首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Respiratory syncytial virus (RSV) infection is known to develop and exacerbate asthma in young children. In adult, RSV causes recurrent but asymptomatic infections. However, the impact of asymptomatic RSV infection on adult asthma is yet to be determined. The present study is designed to determine the effects of primary and secondary low-grade RSV infections on allergic airway inflammation in a murine model of allergic asthma. METHODS: A low-grade RSV (2 x 10(3) plaque-forming units/mouse) was inoculated, and this caused neither pulmonary inflammation nor symptoms but induced significant IFN-gamma production in thoracic lymph nodes. To investigate interaction between low-grade virus and Dermatophagoides farinae (Df), airway hyper-responsiveness, lung inflammation and cytokine production from thoracic lymph nodes were compared after primary and secondary low-grade RSV infections in four groups of mice; control, Df allergen-sensitized, RSV-infected and Df-sensitized RSV-infected mice. A direct comparison between low- and high-grade RSV infections was also performed in primary infection. To investigate the role of IL-5 during secondary RSV infection, anti-IL-5 monoclonal antibody (anti-IL-5 mAb) was injected in mice and similar parameters were compared in four groups of mice. RESULTS: Primary high-grade RSV infection increased allergen-induced airway inflammation, while primary low-grade RSV infection attenuated allergen-induced airway inflammation concomitant with significant IFN-gamma production in lung-draining lymph nodes. In marked contrast, secondary low-grade RSV infection increased both IFN-gamma and IL-5 production, resulting in exacerbation of allergen-induced airway inflammation. Anti-IL-5 mAb treatment in secondary low-grade RSV infection and Df allergen-sensitized mice attenuated virus and allergen-induced airway inflammation. CONCLUSIONS: Low-grade RSV infection per se does not cause pulmonary inflammation, whereas it induces a significant immunological response in the allergen-sensitized host. These results indicate that subclinical and recurrent RSV infection may play an important role in exacerbation and maintenance of asthma in adults, wherein IL-5 is critically involved.  相似文献   

2.
BACKGROUND: Clinical studies indicate that maternal exposure to probiotic bacteria may protect from the development of allergic disease later in life. OBJECTIVE: The purpose of this study was to analyse the effects of a perinatal Lactobacillus rhamnosus GG (LGG) supplementation on the development of allergic disorders in offspring. METHODS: Female BALB/c mice received intragastric LGG every other day before conception, during pregnancy and lactation (perinatal supplementation group) or before conception and during pregnancy only (prenatal supplementation group). Cytokine expression of placental tissues was examined. Offspring of LGG-supplemented and sham-exposed mothers were sensitized to Ovalbumin (OVA), followed by aerosol allergen challenges. Development of experimental asthma was assessed by bronchoalveolar lavage analysis, lung histology and lung function measurement. Cytokine production of splenic mononuclear cells was analysed following in vitro stimulation. RESULTS: Intestinal colonization with LGG was observed in mother mice only, but not in the offspring. However, a reduced expression of TNF-alpha, IFN-gamma, IL-5 as well as IL-10 was observed in mice derived from perinatally LGG-supplemented mothers, whereas IL-13 and IL-4 expression remained unchanged. Moreover, in offspring of prenatally or perinatally LGG-supplemented mothers allergic airway and peribronchial inflammation as well as goblet cell hyperplasia were significantly reduced as compared with mice derived from non-supplemented mothers. In contrast, airway hyperresponsiveness to methacholine was not affected. Exposure to LGG during pregnancy only shifted the placental cytokine expression pattern with a markedly increased TNF-alpha level. CONCLUSION: Our data suggest that LGG may exert beneficial effects on the development of experimental allergic asthma, when applied in a very early phase of life. Immunological effects are, at least in parts, mediated via the placenta, probably by induction of pro-inflammatory cell signals.  相似文献   

