首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six cats with rotation of one or both eyes (strabismus) produced surgically in the early postnatal period demonstrated torsional deviation of the eyes by 10–20 degrees in addition to the rotation. The spatial distribution of retrograde labeled neurons in field 17 was studied by microiontophoretic administration of horseradish peroxidase into individual cortical columns in fields 17 and 18. These studies showed that rotation of the eyes increased the extent of horizontal neuronal connections in field 17 along the projection of the vertical meridian of the field of vision. It is suggested that this reorganization of neuronal connections may support functional changes compensating for eye rotation, as described in the literature. __________ Translated from Morfologiya, Vol. 127, No. 2, pp. 69–71, March–April, 2005.  相似文献   

2.
In six cats with experimental unilateral or bilateral strabismus, surgically induced early in postnatal life, torsion eye rotation with a deviation angle of 10 to 20 degrees was also detected. Spatial distribution of retrogradely labeled neurons in area 17 was studied following microiontophoretic injection of horseradish peroxidase in area 17 or 18 cortical columns. Eye rotation was shown to cause the increase of the length of horizontal neuronal connections in area 17 along the projection of visual field vertical meridian. The reorganization of neuronal connections, detected in this work, may promote the functional changes, described in the literature, that compensate for the eye rotation.  相似文献   

3.
Data from studies of interhemisphere connections in fields 17 and 18 of cats reared in conditions of impaired binocular vision (monocular deprivation, uni- and bilateral strabismus) are presented. Monosynaptic connections between neurons were studied by microiontophoretic application of horseradish peroxidase into cortical eye dominance columns and the distributions of retrograde labeled callosal cells were analyzed. Spatial asymmetry and eye-specific interhemisphere neuron connections persisted in conditions of monocular deprivation and strabismus. Quantitative changes in connections were less marked in monocular deprivation than strabismus. In cats with impaired binocular vision, as in intact animals, the widths of callosal-receiving zones were greater than the widths of the callosal cell zones, which is evidence for the non-reciprocity of interhemisphere connections in cortical areas distant from the projection of the vertical meridian. Morphofunctional differences between cells mediating connections in the opposite directions are proposed. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 6, pp. 627–636, June, 2008.  相似文献   

4.
Callosal connections of suprasylvian visual areas in the cat   总被引:2,自引:0,他引:2  
After horseradish peroxidase injections in cat's lateral suprasylvian visual area and in areas 17 and 18, labeled callosal neurons are found within the various subdivisions of the lateral suprasylvian area, mostly in regions where the area centralis and vertical meridian are represented. The homotopic callosal projections from lateral suprasylvian area to lateral suprasylvian area originate almost exclusively from layer III. The heterotopic callosal projections from the lateral suprasylvian area to areas 17 and 18 originate mainly from layer VI but also from layer III. Callosal neurons in the lateral suprasylvian area are pyramidal cells (layers III and VI), fusiform and triangular cells (layer VI).The distribution of callosal neurons in the lateral suprasylvian area is similar to that previously found in areas 17 and 18 in the sense that in all these areas callosal neurons are preferentially located near the vertical meridian representation within two radially separated laminae. However, the preponderance of layer VI neurons in the projection from the lateral suprasylvian area to contralateral areas 17 and 18 is different from what was observed in other callosal connections. Since layer VI usually gives rise to corticothalamic projections it is possible that similar feed-back mechanisms may modulate the information sent to the lateral suprasylvian area from the thalamus and the primary visual areas.  相似文献   

5.
Plastic changes in intrahemisphere neuronal connections of the eye-dominance columns of cortical fields 17 and 18 were studied in monocularly deprived cats. The methodology consisted of microintophoretic administration of horseradish peroxidase into cortical columns and three-dimensional reconstruction of the areas of retrograde labeled cells. The eye dominance of columns was established, as were their coordinates in the projection of the visual field. In field 17, the horizontal connections of columns receiving inputs from the non-deprived eye via the crossed-over visual tracts were longer than the connections of the "non-crossed" columns of this eye and were longer than in normal conditions; the connections of the columns of the deprived eye were significantly reduced. Changes in the spatial organization of horizontal connections in field 17 were seen for the columns of the non-deprived eye (areas of labeled cells were rounder and the density of labeled cells in these areas were non-uniform). The longest horizontal connections in deprived cats were no longer than the lengths of these connections in cats with strabismus. It is suggested that the axon length of cells giving rise to the horizontal connections of cortical columns has a limit which is independent of visual stimulation during the critical period of development of the visual system.  相似文献   

