首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tissue inhibitors of metalloproteinases (TIMPs) are multifunctional proteins that have the capacity to modify cellular activities and to modulate matrix turnover. We demonstrate that TIMP-1 messenger RNA (mRNA) and protein expression are selectively and markedly increased in a murine model of bleomycin-induced pulmonary fibrosis. Northern analysis showed that lung steady-state TIMP-1 mRNA levels increased 14-fold after bleomycin administration compared with control mice. Expression of the genes for TIMP-2, TIMP-3, and interstitial collagenase (matrix metalloproteinase-13) was unaltered in the injured lung. In situ hybridization demonstrated that TIMP-1 gene induction was spatially restricted to areas of lung injury. Metalloproteinase inhibitory activity of relative molecular mass of ~ 21 to 28 kD, corresponding to the molecular weights for TIMP-1 and TIMP-2, was identified in lung extracts of bleomycin-injured mice by reverse zymography. Western analysis demonstrated that TIMP-1 protein levels in bronchoalveolar lavage fluid (BALF) of bleomycin-treated mice increased 220- and 151-fold at Days 4 and 28, respectively, compared with control mice. TIMP-2 immunoreactive protein in the BALF increased 20- and 103-fold relative to controls at Days 4 and 28, respectively. These results demonstrate that TIMP-1 gene expression is selectively increased, and that the expression of TIMP-1 and TIMP-2 is differentially regulated in bleomycin-induced pulmonary fibrosis. The profound and durable increase in TIMP-1 and TIMP-2 proteins suggests an important regulatory role for these antiproteases in the inflammatory and fibrotic responses to bleomycin-induced lung injury.  相似文献   

3.
Time course of bleomycin-induced lung fibrosis   总被引:10,自引:0,他引:10  
Intratracheal instillation (IT) of bleomycin is a widely used experimental model for lung fibrosis. In this study we describe the time-course of bleomycin-induced lung fibrosis in mice using computer-assisted morphometry. C57Bl/6J mice were treated with a single IT dose of bleomycin or control saline. Animals were killed 3, 6, 14 and 21 days post-IT. Lung injury was evaluated by analysis of bronchoalveolar lavage (BAL) fluid, hydroxyproline concentration in the lung, routine light microscopic examination resulting in a semiquantitative morphological index (SMI) of lung injury, and quantitative morphological measurements (fibrosis fraction and alveolar wall area fraction) aided by optimas image analysis software. Changes in BAL fluid attributed to bleomycin treatment include increased total cell count (days 14 and 21), and increased percentage of neutrophils (days 3 and 6) followed by a sustained increase in lymphocytes (days 6, 14 and 21). Hydroxyproline levels increased in bleomycin-treated mice on days 14 and 21. Median SMI grades were significantly elevated on days 3, 14 and 21. Computer-assisted morphometry demonstrated a 3-fold increase in fibrosis fraction and a 1.3-fold increase in wall area fraction in bleomycin-treated mice on day 14, with no further increase on day 21. These data also demonstrate that the most suitable time point for assessing lung fibrosis in this model is 14 days after IT instillation of bleomycin, based on the observation that at 14 days the animals developed extensive fibrosis, but had less variability in the fibrotic response and lower mortality than later at 21 days. Computer-assisted morphometry provides objective and quantitative measurements that are a useful tool for the evaluation of bleomycin-induced lung injury.  相似文献   

