首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects in male rats of serotonin depletion (using the neurotoxin 5,7-dihydroxytryptamine) on the cross-sensitization of an acute social stress (defeat by a larger resident male) by previous repeated restraint stress (10 days, 60 min per day) was studied. Previous restraint increased freezing responses during social defeat in sham-operated rats, but this was not observed in those with depleted serotonin (83% or more in different regions of the brain). In contrast, neither heart rate (tachycardia) nor core temperature responses (hyperthermia) were accentuated in previously restrained rats (i.e. neither showed heterotypical sensitization), and neither adapted to repeated restraint (there is a hypothermic core temperature response during restraint). Corticosterone levels, which did adapt, nevertheless did not show accentuated responses to social defeat in previously restrained rats, though samples could only be taken 60 min after defeat. c-fos expression in the central nucleus of the amygdala 60 min after social defeat was increased by previous restraint. No other areas examined in the hypothalamus (e.g., paraventricular nucleus) or brainstem (e.g., solitary nucleus) showed differences related to previous restraint. Serotonin depletion reduced the expression of c-fos in the frontal cortex, lateral preoptic area, medial amygdala, central gray, medial and dorsal raphe, and locus coeruleus after social stress, but this was not altered by previous restraint. These results show that serotonin depletion has selective effects on the cross-sensitization of responses in previously stressed rats to a heterotypical stressor.  相似文献   

2.
Chronic stress is a vulnerability factor for a number of psychiatric disorders, including anxiety and affective disorders. Social defeat in rats has proven to be a useful paradigm to investigate the neural mechanisms underlying physiologic and behavioral adaptation to acute and chronic stress. Previous studies suggest that serotonergic systems may contribute to the physiologic and behavioral adaptation to chronic stress, including social defeat in rodent models. In order to test the hypothesis that repeated social defeat alters the emotional behavior and the excitability of brainstem serotonergic systems implicated in control of emotional behavior, we exposed adult male rats either to home cage control conditions, acute social defeat, or social defeat followed 24 h later by a second social defeat encounter. We then assessed behavioral responses during social defeat as well as the excitability of serotonergic neurons within the dorsal raphe nucleus using immunohistochemical staining of tryptophan hydroxylase, a marker of serotonergic neurons, and the protein product of the immediate-early gene, c-fos. Repeated social defeat resulted in a shift away from proactive emotional coping behaviors, such as rearing (explorative escape behavior), and toward reactive emotional coping behaviors such as freezing. Both acute and repeated defeat led to widespread increases in c-Fos expression in serotonergic neurons in the dorsal raphe nucleus. Changes in behavior following a second exposure to social defeat, relative to acute defeat, were associated with decreased c-Fos expression in serotonergic neurons within the dorsal and ventral parts of the mid-rostrocaudal dorsal raphe nucleus, regions that have been implicated in 1) serotonergic modulation of fear- and anxiety-related behavior and 2) defensive behavior in conspecific aggressive encounters, respectively. These data support the hypothesis that serotonergic systems play a role in physiologic and behavioral responses to both acute and repeated social defeat.  相似文献   

3.
Repeated exposure to stress induces cross-sensitization to psychostimulants. The present study assessed functional neural activation during social defeat stress-induced sensitization to a subsequent amphetamine challenge. Social defeat stress was induced in intruder rats during short confrontations with an aggressive resident rat once every third day during the course of 10 days. Rats received d-amphetamine injections (1 mg/kg, i.p.) 17 or 70 days after the first social defeat stress exposure. Amphetamine administration induced a significantly higher frequency of locomotor activity in stressed animals than in handled control rats, which was still evident 2 months after the last social stress exposure. Immunohistochemistry for Fos-like proteins was used to detect activated neural profiles in the striatum, nucleus accumbens (NAc), prefrontal cortex, amygdala, and ventral tegmental area (VTA). Repeated social defeat stress significantly increased Fos-like immunoreactive (Fos-LI) labeling 17 days after the start of stress exposure in the prelimbic and infralimbic cortical regions, NAc shell and core, medial, central and basolateral amygdala, and VTA, which probably represented the expression of chronic Fos-related antigens. Amphetamine augmented stress-induced Fos-LI labeling 17 days after the first stress episode in the dorsal striatum, NAc core, and medial amygdala, reflecting a cross-sensitization of Fos response. Amphetamine challenge 70 days after social stress exposures revealed sensitized Fos-LI labeling in the VTA and the amygdala. These data suggest that episodes of repeated social stress induce a long-lasting neural change that leads to an augmented functional activation in the VTA and amygdala, which might represent a neurobiological substrate for long-lasting cross-sensitization of repeated social defeat stress with psychostimulant drugs.  相似文献   