6.
The spatial distribution of neuronal connections in cortical field 17 was studied in cats with experimentally induced bilateral convergent strabismus on postnatal days 10–14. Horseradish peroxidase was applied microiontophoretically to individual columns of neurons in fields 17 and 18 and retrograde-labeled cells were identified in both hemispheres. Increases and decreases in the extent of intrahemisphere connections were seen in the mediolateral direction (projections of the horizontal meridian of the visual field). Most columns showed increases in interhemisphere connections in this same direction, which may support the more reliable unification of the two visual hemifields. In addition, some columns showed increases in intra-and interhemisphere connections in the rostrocaudal direction (projections of the vertical meridian). Thus, bilateral strabismus induced during the critical period of development leads to changes in the structure of both intrahemisphere and interhemisphere connections of individual cortical columns in fields 17 and 18. __________ Translated from Morfologiya, Vol. 128, No. 5, pp. 29–32, September–October, 2005. Director: Professor Yu. E. Shelepin  相似文献   

7.
1. If classical partial decussation exactly segregates the projections of right and left hemi-retinae on to the two optic tracts, the images of an object in central vision, nearer or further than the fixation point, should project to separate hemispheres. This would prevent the encoding of retinal disparity by binocularly driven neurones of the visual cortex.2. It is proposed that there is a central vertical strip of retina in each eye which is represented in both hemispheres. The angular width of this strip should be exactly one half the actual range of horizontal disparities of binocular receptive fields near the central vertical meridian.3. By recording from single neurones in the area 17/18 region in both hemispheres of a cat, it was found that there is such a strip of bilateral projection. The centres of receptive fields for units from the two hemispheres overlap in the middle of the visual field by about 1.5 degrees and the S.D. of the distribution is about 0.5 degrees .4. The horizontal disparities of the centres of binocular receptive fields were measured for samples of units representing different parts of the visual field. The range of horizontal disparity for fields near the area centralis is about 2.3 degrees , the S.D. of the distribution about 0.9 degrees . The proposed relationship between bilateral projection and disparity coding is thus confirmed.5. The origin of the bilateral projection is a matter of speculation, but in the cat some of it is almost certainly due to imprecision in the nature of the nasotemporal division of optic nerve fibres at the optic chiasma. A case can be made, however, that the overlap is partly due to connexions through the corpus callosum between the two occipital lobes.6. Evidence for the importance of the callosal pathway in man is drawn from the effects on stereopsis of section of the chiasma and the callosum.  相似文献   

8.
Summary In the primary visual cortex (area 17) of the tree shrew (Tupaia belangeri) neurons projecting to the contralateral area 17 via the corpus callosum were identified by horseradish peroxidase histochemistry (HRP, WGA-HRP). The distribution of homotopic and heterotopic connections was studied. We found that a narrow stripe of area 17 close to the dorsal area 17/18 border — which corresponds to the visual field along the vertical meridian — is connected via homotopic callosal projections. The adjacent dorsal part of area 17, which largely corresponds to the binocular visual field, is connected via homotopic as well as heterotopic projections. Heterotopic projections originate in the cortical stripe along the area 17/18 border and their contralateral targets are displaced medially. Callosal neurons are located mostly in supragranular but also occur in infragranular layers. The supragranular neurons in general are pyramidal cells. In addition to these findings, we confirmed earlier reports on ipsilateral projections of the primary visual area to the dLGN, the claustrum, area 18 and other visual areas.The authors wish to dedicate this paper to Prof. W. Lierse in honour of his 60th birthday  相似文献   