3.
《Mucosal immunology》2017,10(6):1491-1503
The epithelial and epidermal innate cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) have pivotal roles in the initiation of allergic inflammation in asthma and atopic dermatitis (AD). However, the mechanism by which the expression of these innate cytokines is regulated remains unclear. Intelectin (ITLN) is expressed in airway epithelial cells and promotes allergic airway inflammation. We hypothesized that ITLN is required for allergen-induced IL-25, IL-33, and TSLP expression. In two asthma models, Itln knockdown reduced allergen-induced increases in Il-25, Il-33, and Tslp and development of type 2 response, eosinophilic inflammation, mucus overproduction, and airway hyperresponsiveness. Itln knockdown also inhibited house dust mite (HDM)-induced early upregulation of Il-25, Il-33, and Tslp in a model solely inducing airway sensitization. Using human airway epithelial cells, we demonstrated that HDM-induced increases in ITLN led to phosphorylation of epidermal growth factor receptor and extracellular-signal regulated kinase, which were required for induction of IL-25, IL-33, and TSLP expression. In two AD models, Itln knockdown suppressed expression of Il-33, Tslp, and Th2 cytokines and eosinophilic inflammation. In humans, ITLN1 expression was significantly increased in asthmatic airways and in lesional skin of AD. We conclude that ITLN contributes to allergen-induced Il-25, Il-33, and Tslp expression in asthma and AD.  相似文献   

4.
Increased production of interleukin (IL)-4 and IL-5 by T-helper cells may be pivotal for the induction and regulation of allergic diseases. We have studied the role of IL-4 and IL-5 in the development of eosinophilic airway inflammation (AI) and airway hyperresponsiveness (AHR) in a mouse model of allergen-induced bronchial asthma. Utilizing different modes of sensitization, we delineated the importance of IL-5-mediated eosinophilic airway infiltration for the development of in vitro and in vivo AHR and demonstrated the inhibition of airway inflammation and AHR by anti-IL-5 antibody treatment. Studies in IL-4- and IL-5 deficient mice revealed the importance of both cytokines for the induction of AI and AHR independently from the production of allergen-specific IgE, and indicated these cytokines as potential targets in novel approaches in the treatment of asthma.  相似文献   

5.
BACKGROUND: Recurrent and subclinical viral respiratory tract infections could immunologically exacerbate allergic airway inflammation. However, the most appropriate treatment for virus-induced asthma exacerbation is yet to be established. The effects of glucocorticoids in virus-induced acute asthma are controversial. OBJECTIVE: To determine the effects of representative anti-inflammatory therapies for asthma--glucocorticoids and leukotriene receptor antagonists (LTRAs)--in mite allergen-sensitized and repeatedly low-grade respiratory syncytial virus (RSV)--infected mice. METHODS: Dermatophagoides farinae-sensitized mice were inoculated twice with low-grade RSV and subcutaneously injected with either a glucocorticoid or an LTRA for 4 consecutive days. Lung inflammation, cytokine profiles, LT production, and viral RNA in lung tissues were compared in 5 groups of 8 mice each: controls, D farinae allergen sensitized, D farinae sensitized and RSV infected, D farinae sensitized and RSV infected with dexamethasone, and D farinae sensitized and RSV infected with pranlukast, an LTRA. RESULTS: Allergic airway inflammation in D farinae mice was significantly enhanced by recurrent and low-grade RSV infections (RLRIs). The glucocorticoid attenuated allergic airway inflammation, which was associated with interleukin 5 (IL-5) and interferon-gamma (IFN-gamma) suppression in lung-draining lymph nodes without affecting viral quantity. The LTRA also attenuated allergic airway inflammation in D farinae-RSV mice with concomitant inhibition of IL-5 but not IFN-gamma. Dermatophagoides farinae allergen sensitization significantly increased LTs in the airway, whereas RLRIs did not further enhance LT production. CONCLUSIONS: Glucocorticoids and LTRAs significantly inhibit RLRI-induced exacerbation of allergic airway inflammation by distinct pathways. Dexamethasone suppressed nonspecific cytokines, whereas viral RNA did not increase via suppression of immunity. In contrast, pranlukast specifically inhibited IL-5 but not IFN-gamma.  相似文献   