4.
Exposure to acute stress has been shown to increase the expression of pro-inflammatory cytokines in brain, blood and peripheral organs. However, the nature of the inflammatory response evoked by acute stress varies depending on the stressor used and species examined. The goal of the following series of studies was to characterize the consequences of social defeat in the Sprague Dawley (SD) rat using three different social defeat paradigms. In Experiments 1 and 2, adult male SD rats were exposed to a typical acute resident-intruder paradigm of social defeat (60 min) by placement into the home cage of a larger, aggressive Long Evans rat and brain tissue was collected at multiple time points for analysis of IL-1β protein and gene expression changes in the PVN, BNST and adrenal glands. In subsequent experiments, rats were exposed to once daily social defeat for 7 or 21 days (Experiment 3) or housed continuously with an aggressive partner (separated by a partition) for 7 days (Experiment 4) to assess the impact of chronic social stress on inflammatory measures. Despite the fact that social defeat produced a comparable corticosterone response as other stressors (restraint, forced swim and footshock; Experiment 5), acute social defeat did not affect inflammatory measures. A small but reliable increase in IL-1 gene expression was observed immediately after the 7th exposure to social defeat, while other inflammatory measures were unaffected. In contrast, restraint, forced swim and footshock all significantly increased IL-1 gene expression in the PVN; other inflammatory factors (IL-6, cox-2) were unaffected in this structure. These findings provide a comprehensive evaluation of stress-dependent inflammatory changes in the SD rat, raising intriguing questions regarding the features of the stress challenge that may be predictive of stress-dependent neuroinflammation.  相似文献   

5.
Mesolimbic brain-derived neurotrophic factor (BDNF) is implicated in sustained behavioral changes following chronic social stress, and its depletion may reduce susceptibility to such behavioral alterations. Enhanced mesolimbic BDNF is proposed as pro-depressive and anhedonic, while depleting ventral tegmetal area (VTA) BDNF increases weight by enhancing hedonic eating. Here, we questioned whether depletion of VTA BDNF would alleviate social defeat stress-induced deficits in weight regulation, or affect social behavior in the presence or absence of social stress. Male Sprague-Dawley rats received bilateral intra-VTA infusions of adeno-associated virus (AAV) vectors containing shRNA against BDNF or a control virus. Three weeks later, rats underwent 4 episodes of social defeat stress involving exposure to an aggressive Long-Evans resident rat, or control handling every third day. Depleted VTA BDNF conferred resistance to the deficient weight regulation normally observed during intermittent social defeat stress, and enhanced long-term weight gain regardless of stress history. In addition, social approach and avoidance behavior towards a novel social target were measured 7 weeks after stress. Social defeat stress chronically reduced social behavior, whereas depletion of VTA BDNF chronically increased social behavior. Our results reveal that depletion of VTA BDNF alleviates some consequences of intermittent social defeat stress, enhances social behavior, and may contribute to weight gain. These data implicate VTA BDNF in protracted behavioral responses to stress, social stimuli, and weight regulation.  相似文献   

6.
Social defeat, resulting from the fight for a territory is based on the resident-intruder paradigm. A male rat intruder is placed in the territory of an older, bigger and more aggressive male resident and is defeated. In the present study, a double exposure to social defeat increased sleep fragmentation due to an increased amount of waking and slow-wave-sleep-1 (SWS-1) episodes. Also, social defeats increased the amount of slow-wave-sleep-2 (SWS-2). In repeated exposures to an open field, socially defeated rats showed low central activity and persistent defecation indicating high emotionality. The strongest effects of social defeat on sleep and open field behaviour were seen sub-chronically after stress. Social defeat did not induce changes in rapid eye movement (REM) sleep (e.g. total amount, latency), sleep latency, sexual activity, body weight or adrenal weight. A negative correlation between habituation in open field central activity and total sleep fragmentation indicates a commonality of effects of social defeat on both behaviour and sleep.  相似文献   