9.
Aberrant visual projections in the Siamese cat   总被引:2,自引:2,他引:2       下载免费PDF全文
1. Guillery has recently shown that the Siamese cat has a grossly abnormal lateral geniculate body. His anatomical study suggested that certain fibres originating in the temporal retina of each eye cross in the chiasm instead of remaining uncrossed. They thus reach the wrong hemispheres, but in the geniculate they terminate in the regions that the missing fibres from the ipsilateral eye would normally have occupied. The result is that each hemisphere receives an input from parts of the ipsilateral field of vision, this input being entirely from the opposite eye. The purpose of the present work was to study the physiological consequences of this aberrant projection, in the lateral geniculate body and visual cortex.2. Single-cell recordings from the lateral geniculate body confirmed the presence of projections from the ipsilateral visual field of the contralateral eye. The part of layer A(1) receiving these projections was arranged so that the receptive fields of the cells were situated at about the same horizontal level and at the same distance from the vertical meridian as the fields of cells in the layers above and below (layers A and B), but were in the ipsilateral visual field instead of the contralateral. They thus occupied a region directly across the mid line from their normal position.3. In the cortex of all animals studied, we found a systematic representation of part of the ipsilateral visual field, inserted between the usual contralateral representations in areas 17 and 18. When the visual cortex was crossed from medial to lateral the corresponding region of visual field moved from the contralateral periphery to the mid line, and then into the ipsilateral field for 20 degrees . The movement then reversed, with a return to the mid line and a steady progression out into the contralateral field. The entire double representation was, with some possible exceptions, a continuous one. The point of reversal occurred at or near the 17-18 boundary, as judged histologically, and this boundary was in about the same position as in ordinary cats.4. Cells in the part of the cortex representing the ipsilateral fields had normal receptive fields, simple, complex, or hypercomplex. These fields tended to be larger than those in corresponding parts of the contralateral visual fields. Receptive-field size varied with distance from the area centralis, just as it does in the normal cat, so that cells with the smallest fields, in the area centralis projection, were situated some distance from the 17-18 border.5. Projections originating from the first 20 degrees from the midvertical in both visual half-fields had their origin entirely in the contralateral eye, as would be expected from the abnormal crossing at the chiasm. Beyond this visual-field region, and out as far as the temporal crescents, there were projections from both eyes, but we found no individual cells with input from the two eyes. The cells were aggregated, with some groups of cells driven by one eye and some by the other.6. From previous work it is known that ordinary cats raised with squint show a decline in the proportion of cells that can be driven binocularly, whereas animals raised with both eyes closed show little or no decline. A Siamese cat raised with both eyes closed had binocular cells in the regions of 17 and 18 subserving the peripheral visual fields, suggesting that the absence of binocular cells seen in the other Siamese cats was indeed secondary to the squint.7. In two Siamese cats there were suggestions of an entirely different projection pattern, superimposed upon that described above. In the parts of 17 and 18 otherwise entirely devoted to the contralateral visual field, we observed groups of cells with receptive fields in the ipsilateral field of vision. The electrode would pass from a region where cells were driven from some part of the contralateral visual field, to regions in which they were driven from a part of the ipsilateral field directly opposite, across the vertical mid line. The borders of these groups were not necessarily sharp, for in places there was mixing of the two groups of cells, and a few cells had input from two discrete regions located opposite one another on either side of the vertical mid line. The two receptive-field components of such cells were identical, in terms of orientation, optimum direction of movement, and complexity. Stimulation of the two regions gave a better response than was produced from either one alone, and the relative effectiveness of the two varied from cell to cell. These cells thus behaved in a way strikingly reminiscent of binocular cells in common cats.8. The apparent existence of two competing mechanisms for determining the projection of visual afferents to the cortex suggests that a number of factors may cooperate in guiding development. There seems, furthermore, not to be a detailed cell-to-cell specificity of geniculocortical connexions, but rather a tendency to topographic order and continuity, with one part of a given area such as 17 able to substitute for another. Whether or not these tentative interpretations are ultimately proved correct, it seems clear that this type of genetic anomaly has potential usefulness for understanding mechanisms of development of the nervous system.  相似文献   

10.
Summary The distribution of the interhemispheric projection from area 17 and 18 was studied using the anterograde degeneration technique. Besides the classical visual areas (17, 18, 19), area 21 and several visual areas in the middle suprasylvian sulcus also received visual callosal input. In the four terminal areas of the middle suprasylvian sulcus the projection was found to be focused on representations of the vertical meridian including the area centralis, as in the classical visual areas. An increase of the width of visual field represented in the zone of callosal terminations can be seen from area 17 through area 18 to area 19 and possibly this trend continues in the suprasylvian visual areas.  相似文献   