4.
Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that has been shown to play a major role in the processing and/or secretion of procollagen. However, the knowledge on which cells are actually synthesizing HSP47 in the lung parenchyma in pulmonary fibrosis was only limited. The aim of the present study was to investigate the localization of HSP47 messenger ribonucleic acid (mRNA) in normal lung and in the lungs of mice in bleomycin-induced pulmonary fibrosis, using in situ hybridization. For the purpose, ICR mice were intravenously injected with 10 mg/kg per day of bleomycin for five consecutive days. The lung cells expressing HSP47 mRNA were identified in control (saline alone) and bleomycin-treated mice by in situ hybridization. The signal for HSP47 mRNA was markedly increased in bleomycin-treated lungs compared with that of controls. HSP47 mRNA was localized in α-smooth-muscle-actin-positive myofibroblasts, surfactant-protein-A-positive type II pneumocytes, and F4/80-positive macrophages in the active fibrotic areas. These results suggest that these cells may synthesize procollagen in the fibrotic process of bleomycin-treated lungs through upregulation of HSP47 mRNA and play an important role in fibrogenesis.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) is a family of autocrine/paracrine/endocrine cytokines involved in controlling cell growth and extracellular matrix metabolism. TGF-beta exerts its biological effects via binding to type I (TbetaRI) and type II (TbetaRII) receptors. To gain insight into the possible role of TGF-beta receptors in the pathogenesis of pulmonary fibrosis, we investigated the expression of TGF-beta receptors and their ligands in a bleomycin-induced model of pulmonary fibrosis. We found that the expression of both TbetaRI and TbetaRII was altered in rat lungs during pulmonary fibrosis induced by bleomycin. The increase in TbetaRI mRNA level was evident after 3 days of bleomycin administration, and TbetaRI mRNA continually increased for over 12 days after bleomycin instillation, whereas TbetaRII mRNA declined at day 3 post bleomycin instillation and then increased during the reparative phase of lung injury (days 8 and 12). The immunoreactivity for both TbetaRI and TbetaRII was detected in the cells of the interstitium, the epithelium, and the blood vessels of normal rat lungs. In bleomycin-induced pulmonary fibrosis, an extensive immunostaining for TbetaRI and TbetaRII was present in the cells at the sites of injury and active fibrosis. These results demonstrate that the expression of TGF-beta type I and type II receptors was altered during pulmonary fibrosis, suggesting that the TGF-beta signal transduction pathway may be involved in the pathogenesis of lung fibrosis.  相似文献   

6.
Bleomycin produces DNA damage, apoptosis and senescence, all of which play crucial roles in the development of pulmonary fibrosis. Recently, close attention has been paid to a DNA damage-induced phenotypic change (senescence-associated secretory phenotype; SASP) as a trigger for the secretion of various mediators which modify the processes of tissue injury, inflammation, repair and fibrosis. We characterized the SASP in a murine model of bleomycin-induced lung injury. Mice were intratracheally administered bleomycin or control saline, and the lungs were obtained on days 7, 14 and 21. The occurrence of DNA damage and the SASP in the lungs was examined by immunostaining. γH2AX immunostaining of the bleomycin-treated lungs revealed double-strand breaks (DSBs), largely within E-cadherin-positive, β4-integirn-positive alveolar epithelial cells. The DSBs were associated with phosphorylation of ATM/ATR, a central signal transducer mediating the DNA damage response, and upregulation of the cyclin-dependent kinase inhibitor p21CIP1. The DSBs persisted for at least 21 days after the bleomycin exposure, although it began to wane after 7 days. A subpopulation of the γH2AX-positive, DNA-damaged cells exhibited the SASP, characterized by overexpression of IL-6, TNFα, MMP-2 and MMP-9, in association with the phosphorylation of IKKα/β and p38 MAPK. Persistent DNA damage and the SASP are induced in the process of bleomycin-induced lung injury and repair, suggesting that these events play an important role in the regulation of inflammation and tissue remodeling in bleomycin-induced pneumopathy.  相似文献   

7.
Stromal cell-derived factor-1 (SDF-1) participates in mobilizing bone marrow-derived stem cells, via its receptor CXCR4. We studied the role of the SDF-1/CXCR4 axis in a rodent model of bleomycin-induced lung injury in C57BL/6 wild-type and matrix metalloproteinase (MMP)-9 knockout mice. After intratracheal instillation of bleomycin, SDF-1 levels in serum and bronchial alveolar lavage fluid increased. These changes were accompanied by increased numbers of CXCR4(+) cells in the lung and a decrease in a population of CXCR4(+) cells in the bone marrow that did not occur in MMP-9(-)/(-) mice. Both SDF-1 and lung lysates from bleomycin-treated mice induced migration of bone marrow-derived stem cells in vitro that was blocked by a CXCR4 antagonist, TN14003. Treatment of mice with TN14003 with bleomycin-induced lung injury significantly attenuated lung fibrosis. Lung tissue from patients with idiopathic pulmonary fibrosis had higher numbers of cells expressing both SDF-1 and CXCR4 than did normal lungs. Our data suggest that the SDF-1/CXCR4 axis is important in the complex sequence of events triggered by bleomycin exposure that eventuates in lung repair. SDF-1 participates in mobilizing bone marrow-derived stem cells, via its receptor CXCR4.  相似文献   