7.
Social defeat stress is an ethologically salient stressor which activates dopaminergic areas and, when experienced repeatedly, has long-term effects on dopaminergic function and related behavior. The mechanism for these long-lasting consequences remains unclear. A potential candidate for mediating these effects is brain-derived neurotrophic factor (BDNF), a neurotrophin involved in synaptic plasticity and displaying alterations in dopaminergic regions in response to various types of stress. In this study, we sought to determine whether repeated social defeat stress altered BDNF mRNA and protein expression in dopaminergic brain regions either immediately after the last stress exposure or 4 weeks later. Male Sprague–Dawley rats were subjected to social defeat stress consisting of brief confrontation with an aggressive male rat every third day for 10 days; control rats were handled according to the same schedule. Animals were euthanized either 2 h or 28 days after the last stress or handling episode. Our results show that 2 h after stress, BDNF protein and mRNA expression increased in the medial prefrontal cortex. At this time-point, BDNF mRNA increased in the amygdala and protein expression increased in the substantia nigra. Twenty-eight days after stress, BDNF protein and mRNA expression were elevated in the medial amygdala and ventral tegmental area. Given the role of BDNF in neural plasticity, BDNF alterations that are long-lasting may be significant for neural adaptations to social stress. The dynamic nature of BDNF expression in dopaminergic brain regions in response to repeated social stress may therefore have implications for lasting neurochemical and behavioral changes related to dopaminergic function.  相似文献   

8.
Mouse-killing, cockroach predation, and conspecific attack were examined in male Long-Evans rats with a history of intraspecific aggression (n = 20), defeat (n = 20), or no aggressive experience (n = 20). Roaches were more likely to be attacked during 30 min tests, and were attacked more rapidly than mice or rats regardless of previous social experience of subjects. Rats with aggressive experience attacked conspecifics more readily than subjects with defeat or no experience. There was no effect of prior experience on mouse-killing. These results indicate that mouse-killing does not correspond closely to either predation or intraspecific attack.  相似文献   

9.
Stress of social defeat in rodents is known to have a strong and long-lasting effect on brain, physiology and behavior, which bears similarities with certain human stress related psychopathologies. Previous experiments in this lab showed that social defeat stress suppresses testosterone secretion and causes a lasting desensitization of the serotonergic 5-HT1A receptors. Testosterone supplementation in socially stressed tree shrews prevented a decrease in hippocampal 5-HT1A receptor binding. These receptors are hypothesized to play an important role in neurogenesis in this brain structure. We designed the present experiment to test if social defeat reduces hippocampal cell proliferation and neurogenesis in rats and if testosterone supplementation can prevent this reduction. The results indicate that repeated social defeat stress on 5 successive days induces a significant drop in plasma testosterone levels in male rats and suppresses hippocampal cell proliferation 24 h and 3 weeks after the end of the stress period. Testosterone supplementation prevented the social stress induced drop in plasma testosterone levels. The hormone supplementation also reduced the negative effect of stress on hippocampal BrdU labeling at 3 weeks post-defeat. This effect was, however, rather weak and was caused by the tendency of the hormone in itself to suppress proliferation and the failure to fully recover the proliferation rate. Survival of dentate gyrus cells that either proliferated prior to the stress period or 24 h after the last defeat was not affected by the social defeats. Thus the stress-induced lowering of hippocampal cell proliferation is not likely to be caused by transient inhibition of testosterone secretion during social stress.  相似文献   