11.
1. In agreement with previous work, we have found that the ipsilateral visual field is represented in an extensive rostral portion--from one-third to one-half--of the superior colliculus (SC) of the cat. This representation is binocular. The SC representation of the ipsilateral visual field can be mediated both directly, by crossed retinotectal connections originating from temporal hemiretina, and indirectly, by across-the-midline connections relaying visual information from one-half of the brain to contralateral SC. 2. In order to study the indirect, across-the-midline visual input to the SC, we have recorded responses of SC neurons to visual stimuli presented to either the ipsilateral or the contralateral eye of cats with a midsagittal splitting of the optic chiasm. Units driven by the ipsilateral eye, presumably through the direct retinotectal input and/or corticotectal connections from ipsilateral visual cortex, were found throughout the SC, except at its caudal pole, which normally receives fibers from the extreme periphery of the contralateral nasal hemiretina. Units driven by the contralateral eye, undoubtedly through an indirect across-the-midline connection, were found only in the anterior portion of the SC, in which is normally represented the ipsilateral visual field. Receptive fields in both ipsilateral and contralateral eye had properties typical of SC receptive fields in cats with intact optic pathways. 3. All units having a receptive field in the contralateral eye had also a receptive field in the ipsilateral eye; for each of these units, the receptive fields in both eyes invariably abutted the vertical meridian of the visual field. The receptive field in one eye had about the same elevation relative to the horizontal meridian and the same vertical extension as the receptive field in the other eye; the two receptive fields of each binocular unit matched each other at the vertical meridian and formed a combined receptive field straddling the vertical midline of the horopter...  相似文献   

12.
Summary Anatomical studies have shown an extensive network of homotopic and heterotopic interhemispheric connections in area 19 of the cat visual cortex (Segraves and Rosenquist 1982a; 1982b). We have investigated their functional organization by recording visual responses in area 19 of cats following a midsagittal section of the optic chiasm. This operation interrupts all crossed optic fibers coming both from the nasal and the temporal retinae; as a result, each hemisphere receives optic fibers only from the lateral hemiretina of the ipsilateral eye which conveys information from the contralateral visual field. Visual information transmitted to the same hemisphere from the contralateral retina and the ipsilateral visual field must be attributed to an indirect, interhemispheric pathway. We found that a rather high proportion of neurons (31.8%) in area 19 of seven split-chiasm cats responded to visual stimuli presented to the contralateral eye. 1 — All neurons receiving this interhemispheric activation were also driven by the ipsilateral eye via an intrahemispheric pathway. 2 — The property of binocularity was significantly related to the visuotopic map in that both receptive fields of each binocular neuron adjoined or were in the immediate vicinity of the vertical meridian. 3 — Due to the small size of receptive fields in area 19, the contribution of the interhemispheric pathway to the representation of the visual field is rather limited and it is certainly less extensive than that predicted by anatomical studies. The representation of the ipsilateral visual field in area 19 of intact cats, as assessed electrophy-siologically, was comparable to that found in split-chiasm cats. Recordings in areas 17–18 of split-chiasm cats showed that the visual field represented through the corpus callosum in these visual areas is certainly not less and probably more, extensive than that found in area 19. The results support the conclusion that the relation to the vertical meridian and the receptive field size can explain the organization of the interhemispheric connections in the visual areas studied so far.  相似文献   

13.
The receptive field properties of antidromically identified corticotectal (CT) cells in area 17 were explored in the paralyzed, anesthetized cat. To compare these with another population of infragranular cells, we also examined the receptive field properties of cells in layer 6. Sixty percent of our sample of CT cells showed increased response to increased stimulus length (length summation) and were classified as standard complex cells. The other 40% showed little or no length summation, were generally end stopped, and were classified as special complex cells. Standard and special complex CT cells have complementary orientation anisotropies: the distribution of orientation preferences of standard complex cells is biased toward obliquely oriented stimuli, whereas special complex cells are biased toward horizontally and vertically oriented stimuli. The receptive fields of the cells in our sample were primarily along the horizontal meridian so we cannot determine if these anisotropies are defined relative to the vertical meridian or relative to the meridian passing through the receptive field. The effects of these anisotropies in preferred orientation are minimized by the broad orientation tuning of CT cells. There was no simple relationship between the direction bias of CT cells and the reported direction bias of tectal cells. In contrast to the heterogeneity of corticotectal cells, layer 6 cells uniformly showed strong length summation, tight orientation tuning, and little spontaneous activity.  相似文献   

14.
Studies were carried out on the organization of the internal connections of the striate cortex in cats in the projection zone of the center (0–5°) of the field of vision by microintophoretic application of horseradish peroxidase to electrophysiologically identified orientational columns. The area containing neurons showing retrograde labeling in most cases extended in the mediolateral direction. Labeled cells were located in the upper (II, III) and lower (V, VI) layers of the cortex, and the shapes and orientations of the areas containing labeled neurons in these layers coincided. Spatial asymmetry was detected in the distribution of labeled neurons relative to the orientational column studied. Labeled cells were located predominantly medial to the columns, regardless of the distance from the projection of the area centralis. Considering the visuotopical map of field 17, the asymmetry detected here provides evidence that neurons in orientational columns have more extensive connections with neurons of the peripheral part of the cortex. An asymmetrical distribution of “silent” zones around the receptive fields of neurons in orientational columns is suggested, and that these appear to receive influences from the periphery of the visual field. Laboratory of Visual Physiology and Laboratory of Central Nervous System Morphology, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia. Translated from Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 82, No. 12, pp. 23–29, December, 1996.  相似文献   