8.
Terminal airways are affected in many lung diseases and toxic inhalations. To elucidate the changes in terminal airways in these diverse situations it will be helpful to profile and quantify gene expression in terminal bronchiolar epithelium. We used laser capture microdissection (LCM) to collect terminal bronchiolar epithelial cells from frozen sections of lungs of mice subjected to intratracheal bleomycin. The RNA from these cells was used for analysis of select messenger RNAs (mRNAs) by quantitative real-time polymerase chain reaction (PCR). In parallel, we used real-time PCR to analyze mRNAs in whole-lung homogenates prepared from other mice given intratracheal bleomycin. We found reductions of Clara cell-specific protein and keratinocyte growth factor receptor mRNAs in both terminal bronchiolar epithelium and whole-lung homogenates 7 d after bleomycin. In contrast, terminal bronchiolar epithelial transforming growth factor (TGF)-alpha mRNA was reduced but whole-lung TGF-alpha mRNA was not changed, whereas terminal bronchiolar epithelial epidermal growth factor (EGF) receptor mRNA was not changed but whole-lung EGF receptor was reduced. We conclude that LCM can isolate terminal bronchiolar epithelial cells for studies of cell-specific gene expression by quantitative real-time PCR, and that cell-specific gene expression in terminal bronchiolar epithelium is not necessarily reflected in analysis of whole-lung gene expression.  相似文献   

9.
The lung is a common target organ in experimental models of tumor metastasis in which quantification usually involves counting labeled tumor cells shortly after injection, or enumeration of grossly visible pleural tumors. In this study, these approaches were used in addition to autoradiographic and morphometric methods to analyse the effect of bleomycin-mediated injury on the development, distribution and quantification of pulmonary metastases. One day after intravenous injection of 2 × 105 fibrosarcoma cells, the lungs of C57 bl/6 mice, pretreated with bleomycin (120mg/kg i.v., 5 days before) contained about nine times as many [131 I] iododeoxyuridine-labeled cells as the lungs of control animals given saline injections. At this time, autoradiographic counts of [3H] thymidine-labeled tumor cells in lung sections showed a similar increase in tumor cell localization after bleomycin, with labeled cells distributed equally between parenchymal and pleural areas. However, subsequent tumor growth was demonstrated microscopically to be predominantly in pleural and peribronchial areas, especially at sites of lung injury induced by bleomycin. Counts of grossly visible pleural tumors failed to demonstrate a difference between bleomycin groups and controls at 7 days whereas counts of nodules in lung sections, and quantification of lung area occupied by tumor both showed significantly greater tumor involvement in bleomycin-treated animals. As tumors became confluent, morphometric measurements demonstrated tumor growth in the lung more accurately than did nodule counts. We conclude that bleomycin-induced injury greatly enhances metastatic tumor growth and that morphometric methods are more sensitive than lung colony counts in their ability to quantify pulmonary metastases. Morphometry and autoradiography have also demonstrated that while there is a uniform distribution of arrested tumor cells in the lung initially, there is preferential development of metastatic tumors at sites of pulmonary damage, in particular at the pleura.  相似文献   