6.
BACKGROUND: Histamine-1-receptor (H1R)-antagonists were shown to influence various immunological functions on different cell types and may thus be employed for immune-modulating strategies for the prevention of primary immune responses. OBJECTIVE: The aim of this study was to investigate the effects of an H1R-antagonist on allergen-induced sensitization, airway inflammation (AI) and airway hyper-reactivity (AHR) in a murine model. METHODS: BALB/c mice were systemically sensitized with ovalbumin (OVA) (six times, days 1-14) and challenged with aerosolized allergen (days 28-30). One day prior to the first and 2 h prior to every following sensitization, mice received either 1 or 0.01 microg of desloratadine (DL) or placebo per os. RESULTS: Sensitization with OVA significantly increased specific and total IgE and IgG1 serum levels, as well as in vitro IL-5 and IL-4 production by spleen and peribronchial lymph node (PBLN) cells. Sensitized and challenged mice showed a marked eosinophilic infiltration in broncho-alveolar lavage fluids and lung tissues, and developed in vivo AHR to inhaled methacholine. Oral treatment with DL prior to OVA sensitization significantly decreased production of OVA-specific IgG1, as well as in vitro Th2-cytokine production by spleen and PBLN cells, compared with OVA-sensitized mice. Moreover, eosinophilic inflammation and development of in vivo AHR were significantly reduced in DL-treated mice, compared with sensitized controls. CONCLUSION: Treatment with H1R-anatagonist prior to and during sensitization suppressed allergen-induced Th2 responses, as well as development of eosinophilic AI and AHR. This underscores an important immune modulating function of histamine, and implies a potential role of H1R-anatagonists in preventive strategies against allergic diseases.  相似文献   

7.
The effects of lactic dehydrogenase virus (LDV) infection on allergic immunoglobulin (Ig)E production and interleukin (IL)-4 gene expression were studied. LDV infection suppressed antigen-induced IgE production in sensitized mice. The elevations of IL-4 gene expression in spleen and mesenteric lymph nodes 3 and 7 days after ovalbumin challenge were suppressed significantly in LDV-infected mice compared with control mice. The expression of the interferon (IFN)-gamma gene of mesenteric lymph nodes was significantly increased in LDV-infected mice. These results suggest that LDV infection suppressed antigen-induced IgE production by decreasing IL-4 production, and that suppression of IL-4 gene expression may be mediated by a mutual inhibition mechanism between T helper (Th)1 and Th2 cells.  相似文献   

8.
The Th2 cytokines IL-4 and IL-13 mediate allergic pulmonary inflammation and airways hyperreactivity (AHR) in asthma models through signaling dependent upon the IL-4 receptor-alpha chain (IL-4Ralpha). IL-13 has been further implicated in the overproduction of mucus by the airway epithelium and in lung remodeling that commonly accompanies chronic inflammation. IL-4Ralpha-deficient mice are resistant to allergen-induced asthma, highlighting the therapeutic promise of selective molecular inhibitors of IL-4Ralpha. We designed a chemically modified IL-4Ralpha antisense oligonucleotide (IL-4Ralpha ASO) that specifically inhibits IL-4Ralpha protein expression in lung eosinophils, macrophages, dendritic cells, and airway epithelium after inhalation in allergen-challenged mice. Inhalation of IL-4Ralpha ASO attenuated allergen-induced AHR, suppressed airway eosinophilia and neutrophilia, and inhibited production of airway Th2 cytokines and chemokines in previously allergen-primed and -challenged mice. Histologic analysis of lungs from these animals demonstrated reduced goblet cell metaplasia and mucus staining that correlated with inhibition of Muc5AC gene expression in lung tissue. Therapeutic administration of inhaled IL-4Ralpha ASO in chronically allergen-challenged mice produced a spectrum of anti-inflammatory activity similar to that of systemically administered Dexamethasone with the added benefit of reduced airway neutrophilia. These data support the potential utility of a dual IL-4 and IL-13 oligonucleotide inhibitor in allergy/asthma, and suggest that local inhibition of IL-4Ralpha in the lung is sufficient to suppress allergen-induced pulmonary inflammation and AHR.  相似文献   