10.
The naturally occurring tendency to compete with other rats for territorial space has been used to study individual behavior characteristics and blood pressure reactivity to social stimuli in adult male TMD-S3 rats. The competitive characteristics of the individual rats are consistent in two different social situations (victory and defeat). Blood pressure responses during the victory of home territory rats over intruders was more pronounced in the more competitive animals. In addition to defeat by a trained fighter rat, the experimentals were also psychosocially stimulated by the fighter while it was confined in a small wire mesh cage. The blood pressure response to this event was enhanced by the prior defeat of the test animal by the one now confined to the small cage. This response was more pronounced in competitive rats. This approach has potential as an animal model of etiological processes in socially induced hypertension.  相似文献   

11.
We addressed the questions (i) whether a social defeat triggers similar autonomic and behavioral responses in birds as is known from mammals and (ii) whether individuals that differ in coping style differ in their reaction to a social defeat. Adult captive male great tits (Parus major) from either of two different selection lines for coping style were used to test the effect of social defeat by an aggressive resident male conspecific on subsequent social and nonsocial behaviour, body temperature, breath rate and body mass. These parameters were measured 1 day before (baseline), immediately after and at Days 1 to 3 and 6 after the social interaction took place (Day 0). Social defeat decreased social exploration and increased body temperature substantially for at least 1 day in all birds. Breath rate and body mass were not affected. Birds belonging to the more aggressive and bolder line showed impairment in activity immediately after the social defeat. This is to our knowledge the first report showing that psychosocial stress in birds can have a similar impact as in rodents, but with a shorter recovery time. This might be due to species-specific differences in sensitivity to social stress, or to differences in the way social stress was induced.  相似文献   

12.
Since stress plays a role in the onset and physiopathology of psychiatric diseases, animal models of chronic stress may offer insights into pathways operating in mood disorders. The aim of this study was to identify the molecular changes induced in rat hippocampus by repeated exposure to psychosocial stress with a proteomic technique. In the social defeat model, the experimental animal was defeated by a dominant male eight times. Additional groups of rats were submitted to a single defeat or placed in an empty cage (controls). The open field test was carried out on parallel animal groups. The day after the last exposure, levels of hippocampal proteins were compared between groups after separation by 2-D gel electrophoresis and image analysis. Spots showing significantly altered levels were submitted to peptide fingerprinting mass spectrometry for protein identification. The intensity of 69 spots was significantly modified by repeated stress and 21 proteins were unambiguously identified, belonging to different cellular functions, including protein folding, signal transduction, synaptic plasticity, cytoskeleton regulation and energy metabolism. This work identified molecular changes in protein levels caused by exposure to repeated psychosocial stress. The pattern of changes induced by repeated stress was quantitatively and qualitatively different from that observed after a single exposure. Several changed proteins have already been associated with stress-related responses; some of them are here described for the first time in relation to stress.  相似文献   

13.
The extracellular signal-regulated kinase1/2 (ERK1/2) pathway has a key role in cell survival and brain plasticity, processes that are impaired following exposure to stressful situations. We have recently validated two repeated intermittent stress procedures in male NMRI mice, social threat and repeated exposure to a novel cage, which result in clear behavioral effects following 4 weeks of application. The present results demonstrate that both repeated intermittent stress procedures alter the activity of the ERK1/2 pathway in the brain, as shown by changes in phosphorylated ERK1/2 (phospho-ERK1/2) protein expression and in the expression of downstream proteins: phosphorylated cAMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF), in the hippocampus, the frontal cortex and the hypothalamus. The hippocampus showed greater responsiveness to stress as the two stressors increased phospho-ERK1/2 and BDNF expression under acute condition. Following repeated stress, hyperphosphorylation of ERK1/2 was associated with up-regulation of hippocampal BDNF expression in the social threat group but not in mice exposed to novel cage. This lack of a pro-survival effect of ERK1/2 with repeated novel cage exposure may constitute an early event in stress-mediated brain pathology. The sustained BDNF up-regulation in the hippocampi of mice subjected to repeated social threat could be related to rewarding aspects of aggressive interactions, suggested by our previous studies.  相似文献   