10.
11.
Dramatic activation of the coagulation cascade has been extensively documented for pulmonary fibrosis associated with acute and chronic lung injury. In addition to its role in hemostasis, thrombin exerts profibrotic effects via activation of the major thrombin receptor, protease-activated receptor-1. In this study, we examined the effect of the direct thrombin inhibitor, UK-156406 on fibroblast responses in vitro and on bleomycin-induced pulmonary fibrosis in rats. UK-156406 significantly inhibited thrombin-induced fibroblast proliferation, procollagen production, and connective tissue growth factor (CTGF) mRNA levels when used at equimolar concentration to the protease. Thrombin levels in bronchoalveolar lavage fluid and expression of thrombin and protease-activated receptor-1 in lung tissue were increased after intratracheal instillation of bleomycin. The characteristic doubling in lung collagen in bleomycin-treated animals (38.4 +/- 2.0 mg versus 17.1 +/- 1.4 mg, P < 0.01) was preceded by significant elevations in alpha1(I) procollagen and CTGF mRNA levels (3.0 +/- 0.4-fold and 6.3 +/- 0.4-fold respectively, (P < 0.01), and total inflammatory cell number. UK-156406, administered at an anticoagulant dose, attenuated lung collagen accumulation in response to bleomycin by 35 +/- 12% (P < 0.05), inhibited alpha1(I) procollagen and CTGF mRNA levels by 50% and 35%, respectively (P < 0.05), but had no effect on inflammatory cell recruitment. This is the first report showing that direct thrombin inhibition abrogates lung collagen accumulation in bleomycin-induced pulmonary fibrosis.  相似文献   

12.
Previous studies have shown that bleomycin-induced pulmonary fibrosis is accompanied by elevated levels of calcium and calmodulin, which are important in the regulation of many biologic processes. The authors have further extended these observations and assessed the effect of a calmodulin inhibitor, trifluoperazine, on bleomycin-induced lung damage with biochemical, morphometric, and bronchoalveolar lavage techniques. The cumulative mortality due to bleomycin was not significantly reduced in animals receiving trifluoperazine. Trifluoperazine had no apparent effect on lung levels of collagen and DNA elevated by bleomycin. However, morphometric studies showed that the volume density of the lesion, the volume of amorphous material and interstitial inflammation, and the number of monocytes within lesions were less in the lungs of bleomycin-treated hamsters receiving trifluoperazine daily. When compared with hamsters treated with bleomycin alone, animals treated with both bleomycin and trifluoperazine had significantly fewer lymphocytes in their bronchoalveolar lavage fluid. The data suggest that trifluoperazine reduced the acute inflammation which accompanies bleomycin pneumotoxicity but did not affect the subsequent development of pulmonary fibrosis. It has been postulated that the observed antiinflammatory action of trifluoperazine may be due to inhibition of calmodulin-dependent leukocyte functions.  相似文献   

13.
Keratinocyte growth factor (KGF), a potent growth factor for type II pneumocytes and Clara cells, has been shown to prevent the end-stage pulmonary fibrosis and mortality in a rat model of bleomycin-induced lung injury. In this study, protective effects of KGF were explored during the earlier course of bleomycin-induced lung injury by studying protein exudation in alveolar edema fluids, pulmonary expression of transforming growth factor-beta (TGF) and platelet-derived growth factor-BB (PDGF-BB), and changes in type II pneumocytes and Clara cells after i.t. (intratracheal) bleomycin injection following KGF- or saline-pretreatment in rats. Total protein in bronchoalveolar lavage (BAL) fluids after bleomycin injury from KGF-pretreated rats was significantly lower than the levels in saline-pretreated rats. TGF protein in BAL fluids which peaked at day 3 after i.t. bleomycin in saline-pretreated lungs was not significantly increased at any time points in KGF-pretreated rats. PDGF-BB protein in whole lung tissues of KGF-pretreated rats also remained near normal throughout the course after i.t. bleomycin, in contrast to the significant increase in saline-pretreated rats. Numbers of type II pneumocytes and Clara cells in KGF-pretreated lungs after a high dose of bleomycin were close to the normal in intact lungs. At the same dose of bleomycin injury, type II pneumocytes in saline-pretreated lungs were markedly decreased, while the number of Clara cells in these rats was relatively preserved as the pre-injury level. In conclusion, KGF prevents bleomycin-induced end-stage pulmonary injury and mortality probably at least partly by decreasing protein-rich pulmonary edema, protein expression of fibrogenic cytokines TGF and PDGF-BB, and type II cell loss during the course of lung injury.  相似文献   