9.
BACKGROUND: Serine proteases such as mast cell tryptase and certain allergens are important in the pathogenesis of allergic inflammation of asthma. OBJECTIVE: We sought to investigate the effects of serine protease inhibitors nafamostat mesilate (FUT), gabexate mesilate (FOY), and ulinastatin (UTI) on airway inflammation in a mouse model of allergic asthma. METHODS: BALB/c mice were sensitized to Dermatophagoides pteronyssinus (Der p) and intratracheally challenged with Der p (0.5 mg/mL). Therapeutic doses of FUT (0.0625 mg/kg), FOY (20 mg/kg), and UTI (10,000 U/kg) were intra-peritoneally injected into 3 corresponding sensitized mice during the sensitization phase (protocol 1) or 24 hours after allergen challenge (protocol 2). RESULTS: Both FUT-treated and FOY-treated sensitized mice had reduced mast cells activation, airway hyperresponsiveness, attenuated eosinophils infiltrations, and decreased Der p-induced IL-4 and TNF-alpha, but increased IL-12 cytokine production in bronchoalveolar lavage fluid compared with nontreated mice. Furthermore, FUT treatment downregulated the expression of IL-1beta, TNF-alpha, IL-6, eotaxin, inducible NO synthase, CD86, and nuclear factor-kappaB activation, but enhanced the expression of IL-12 and IL-10 in Der p-stimulated alveolar macrophages. UTI-treated mice have no significant change of the aforementioned measurements compared with nontreated sensitized mice. CONCLUSION: Nafamostat mesilate and FOY exerting the therapeutic effect in allergen-induced airway inflammation was a result not only of their inhibitory action in the early phase of mast cells activation but also of immunoregulatory function in the late phase of allergic inflammation. Such properties of FUT and FOY might be a potential therapeutic approach for asthma. CLINICAL IMPLICATIONS: The clinical used of serine protease inhibitors FUT and FOY may also have implications for treating airway inflammation of asthma.  相似文献   

10.
BACKGROUND: Infection with influenza virus has been associated with seemingly opposing effects on the development of asthma. However, there are no data about the effects of mucosal vaccination with inactivated influenza on the inception of allergic asthma. OBJECTIVE: To assess the immunological effects of inhaled inactivated influenza vaccine, using two different types of flu vaccines, on the inception of allergic sensitization and allergen-mediated airway disease in a mouse model. METHODS: BALB/c mice were intranasally or intratracheally vaccinated with whole or split influenza virus vaccine (days -1 or -1, 27) before systemic sensitization with ovalbumin (OVA) (days 1, 14) and repeated airway allergen challenges (days 28-30). Allergen sensitization (IgE serum levels), airway inflammation (differential cells in bronchoalveolar lavage fluid) and airway hyper-reactivity (AHR) (in vivo lung function) were analysed. RESULTS: The intranasal instillation of whole influenza vaccine before allergen sensitization significantly reduced the serum levels of total and OVA-specific IgE as well as allergen-induced AHR. Prevention was due to an allergen-specific shift from a predominant T helper (Th)2- towards a Th1-immune response. Application of split influenza vaccine did not show the same preventive effect. CONCLUSION: Intranasal administration of inactivated whole influenza vaccine reduced subsequent allergen sensitization and prevented allergen-induced AHR. Our results show that the composition of the influenza vaccine has a major influence on subsequent development of allergen-induced sensitization and AHR, and suggest that mucosal inactivated whole influenza vaccination may represent a step towards the development of a preventive strategy for atopic asthma.  相似文献   