14.
Interactions between monoaminergic neurochemistry and macronutrient intake have been frequently shown. Because monoaminergic systems in the brain are also closely involved in behavioral and physiological stress responses it can be hypothesized that differences in the macronutrient composition of diets are reflected in these responses. The present studies, therefore, were designed to assess the consequences of a change in dietary macronutrient composition on a variety of physiological and behavioral responses (both acute and long-term) to a number of stressors. The effect of chronic high-fat (HF; 61% kcal from fat) feeding on the stress responses was compared with controls receiving regular high-carbohydrate (HC; 63% kcal from carbohydrates) laboratory chow. Rats were kept on this diet for at least 2 months before they were exposed to either psychological (social defeat) or physiological (lipopolysaccharide, LPS, administration) stress. At baseline, chronic HF feeding caused a slight, but significantly reduction in body temperature relative to that observed in HC-fed rats. Following social defeat or LPS injection, HF feeding caused a faster recovery of the body temperature increase relative to animals on the HC diet. Stress-induced suppression of home cage locomotor activity and body weight gain were also reduced by HF feeding. The serotonergic 5-HT(1a) receptor hyposensitivity that was observed in HC-fed rats 2 weeks after stress was absent in the HF regimen. Although the present results cannot be readily interpreted as showing purely beneficial effects of high-fat diets on stress responsivity, the findings in the present study do encourage further investigation of possible ameliorating effects of high-fat diets on aspects of the behavioral and physiological response stress.  相似文献   

15.
Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.  相似文献   

16.
Early life adversity or parental neglect is linked to the development of a number of psychiatric illnesses, including major depression and substance use disorder. These two disorders are often comorbid and characterized by anhedonia, defined as the reduced ability to experience pleasure or reward. The aim of the present study was to determine the effects of neonatal maternal separation in Long Evans rats, a model of early life stress, on anhedonia under baseline conditions and in response to drug and stress exposure during adulthood. Three hours of daily maternal separation from postnatal day 1 to 14 led to marked decreases in arched-back nursing, licking, and grooming of pups by their dams. In adulthood, brain reward function was assessed using intracranial self-stimulation of the lateral hypothalamus. Lowered current thresholds derived from this procedure are interpreted as reward-enhancing effects, whereas elevations in thresholds are an operational measure of anhedonia. Maternally separated rats did not exhibit anhedonia under baseline conditions compared with non-handled controls but exhibited a greater reward-enhancing effect of acute amphetamine administration. Acute social defeat produced anhedonia in non-handled controls, but not in maternally separated rats. Conversely, control rats habituated to 7 days of repeated social defeat, whereas maternally separated rats developed an increased anhedonic response to the repeated stressor. One week after termination of stress exposure, maternally separated rats still exhibited an increased reward-enhancing effect of acute amphetamine administration compared with non-handled controls, regardless of prior social defeat experience. These data indicate that early life stress increases the reward-enhancing properties of amphetamine, protects against the anhedonic effects of acute stress exposure, and exacerbates the anhedonic response to repeated stress. Thus, early life stress may increase an individual's vulnerability to depressive or addictive disorders when confronted with stress or drug challenge in adulthood.  相似文献   

17.
A single social defeat by a dominant conspecific induces long-term changes in several physiological and behavioral parameters in rats. These changes may represent an increased vulnerability to subsequent stress and stress-related pathology. Environmental factors, in particular possibilities for social interactions, could modulate these effects. Therefore, we assessed the influence of social environment on susceptibility for the long-term effects of social defeat. Socially housed males of an unselected strain of wild-type rats were equipped with radio-telemetry transmitters that recorded heart rate, temperature and activity. They were individually subjected to defeat and subsequently either housed alone or returned to their group. Behavioral and physiological responses to various novelty stressors were determined during a three-week period after the social defeat. Furthermore, changes in baseline behavior and physiology following defeat were studied in the rat's homecage. The results show a complex interaction between defeat and housing conditions. Depending on the parameters measured, effects were caused by both isolation alone, defeat alone or a combination of both defeat and isolation. Individual housing alone caused a characteristic hyperactive response to novelty stress. Though defeat did not affect behavioral responses, it amplified the physiological response to novelty and social housing did not attenuate this effect. However, social housing did reduce the effects of defeat on heart rate, temperature and activity in the home cage and completely prevented defeat-induced weight loss. Together these results indicate that social housing may indeed positively affect the animal's capacity to cope with stressors.  相似文献   