14.
Levels of prostaglandin E(2) (PGE(2)), a potent inhibitor of fibroblast function, are decreased in the lungs of patients with pulmonary fibrosis, which has been shown to be because of limited expression of cyclooxygenase-2 (COX-2). To further investigate the relative importance of COX-2 and PGE(2) in the development of fibrosis we have used a selective COX-2 inhibitor and COX-2-deficient ((-/-) and (+/-)) mice in studies of bleomycin-induced lung fibrosis. We demonstrate in wild-type mice that bleomycin-induced lung PGE(2) production is predominantly COX-2 mediated. Furthermore, COX-2(+/-) mice show limited induction of PGE(2) and an enhanced fibrotic response with increased lung collagen content compared with wild-type mice after bleomycin injury (P < 0.001). In contrast, COX-2(-/-) mice show increased levels of lung PGE(2), compared with wild-type mice after injury (P < 0.05), because of compensatory up-regulation of COX-1, which appears to be associated with macrophage/monocytes but not fibroblasts derived from these mice. COX-2(-/-) mice show an enhanced and persistent inflammatory response to bleomycin, however the fibrotic response to injury was unaltered compared with wild-type animals. These data provide further direct evidence for the importance of up-regulating COX-2 and PGE(2) expression in protecting against the development of fibrosis after lung injury.  相似文献   

15.
16.
The roles of sex hormones as modulators of lung function and disease have received significant attention as differential sex responses to various lung insults have been recently reported. The present study used a bleomycin-induced pulmonary fibrosis model in C57BL/6 mice to examine potential sex differences in physiological and pathological outcomes. Endpoints measured included invasive lung function assessment, immunological response, lung collagen deposition, and a quantitative histological analysis of pulmonary fibrosis. Male mice had significantly higher basal static lung compliance than female mice (P < 0.05) and a more pronounced decline in static compliance after bleomycin administration when expressed as overall change or percentage of baseline change (P < 0.05). In contrast, there were no significant differences between the sexes in immune cell infiltration into the lung or in total lung collagen content after bleomycin. Total lung histopathology scores measured using the Ashcroft method did not differ between the sexes, while a quantitative histopathology scoring system designed to determine where within the lung the fibrosis occurred indicated a tendency toward more fibrosis immediately adjacent to airways in bleomycin-treated male versus female mice. Furthermore, castrated male mice exhibited a female-like response to bleomycin while female mice given exogenous androgen exhibited a male-like response. These data indicate that androgens play an exacerbating role in decreased lung function after bleomycin administration, and traditional measures of fibrosis may miss critical differences in lung function between the sexes. Sex differences should be carefully considered when designing and interpreting experimental models of pulmonary fibrosis in mice.  相似文献   

17.
In this study we evaluate the antifibrotic properties of PG-490-88, a water-soluble derivative of triptolide. Triptolide is an oxygenated diterpene that is derived from a traditional Chinese herb that has potent immunosuppressive and antitumor activity. We used the intratracheal bleomycin mouse model and found that PG490-88 inhibits fibrosis in the bleomycin group when given the same day or 5 days after bleomycin. PG490-88 also markedly reduced the number of myofibroblasts in the bleomycin treatment group. An enzyme-linked immunosorbent assay of transforming growth factor (TGF)-beta in the bronchoalveolar lavage fluid showed a significant decrease in TGF-beta in the PG490-88-treated groups compared to the bleomycin-treated group. Additionally, triptolide blocked bleomycin-induced increase in TGF-beta mRNA in cultured normal human lung fibroblasts. The efficacy of PG490-88 when administered late after bleomycin installation suggests a potential role in the treatment of idiopathic pulmonary fibrosis.  相似文献   