11.
Defective recruitment of regulatory T cells (Treg) function to the airway is important in the pathogenesis of allergic asthma. Complement regulatory protein (CD46) is a newly defined costimulatory molecule for Treg activation, which together with IL-10/granzyme B production may aid in suppressing asthmatic inflammation. This study examines chemotaxis and adhesion molecule expression on CD3/CD46-activated CD4(+) T cells (Tregs) from patients with and without asthma to suppress mite allergen-induced respiratory epithelial cells inflammation and to elucidate the mechanism of CD46-mediated Treg activation. Diminished IL-10/granzyme B and CCR4 expression from CD3/CD46-activated Tregs appeared in asthmatic subjects. CD3/CD46-activated Tregs from asthma patients co-cultured with BEAS-2B cells suppressed Dermatophagoides pteronyssinus 2 induced nuclear factor-κB/p65 by cell contact inhibition. Decreased interaction of CD3/CD46-mediated Tregs and BEAS-2B cells from asthmatics was associated with downregulated phosphorylation of protein kinase B (AKT) expression. Results provide the first evidence that decreased interaction between CD46-mediated Tregs and lung epithelial cells with less IL-10/granzyme B production may cause airway inflammation in allergic asthma.  相似文献   

12.
Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of melatonin on allergic asthma using a murine model of ovalbumin (OVA)-induced allergic asthma and BEAS-2B cells. To induce allergic asthma, the mice were sensitized and airway-challenged with OVA. Melatonin was administered by intraperitoneal injection once per day at doses of 10 and 15 mg/kg from days 21 to 23 after the initial OVA sensitization. We investigated the effects of melatonin on proinflammatory cytokines and matrix metalloproteinase-9 (MMP-9) activity and expression in tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells. The administration of melatonin significantly decreased the number of inflammatory cells, airway hyperresponsiveness, and immunoglobulin (Ig) E with reductions in interleukin (IL)-4, IL-5, and IL-13. Melatonin attenuated the airway inflammation and the mucus production in lung tissue and significantly suppressed elevated MMP-9 expression and activity induced by an OVA challenge. In TNF-α-stimulated BEAS-2B cells, treatment with melatonin significantly reduced the levels of proinflammatory cytokines and lowered the expression and activity of MMP-9. These results indicate that melatonin effectively suppressed allergic asthma induced by an OVA challenge. The results suggest a potential role for melatonin in treating asthma.  相似文献   

13.
BACKGROUND: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma manifestations. OBJECTIVE: In this study, we examined whether immunotherapy induces a long-lasting effect and investigated the role of IL-10 in successful immunotherapy. METHODS: Ovalbumin-sensitized BALB/c mice were treated with 3 injections of ovalbumin (1 mg, subcutaneous) on alternate days. After a short interval (1 week) and after a long interval (5 weeks), mice were challenged by ovalbumin inhalation, and subsequently, airway reactivity, airway eosinophilia, ovalbumin-specific IgE, and T(H)2 cytokine profile were measured. Flow cytometry and blocking of IL-10 receptors in vivo were used to gain insight in the role of IL-10 in the beneficial effects of allergen immunotherapy. RESULTS: After a long interval between ovalbumin immunotherapy and ovalbumin challenge, the development of airway eosinophilia and hyperresponsiveness to methacholine were as strongly suppressed as after a short interval. These suppressive effects coincided with significantly reduced serum ovalbumin-specific IgE levels and T(H)2 cytokine production. On immunotherapy, the IL-5:IL-10 ratio in the bronchoalveolar lavage fluid shifted toward IL-10. In ovalbumin-restimulated lung cell and thoracic lymph node cultures from these mice, IL-5 levels dramatically decreased, whereas the percentage of IL-10(+)CD4(+) T cells was not affected. Finally, in mice treated with mAb against IL-10 receptors, the beneficial effects of immunotherapy were largely abrogated. CONCLUSION: These data demonstrate that allergen immunotherapy induces a memory suppressive effect in which IL-10 is essential.  相似文献   