15.
The distribution of retrograde labeled callosal cells after microiontophoretic application of horseradish peroxidase into individual cortical columns in fields 17 and 18 was studied in cats reared with bilateral strabismus (with an angle of eye deviation of 10–35°). The area containing labeled cells was located asymmetrically in relation to the position of the injected column in the opposite hemisphere. Some of the cells were located in those parts of the transitional zone between fields 17 and 18 whose retinotopic coordinates corresponded to the column coordinates (as in intact cats). Other labeled cells were located in fields 17 and 18 and were grouped into clusters located at distances of about 1000 μm from the marginal clusters of the transitional zone. The locations of labeled cells in the lateral geniculate body showed that most columns receive inputs from the ipsilateral eye. Evidence for eye specificity of these monosynaptic interhemisphere connections is presented. The functional significance of changes in these connections in bilateral strabismus is discussed. __________ Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 8, pp. 949–955, August, 2005.  相似文献   

16.
Summary The concept of corresponding retinal points was examined in terms of the binocular receptive fields of neurons in Area 17 of the cerebral cortex of the cat. Only a proportion of the binocular receptive field pairs can be accurately superimposed at the one time in a given plane. The fields which are not corresponding are said to show receptive field disparity. The attempt has been made to establish, on a quantitative basis, the parameters of the receptive field disparities that occur within 5° of the visual axis. A new method was used for defining the zero (vertical) meridian. Very effective paralysis of the extraocular muscles was achieved and the very small residual eye movements that occurred were regularly monitored so that corrections could be applied to the plotted positions of the receptive field pairs. The distribution of the receptive field disparities about the position of maximal correspondence has a range of about ±1.2° (S.D. 0.6°) in both the horizontal and vertical directions for fields in the vicinity of the visual axis. Panum's fusional area may represent the extent to which receptive fields in the one eye, all with the same visual direction, are linked to fellow members of a pair in the other eye over a range of receptive field disparities. A naso-temporal overlap of receptive fields occurs which is probably little if any more than can be accounted for on the basis of the disparity of receptive fields lying along the zero (vertical) meridian. When the extraocular muscles are paralyzed the eyes diverge and the binocular receptive field pairs are separated on the tangent screen. The distribution of the horizontal and vertical separations of the receptive field pairs have been examined.Selby Fellow of the Australian Academy of Sciences.  相似文献   

17.
Schmidt KF  Löwel S 《Neuroscience》2008,152(1):128-137
The development of long-range horizontal connections depends on visual experience. Previous experiments have shown that in area 17 of strabismic but not in normal cats, horizontal fibers preferentially connect cell groups driven by the same eye indicating that fibers between coactive neurons are selectively stabilized. To test whether this is a general organizing principle of intracortical long-range circuitry we extended our analyses to both intrinsic horizontal connections within area 18 and to inter-areal connections between areas 17 and 18. To this end, we visualized the functional architecture of area 18 by intrinsic signal imaging. Horizontal circuitry was labeled by injecting fluorescent latex microspheres into functionally identified domains. Additionally, domains sharing the same ocular dominance as the neurons at the injection sites were visualized by 2-deoxyglucose autoradiography to allow comprehensive labeling of functional domains in regions far from the injection sites. Quantitative analyses revealed that in strabismic cats, 72% of the retrogradely labeled neurons in area 18 and 68% of the neurons in area 17 were located in the same ocular dominance domains as the injection sites. In contrast, these numbers were 52% and 54% in normal animals. These data show that experience modifies both intrinsic connections within area 18 and inter-areal projections from area 17 to area 18 as has been previously described for intrinsic and callosal connections in area 17. This provides further evidence for the hypothesis that the correlation of activity is a major selection criterion for the stabilization of neuronal circuits during postnatal development.  相似文献   