18.
 Increased accumulation of collagens in extracellular matrix (ECM) is mainly responsible for bleomycin-induced pulmonary fibrosis in rats. This study was designed to assess whether increased collagen accumulation in bleomycin-induced pulmonary fibrosis is associated with heat shock protein (HSP) 47, a molecular chaperone for collagen biosynthesis. We investigated the expression of type I and type III collagens and HSP47 in bleomycin-induced pulmonary fibrosis. Fifteen male Wistar rats were divided into two groups; group I: bleomycin-induced pulmonary fibrosis; group II: PBS-treated age-matched control rats. Pulmonary fibrosis was induced by injecting a single dose of bleomycin sulphate (5 U/kg body weight) intratracheally. Three bleomycin-treated rats and two age-matched control rats were sacrificed at the end of each of the 1st, 2nd and 4th weeks of the experiment. In bleomycin-treated rats, histological examination revealed pulmonary fibrosis, which increased with time. Increased type I and type III collagen desposition was observed in the lungs of all the bleomycin-treated rats. Weak immunostaining of HSP47 was noted in the control lungs. In contrast, strong immunostaining for HSP47 was seen in all the bleomycin-treated fibrotic lungs. In addition, increased numbers of phenotypically altered myofibroblasts (α-smooth muscle actin immunopositive) and fibroblast (vimentin immunopositive) were seen in bleomycin-treated lungs and found to express HSP47. Parallel increase of collagens and their molecular chaperone HSP47 expression was found in the bleomycin-treated lungs, and their co-localization could be detected by double immunostaining. Overexpression of HSP47 may play a significant part in the excessive assembly of collagens and could contribute in this way to the fibrosis found in bleomycin-treated rat lungs. Received: 30 April 1997 / Accepted: 17 July 1997  相似文献   

19.
Recent reports have linked mutations in the surfactant protein C gene (SFTPC) to familial forms of pulmonary fibrosis, but it is uncertain whether deficiency of mature SP-C contributes to disease pathogenesis. In this study, we evaluated bleomycin-induced lung fibrosis in mice with genetic deletion of SFTPC. Compared with wild-type (SFTPC+/+) controls, mice lacking surfactant protein C (SFTPC-/-) had greater lung neutrophil influx at 1 week after intratracheal bleomycin, greater weight loss during the first 2 weeks, and increased mortality. At 3 and 6 weeks after bleomycin, lungs from SFTPC-/- mice had increased fibroblast numbers, augmented collagen accumulation, and greater parenchymal distortion. Furthermore, resolution of fibrosis was delayed. Although remodeling was near complete in SFTPC+/+ mice by 6 weeks, SFTPC-/- mice did not return to baseline until 9 weeks after bleomycin. By terminal dUTP nick-end labeling staining, widespread cell injury was observed in SFTPC-/- and SFTPC+/+ mice 1 week after bleomycin; however, ongoing apoptosis of epithelial and interstitial cells occurred in lungs of SFTPC-/- mice, but not SFTPC+/+ mice, 6 weeks after bleomycin. Thus, SP-C functions to limit lung inflammation, inhibit collagen accumulation, and restore normal lung structure after bleomycin.  相似文献   

20.
The role of gender and sex hormones is unclear in host response to lung injury, inflammation, and fibrosis. To examine gender influence on pulmonary fibrosis, male and female rats were given endotracheal injections of either saline or bleomycin. Female rats showed higher mortality rates and more severe fibrosis than did male rats, as indicated by higher levels of lung collagen deposition and fibrogenic cytokine expression. To clarify the potential role of female sex hormones in lung fibrosis, female rats were ovariectomized and treated with either estradiol or vehicle plus endotracheal injections of either saline or bleomycin. The results showed diminished fibrosis in the ovariectomized, bleomycin-treated rats without hormone replacement. Estradiol replacement restored the fibrotic response to that of the intact female mice in terms of lung collagen deposition and cytokine expression, which was accompanied by higher plasma estradiol levels. Furthermore, fibroblasts from bleomycin-treated rats exhibited increased responsiveness to estradiol treatment, causing dose-dependent increases in procollagen 1 and transforming growth factor-beta1 mRNA expression relative to untreated controls. Taken together these findings suggest that female mice may have an exaggerated response to lung injury relative to male mice because of female sex hormones, which have direct fibrogenic activity on lung fibroblasts. This may provide a mechanism for a hormonally mediated intensification of pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号