14.
Chung Y  Cho J  Chang YS  Cho SH  Kang CY 《Immunobiology》2002,206(4):408-423
Allergic asthma is an inflammatory disease of the airways, and Th2 cells secreting IL-4 and IL-5 play a pivotal role in its pathogenesis. We have previously demonstrated that oral tolerance can be induced and maintained more profoundly in a Th2-related immune response, and that an ongoing immune response can be suppressed by the oral administration of antigen combined with an appropriate feeding regimen. In the present study, we examined the preventive and therapeutic effects of the oral administration of allergen on a Th2-mediated immune disorder using a murine model of asthma. Our results show that the development of asthma can be blocked completely by orally administering allergen. Airway hyperreactivity, allergen-specific IgE production, Th2-derived cytokines, allergen-induced T cell proliferation and the infiltration of inflammatory effector cells into the lung were prevented by such oral administration. To assess the therapeutic effects of oral administration on the progression of asthma, we tested the effects of oral tolerance in an established asthma model, and found that a multiple high dose-feeding regimen was effective at suppressing the progression of mild asthma. In the high dose-feeding group, the number of eosinophils in bronchoalveolar lavage fluid was reduced and airway reactivity also decreased. However, this was insufficient to reduce airway reactivity and eosinophilia in bronchoalveolar lavage fluid in cases of severe asthma. These results demonstrate that allergic asthma may be ameliorated by feeding allergen; there is hope that these results will provide a new immunotherapeutic strategy for allergic asthma.  相似文献   

15.
Increasing evidence suggests a key role for the innate immune system in asthma development. Although the role of Natural Killer (NK) cells in allergic asthma is poorly known, modifications of the blood NK cell populations have been found in asthmatic and/or allergic patients. Their repartition and activation status in the inflammatory (lungs) and the regulatory (draining lymph nodes) sites of the allergic reaction is unknown. The aim of our study was to monitor NK cell migration pattern and activation status and to investigate the consequences of NK cell depletion during allergic airway reaction in a mouse model. Ovalbumin sensitization and challenges of BALB/cByJ mice had no effect on the total number of lung NK cells but significantly decreased the number of most mature NK cells and increased the level of the activation marker CD86. In the lung‐draining mediastinal lymph nodes, ovalbumin sensitization and challenges led to increased number of NK cells, and more precisely, immature NK cells and increased expression of CD86. Ovalbumin‐sensitized mice also exhibited increased percentage of proliferating NK cells in lung‐draining mediastinal lymph nodes. Anti‐ASGM1 antibody treatment depleted most NK cells and decreased bronchoalveolar lavage eosinophilia but did not modify airway responsiveness. Altogether, our study shows that pulmonary allergic sensitization induces modification in the NK cell compartment at the inflammatory and regulatory sites and suggests that NK cells may participate in the regulation of the asthmatic response and, more particularly, to the allergic airway eosinophilia.  相似文献   

