCT versus 7433 +/- 5408 for R-PLTs. The upper bound of the one-sided 95 percent confidence interval of 2400 for the mean difference was higher than the specified noninferiority margin of 2200 for both analyses. Overall median time to next transfusion was 22 hours for PCT versus 27 hours for R-PLTs. Hemostasis was adequate and no transfusion reactions or serious adverse events were reported. CONCLUSIONS: Although this pilot study of a limited number of patients failed to show noninferiority within the specified noninferiority margin, 7-day-old PCT PLTs showed acceptable efficacy and safety for support of thrombocytopenia. The results, however, warrant evaluation in a larger trial of 7-day-old PCT PLTs.  相似文献   

15.
BACKGROUND: Pathogen reduction of platelets (PRT‐PLTs) using riboflavin and ultraviolet light treatment has undergone Phase 1 and 2 studies examining efficacy and safety. This randomized controlled clinical trial (RCT) assessed the efficacy and safety of PRT‐PLTs using the 1‐hour corrected count increment (CCI1hour) as the primary outcome. STUDY DESIGN AND METHODS: A noninferiority RCT was performed where patients with chemotherapy‐induced thrombocytopenia (six centers) were randomly allocated to receive PRT‐PLTs (Mirasol PRT, CaridianBCT Biotechnologies) or reference platelet (PLT) products. The treatment period was 28 days followed by a 28‐day follow‐up (safety) period. The primary outcome was the CCI1hour determined using up to the first eight on‐protocol PLT transfusions given during the treatment period. RESULTS: A total of 118 patients were randomly assigned (60 to PRT‐PLTs; 58 to reference). Four patients per group did not require PLT transfusions leaving 110 patients in the analysis (56 PRT‐PLTs; 54 reference). A total of 541 on‐protocol PLT transfusions were given (303 PRT‐PLTs; 238 reference). The least square mean CCI was 11,725 (standard error [SE], 1.140) for PRT‐PLTs and 16,939 (SE, 1.149) for the reference group (difference, ?5214; 95% confidence interval, ?7542 to ?2887; p < 0.0001 for a test of the null hypothesis of no difference between the two groups). CONCLUSION: The study failed to show noninferiority of PRT‐PLTs based on predefined CCI criteria. PLT and red blood cell utilization in the two groups was not significantly different suggesting that the slightly lower CCIs (PRT‐PLTs) did not increase blood product utilization. Safety data showed similar findings in the two groups. Further studies are required to determine if the lower CCI observed with PRT‐PLTs translates into an increased risk of bleeding.  相似文献   

16.
17.
BACKGROUND: Transfusion-transmitted cases of malaria and babesiosis have been well documented. Current efforts to screen out contaminated blood products result in component wastage due to the lack of specific detection methods while donor deferral does not always guarantee safe blood products. This study evaluated the efficacy of a photochemical treatment (PCT) method with amotosalen and long-wavelength ultraviolet light (UVA) to inactivate these agents in red blood cells (RBCs) contaminating platelet (PLT) and plasma components. STUDY DESIGN AND METHODS: Plasmodium falciparum- and Babesia microti-contaminated RBCs seeded into PLT and plasma components were treated with 150 micromol per L amotosalen and 3 J per cm2 UVA. The viability of both pathogens before and after treatment was measured with infectivity assays. Treatment with 150 micromol per L amotosalen and 1 J per cm2 UVA was used to assess the robustness of the PCT system. RESULTS: No viable B. microti was detected in PLTs or plasma after treatment with 150 mol per L amotosalen and 3 J per cm2 UVA, demonstrating a mean inactivation of greater than 5.3 log in PLTs and greater than 5.3 log in plasma. After the same treatment, viable P. falciparum was either absent or below the limit of quantification in three of four replicate experiments both in PLTs and in plasma demonstrating a mean inactivation of at least 6.0 log in PLTs and at least 6.9 log in plasma. Reducing UVA dose to 1 J per cm2 did not significantly affect the level of inactivation. CONCLUSION: P. falciparum and B. microti were highly sensitive to inactivation by PCT. Pathogen inactivation approaches could reduce the risk of transfusion-transmitted parasitic infections and avoid unnecessary donor exclusions.  相似文献   