18.
The role of serotonin in stress and anxiety, particularly in social environments, is not well understood. Selective serotonin reuptake inhibitors are useful for patients that experience social anxiety; however, their mechanism of action has not been fully characterized. Dopamine is known to operate in different temporal modes (fast phasic, intermediate, and tonic changes). We hypothesized that serotonin may also operate in temporal modes in the context of social stress. We used wireless voltammetry (4 Hz) to investigate changes in extracellular ventral striatal serotonin and dopamine during a test of repeated social interactions between two rats. Test rats (electrode-implanted; n = 5) and counter rats (n = 6) were placed in separate sections of a partitioned box. The partitions were raised to allow interactions for 10 min; four sessions were repeated at 10-min intervals. In the first session, serotonin increased gradually, then peaked at approximately the end of the interaction, and decreased rapidly between sessions. This slow phasic increase in serotonin diminished gradually (but significantly) in subsequent interactions. Test rats received active, one-sided contacts (chasing, walking-over, and occasional attacking behavior) from counter rats. Changes in contact times were not correlated with changes in phasic serotonin increases. Dopamine levels did not increase. Citalopram caused significant suppression of slow phasic increases, caused tonic increases in basal serotonin concentrations, and caused active (chasing, all grooming), but not aggressive behavior in test rats. These findings implied that the slow phasic serotonin increase in the ventral striatum induced adaptation to social stress caused by a counter rat; moreover, the tonic increase in serotonin promoted the adaptive change and caused socially dominant behavior.  相似文献   

19.
We have studied the long-term behavioral effects of a single stressor in male rats by using an approach/avoidance situation as the behavioral endpoint. A single exposure to social defeat or electric shocks was used as stressors. Behavioral testing was performed in a two-compartment cage divided by an opaque wall and connected by a short tunnel. The larger compartment contained an unfamiliar male rat that was separated from the rest of the compartment by a transparent, perforated Plexiglas wall. The subject was placed in the small compartment and allowed to explore the cage for 5 min. The test was performed on Days 1, 5, or 10 after stress application. Unstressed rats spent 90% of time in the large compartment that contained the unfamiliar male. Social defeat dramatically reduced the exploration of the large compartment, without time-related changes in this response. A mild electric shock had a similar effect that lasted more than 5 days but less than 10 days. The exploration of an empty cage was significantly less inhibited by stress than the exploration of a cage that contained the stimulus rat. The test could be applied repeatedly in the same rat, without major changes in the response. Chlordiazepoxide applied 1 h before behavioral testing abolished completely the stress-induced behavioral deficit. We suggest that the model can be used for studying the effects of various compounds on stress-induced anxiety.  相似文献   

20.
Castrated male hooded rats were given electrolytic lesions of the medial hypothalamus or sham lesions. Another group of castrated rats was implanted subcutaneously with bilateral testosterone-filled Silastic capsules or empty capsules. Lesioned animals with a high defensiveness (reactivity) score toward the experimenter were each placed in a cage with a sham-lesioned animal of a similar weight. Animals with testosterone implants were likewise housed with an animal of similar weight without a testosterone implant. Following a period of adaptation to a 23-hr water deprivation schedule, each pair of rats was given daily competition tests on each of 6 days. During the tests, a single water spout was placed in the cage for a 4-min period. The spout was surrounded by a plastic ring which prevented more than one animal from drinking at any time. Access to an unencumbered water spout was present following the competition test for 1-hr each day. Rats with medial hypothalamic lesions displayed more aggression than sham-lesioned rats during the competition tests and were able to spend more time drinking. Rats with testosterone implants were more successful in maintaining access to the spout but did not consistently display more aggression than their cagemates without testosterone implants. The aggression of the lesioned rats was defensive while that of animals with testosterone implants corresponded to intermale social aggression. These results demonstrate that a competitive situation can elicit intermale social aggression mediated by testosterone and defensiveness induced by medial hypothalamic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号