16.
BACKGROUND: Activin A is a member of the transforming growth factor-beta superfamily which is directly implicated in airway structural change and inflammation in asthma. In vitro, the biological effects of activin A are neutralized by the soluble binding protein follistatin. OBJECTIVE: To determine the potential of endogenous follistatin to suppress activin A in vivo by analysing their relative tissue and kinetic compartmentalization during the effector phase of subchronic Th2-driven mucosal inflammation in a murine model of allergic asthma. METHODS: Eosinophilic mucosal inflammation was elicited by triggering Th2 recall responses by antigen challenge in ovalbumin-sensitized BALB/c mice. The kinetics and distribution of activin A and follistatin protein were assessed in lung tissue and bronchoalveolar lavage fluid and measured in relation to airway eosinophilia, goblet cell metaplasia and Th2 cytokine production in mediastinal lymph nodes. RESULTS: Follistatin was released concurrently with activin A suggesting it acts as an endogenous regulator: peak BAL concentrations coincided with maximal airway eosinophilia, and frequency of IL-4, IL-5 and IL-13 producing cells in mediastinal lymph nodes but induction lagged behind the onset of inflammation. Follistatin and activin A immunoreactivity were lost in airway epithelial cells in parallel with goblet cell metaplasia. Exogenous follistatin inhibited the allergen-specific Th2 immune response in mediastinal lymph nodes and mucus production in the lung. CONCLUSION: Follistatin is preformed in the normal lung and released in concert with activin A suggesting it serves as an endogenous regulator. Disturbance of the fine balance between activin A and its endogenous inhibitor follistatin may be a determinant of the severity of allergic inflammation or tissue phenotypic shift in asthma.  相似文献   

17.
BACKGROUND: Specific immunotherapy involving systemic injection of allergen, though highly effective, can cause severe side effects due to IgE-mediated activation of effector cells. Allergen-derived peptides might provide a safer alternative. We have investigated the use of mucosally delivered peptide to induce CD4(+) T(H)2 cell tolerance and thus protect against allergen-induced airway inflammation. OBJECTIVE: The purpose of this study was to investigate whether intranasal administration of an allergen-derived peptide, either alone or adsorbed to chitosan, can prevent the induction of T(H)2-mediated pulmonary inflammation after sensitization and challenge of the airways with allergen. METHODS: Mice were given (intranasally) a peptide containing an immunodominant epitope of the Dermatophagoides pteronyssinus (Der p) 1 allergen, either as soluble antigen or adsorbed to chitosan, before sensitization and allergen challenge. Pulmonary inflammation, antigen-specific CD4(+) T-cell responses, and antibody levels in sera were then determined. RESULTS: Mice given peptide adsorbed to chitosan had significant reductions in airway eosinophilia, which correlated with reduced levels of IL-4 and IL-5 in the bronchoalveolar lavage fluid. There was decreased recruitment of activated CD4(+) T cells into the airways after allergen challenge, which correlated with a loss of Der p 1-specific T-cell cytokine responses in the periphery and the localized production of IL-10 by antigen-specific T cells in bronchial lymph nodes. Induction of peripheral T-cell tolerance was preceded by transient T-cell activation and IFN-gamma production. CONCLUSION: Our data demonstrate that suppression of airway inflammation by intranasal administration of peptide antigen adsorbed to chitosan is initiated by transient T-cell activation and maintained by the production of IL-10 by antigen-specific T cells in the draining lymph nodes.  相似文献   

18.
BACKGROUND: Asthma is characterized by allergen-induced airway inflammation orchestrated by TH2 cells. The TH1-promoting cytokine IL-12 is capable of inhibiting the TH2-driven allergen-induced airway changes in mice and is therefore regarded as an interesting strategy for treating asthma. OBJECTIVE: The antiallergic effects of IL-12 are only partially dependent of IFN-gamma. Because IL-12 is a potent inducer of the anti-inflammatory cytokine IL-10, the aim of the present study was to investigate in vivo whether the antiallergic effects of IL-12 are mediated through IL-10. METHODS: C57BL/6J-IL-10 knock-out (IL-10(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and subsequently exposed from day 14 to day 21 to aerosolized OVA (1%). IL-12 was administered intraperitoneally during sensitization, subsequent OVA exposure, or both. RESULTS: IL-12 inhibited the OVA-induced airway eosinophilia, despite the absence of IL-10. Moreover, a shift from a TH2 inflammatory pattern toward a TH1 reaction was observed, with concomitant pronounced mononuclear peribronchial inflammation after IL-12 treatment. Allergen-specific IgE synthesis was completely suppressed only when IL-12 was administered along with the allergen sensitization. Furthermore, treating the animals with IL-12 at the time of the secondary allergen challenge resulted not only in a significant suppression of the airway responsiveness but also in an important IFN-gamma-associated toxicity. CONCLUSIONS: These results indicate that IL-12 is able to inhibit allergen-induced airway changes, even in the absence of IL-10. In addition, our results raise concerns regarding the redirection of TH2 inflammation by TH1-inducing therapies because treatment with IL-12 resulted not only in a disappearance of the TH2 inflammation but also in a TH1-driven inflammatory pulmonary pathology.  相似文献   