18.
BACKGROUND: It is estimated that approximately 300,000 neonates undergo transfusions annually. The neonatal immune system is immature, making such patients more susceptible to the effects associated with transfusion-transmitted bacteria, viruses, protozoa, and white blood cells (WBCs). The INTERCEPT Blood System is a photochemical process (PCT) utilizing amotosalen and long-wavelength ultraviolet to inactivate pathogens and WBCs in both platelet (PLT) and plasma components for transfusion. A series of clinical studies has shown PCT PLTs and PCT plasma to be safe and effective for transfusion in adults and pediatric patients. Because clinical studies in neonates are technically difficult and ethically challenging, preclinical toxicologic studies were conducted in neonatal rats to evaluate the safety of PCT blood components for neonates.
STUDY DESIGN AND METHODS: This study examined daily intravenous administration to neonatal rats of amotosalen in 35 percent:65 percent plasma:InterSol from 1 µg per kg per day (representing 1-unit transfusion) to 457 µg per kg per day (representing multiple transfusions) from Postnatal Day 4 (PND4) to PND31. Rats were observed for viability, clinical signs, and body weights until PND31 and then subjected to pathology evaluation. Hematology, clinical chemistry, and urinalysis data were also collected on PND31. Toxicokinetic parameters were evaluated on PND4 and PND31.
RESULTS: There were no amotosalen-related effects on clinical signs, body weight, hematology, clinical chemistry, urinalysis, gross pathology, or histopathology, despite the exposure of neonatal rats to amotosalen concentrations as high as approximately 48 times the standard exposure in adult patients.
CONCLUSION: This study demonstrates the safety of PCT for transfusion in neonatal rats and augments data from other studies and clinical use supporting the use of PCT in neonatal patients.  相似文献   

19.
BACKGROUND: This multicenter, randomized, controlled, double-blind Phase III clinical study evaluated the therapeutic efficacy and safety of apheresis platelets (PLTs) photochemically treated (PCT) with amotosalen and ultraviolet A light (INTERCEPT Blood System, Baxter Healthcare Corp.) compared with conventional apheresis PLTs (reference). STUDY DESIGN AND METHODS: Forty-three patients with transfusion-dependent thrombocytopenia were randomly assigned to receive either PCT or reference PLT transfusions for up to 28 days. RESULTS: The mean 1- and 24-hour corrected count increments were lower in response to PCT PLTs (not significant). When analyzed by longitudinal regression analysis, the estimated effect of treatment on 1-hour PLT count was a decrease of 7.2 x 10(9) per L (p = 0.05) and on 24-hour PLT count a decrease of 7.4 x 10(9) per L (p = 0.04). Number, frequency, and dose of PLT transfusions; acute transfusion reactions; and adverse events were similar between the two groups. There was no transfusion-associated bacteremia. Four PCT patients experienced clinical refractoriness; however, only one exhibited lymphocytotoxicity assay seroconversion. Antibodies against potential amotosalen-related neoantigens were not detected. CONCLUSION: PCT PLTs provide effective and safe transfusion support for thrombocytopenic patients.  相似文献   

20.
BACKGROUND: Photochemical treatment (PCT) with amotosalen HCl (S-59) was developed to inactivate pathogens and white blood cells in plasma (PCT-FFP) used for transfusion support. STUDY DESIGN AND METHODS: An open-label, multicenter trial was conducted in patients with congenital coagulation factor deficiencies (factors [F]I, FII, FV, FVII, FX, FXI, and FXIII and protein C) to measure the kinetics of specific coagulation factors, hemostatic efficacy, and safety of PCT-FFP. Posttransfusion prothrombin time (PT), partial thromboplastin time (PTT), and clinical hemostasis were evaluated before and after PCT-FFP transfusions. RESULTS: Thirty-four patients received 107 transfusions of PCT-FFP for kinetic studies or therapeutic indications (mean dose, 12.8 +/- 8.5 mL/kg). Incremental factor recoveries ranged from 0.9 to 2.4 IU per dL per IU per kg (FII, FV, FVII, FX, FXI, and protein C). Mean pretransfusion PT (20.7 +/- 22.2 sec) corrected after PCT-FFP (13.8 +/- 2.4 sec, p < 0.001). Mean pretransfusion PTT (51.2 +/- 29.3 sec) corrected after PCT-FFP (32.0 +/- 5.1 sec, p < 0.001). Thirteen patients required 77 transfusions for therapeutic indications. PCT-FFP provided effective hemostasis and was well tolerated. CONCLUSIONS: Replacement coagulation factors in PCT-FFP exhibited kinetics and therapeutic efficacy consistent with conventional FFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号