18.
Summary We have studied the orderliness of representation of visual space in the medial and lateral banks of the middle suprasylvian sulcus. Penetrations were made either parallel to the sulcus, in one bank or the other, or vertical, thus crossing the sulcus between the postero-medial (PMLS) and posterolateral (PLLS) divisions of this area. In some cases we found clear evidence for topographical order in the representation of the visual field with a tendency (greater in PMLS than in PLLS) for the receptive fields of cells recorded deeper in the walls of the sulcus to lie closer to the area centralis, but along many penetrations the receptive fields were so large and so scattered that no retinotopic arrangement could be discerned. In PMLS the receptive fields of the majority of units we studied were centred below and close to the horizontal meridian, whereas in PLLS they were distributed over both the upper and lower visual fields with an over-representation of the upper field. Receptive fields were significantly larger in PLLS (mean field area = 442.2 deg2) than in PMLS (mean area = 154.4 deg2); there was also less clear correlation between receptive field size and eccentricity in PLLS (correlation coefficient = +0.25) than in PMLS (corr. coeff. = +0.72). Analysis of the distance between the receptive field centres of consecutively recorded units demonstrated that the mean scatter in both PMLS and PLLS amounts to about half the average receptive field diameter. In summary the topographical representation of visual space is less orderly in PLLS, and may involve a wider area of the visual field. These findings may relate to the segregated visual cortical and extrageniculate thalamic connections that the medial and lateral banks of the LS receive.  相似文献   

19.
Summary Following large injections of horseradish peroxidase — wheat germ agglutinin in the pontine nuclei, corticopontine neurons in areas 18 and 19 were quantitatively mapped and flat maps showing the distribution of retrogradely labeled cells were constructed. The areal borders were defined either cyto- and myeloarchitectonically or from standard retinotopic maps presented in frontal sections (Tusa et al. 1981). Maps of the retinotopic organization in areas 18 and 19 (Tusa et al. 1979) were transferred to the present flat maps. Thus, the number and distribution of pontine projecting cells could be correlated with the retinotopic organization. The cell density (number of labeled cells per mm2 cortex) is in both areas highest in the cortex representing the lower and upper visual periphery and decreases towards the representation of the retinal central area. However, since in both areas 18 and 19 the visual field representation is twisted and portions of the visual field are magnified, the actual number of cells is higher in the cortex representing the central area and the lower medial visual field than in other parts. The cortex representing the lower hemifield contains approximately 2/3 (mean, N = 4) of the corticopontine cells in both areas. The average density of corticopontine cells increases from area 17 through 18 to 19, but the total number of cells within each of the areas is about the same (area 17 18000 cells, area 18 13400 cells, area 19 17200 cells; mean, N = 4; data on area 17 from Bjaalie and Brodal, 1983). In conclusion, areas 17, 18 and 19 contribute about equally in quantitative terms to the pontine nuclei. Furthermore, assuming that the corticopontine neurons transmit spatially relevant information, there is a moderate overrepresentation of central vision and the lower medial visual field in the pontine projection from areas 18 and 19. This visual field representation is remarkably similar to that found in the corticopontine projection from area 17 (Bjaalie and Brodal 1983).  相似文献   

20.
 A promising way to elucidate neuronal information processing is to establish detailed structure-function relationships of identified single neurons or populations of nerve cells, especially their synaptic connectivity. This has been greatly improved by the development of acute brain slice preparations. The cellular physiology of the rodent primary somatosensory (barrel) cortex has been extensively studied. However, for a meaningful interpretation of physiological experiments the degree and pattern of connectivity has to be known for the particular preparation. Since such studies are not available for rat (P15–25) barrel cortex in vitro, we have traced the cortico-cortical and thalamo-cortical connections in 400-μm-thick slices with biocytin. In coronal slices, a wealth of axonal connections in retrograde and anterograde directions were heavily labeled, resembling the full pattern of cortico-cortical projections described in vivo. The most striking connections were vertical and horizontal connections within the primary somatosensory cortex, as well as a columnar projection to the secondary somatosensory cortex and beyond (mainly the parietal ventral area). Electron microscopic extensions of the study indicated that the full possible set of synaptic contacts with an adult-like appearance was already established in these connections. In thalamo-cortical slices, strong reciprocal connections with the ventrobasal (and to a much lesser extent also the posterior) thalamic nucleus were always observed, together with an intensive ramification of fibers in the reticular nucleus. A striatal terminal field was also consistently found. We conclude that all major intracortical and thalamo-cortical connection are richly preserved in the in vitro slice preparations of rats. Thus, these preparations are suitable for elucidation of the functional interaction of the most crucial brain structures involved in somatosensory information processing combining an in vivo-like anatomical structure with the controlled environment of an in vitro slice. Accepted: 28 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号