19.
BackgroundAsthma is a complex multifactorial chronic airway inflammatory disease with diverse phenotypes and levels of severity and is associated with significant health and economic burden. In a certain population of asthma patients, the symptoms cannot be well controlled with steroid. There has been long standing interest in the use of probiotics for treating allergic diseases. The purpose of this study is to investigate whether the combination of Lactobacillus rhamnosus GG (LGG) with prednisolone could reduce the dosage of glucocorticoid in controlling airway inflammation in a murine model for allergic asthma.Material and methodsWe used Der p 2-sensitized asthma model in female BALB/c mice. The animals were treated with 75 μl or 50 μl oral prednisolone or combination treatment of these two doses of oral prednisolone with LGG. Airway hyperresponsiveness, serum specific IgE/IgG1/IgG2a, infiltrating inflammatory cells in lung and cytokines were assessed.ResultsCompared to 75 μl prednisolone, a lower dose of prednisolone with 50 μl was less satisfactory in suppressing airway hyperresponsives, serum IgE and IgG1, Th2 cytokines and inflammatory cytokines such as IL-6, IL-8 and IL-17 as well as infiltrating inflammatory cells. However, combination of 50 μl prednisolone and LGG decreased airway resistance and serum IgE and IgG1, inhibited the production of IL-4, IL-5, IL-6, IL-8, IL-13 and IL-17, upregulated serum IgG2a and enhanced Th1 immune response.ConclusionsLGG may reduce the dosage of prednisolone and thus may be beneficial in the treatment of asthma.  相似文献   

20.
BackgroundAsthma is a heterogeneous inflammatory disorder of the airway. A Th2 response usually contributes to high levels of allergen-specific IgE and eosinophilic airway inflammation. Several findings have demonstrated that neutrophils, not eosinophils, are the major inflammatory cells in chronic asthma patients with steroid-resistance. Lactobacillus rhammosus GG (LGG) exhibits anti-inflammatory properties on OVA-induced acute airway inflammation.ObjectiveWe hypothesized that orally administrated LGG should reduce airway remodeling in chronic experimental models.MethodsFemale Balb/c mice were sensitized with OVA. LGG was used to investigate whether oral administrations of LGG inhibited OVA-induced airway inflammation in a chronic asthma model and the different intervention times between LGG pre-treatment and post-treatment groups. BALF was analyzed with Liu's stain and ELISA assay. Lung histopathology was assayed with HE, IHC and Masson's trichrome staining. Lung tissues were assayed with PCR (T-bet, GATA3, RORrt and Foxp3). Many cytokines were detected in the serum and BALF.ResultsLGG significantly decreased the number of infiltrating inflammatory cells. We also found that the oral LGG group suppressed not only Th2 cytokine, but also IL-17, TNF-α and HMGB1 in the BALF levels. However, GATA3 and RORrt decreased significantly in the RNA level in the LGG groups, but the T-bet and Foxp3 increased in the RNA level.ConclusionsLGG not only had anti-inflammatory effects on OVA-induced airway inflammation, but also improved airway remodeling and collagen expression in the chronic asthma mouse model. Moreover, LGG might be an additional or supplementary therapy for allergic airway diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号