首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.  相似文献   

2.
Nociceptive pain alerts the body to potential or actual tissue damage. By contrast, neuropathic pain, which results from injury or damage to the nervous system, persists long after all signs of the original injury have disappeared. This type of maladaptive pain presents a significant clinical problem, as it responds poorly or unpredictably to classical analgesics. There is also no single, uniformly well-tolerated drug that is reliably helpful. Current understanding of the etiology of neuropathic pain reveals seven potential targets for therapeutic intervention. These are: 1) ectopic activity in damaged peripheral nerves; 2) increased excitability in spinal dorsal horn neurons; 3) restoration or augmentation of GABAergic inhibition in the dorsal horn; 4) supraspinal and affective mechanisms; 5) alterations in the sympathetic nervous system; 6) spinal peptidergic mechanisms; and 7) spinal excitatory amino acid receptors. Current therapeutic approaches, using drugs such as gabapentin, anticonvulsants, ketamine or methadone, and potential new approaches are discussed in the context of these seven drug targets.  相似文献   

3.
4.
Using an animal model of neuropathic pain, behavioral and biochemical experiments were performed to assess the effects of this condition on pain threshold and GABA(B) receptor sensitivity and subunit gene expression in the rat lumbar spinal cord. The results indicate that partial sciatic nerve ligation decreases thermal and mechanical pain withdrawal latencies, and increases baclofen-stimulated [35S]GTPgammaS binding and GABA(B) receptor subunit gene expression in the rat lumbar spinal cord, suggesting that neuropathic pain may be due, in part, to a deficiency in GABAergic transmission. The experiments also demonstrate that daily administration (10 mg/kg, i.p.) of amitriptyline, a tricyclic antidepressant used for the treatment of neuropathic pain, for 1 week after surgery prevents the decline in thermal pain threshold, the increase in GABA(B2) gene expression, and development of increased GABA(B) receptor function in spinal cord resulting from nerve damage. These findings indicate that the efficacy of amitriptyline as a treatment for neuropathic pain may be related to an ability to maintain spinal cord GABA(B) receptor activity.  相似文献   

5.
Symptoms of neuropathic spinal cord injury (SCI) pain include evoked cutaneous hypersensitivity and spontaneous pain, which can be present below the level of the injury. Adverse side-effects obtained with currently available analgesics complicate effective pain management in SCI patients. Voltage-gated Na+ channels expressed in primary afferent nociceptors have been identified to mediate persistent hyperexcitability in dorsal root ganglia (DRG) neurons, which in part underlies the symptoms of nerve injury-induced pain. Ambroxol has previously demonstrated antinociceptive effects in rat chronic pain models and has also shown to potently block Na+ channel current in DRG neurons. Ambroxol was tested in rats that underwent a mid-thoracic spinal cord compression injury. Injured rats demonstrated robust hind paw (below-level) heat and mechanical hypersensitivity. Orally administered ambroxol significantly attenuated below-level hypersensitivity at doses that did not affect performance on the rotarod test. Intrathecal injection of ambroxol did not ameliorate below-level hypersensitivity. The current data suggest that ambroxol could be effective for clinical neuropathic SCI pain. Furthermore, the data suggest that peripherally expressed Na+ channels could lend themselves as targets for the development of pharmacotherapies for SCI pain.  相似文献   

6.
Nociceptive inputs from primary afferents are primarily mediated at fast glutamatergic synapses onto second order neurons in the dorsal horn of the spinal cord through activation of AMPA/kainate and NMDA receptor subtypes of ionotropic glutamate receptors. At these glutamatergic synapses several forms of short-lasting and long-lasting enhancement of synaptic transmission are known. Enhancement of excitatory synaptic transmission in nociceptive pathways is thought to be a key neural substrate underlying chronic pain, and thus the cellular and molecular mechanisms producing this enhancement represent potential targets for developing novel forms of therapeutics. Central to the mechanisms for pain hypersensitivity is the NMDA receptor, the activity of which is facilitated by convergent intracellular biochemical cascades in dorsal horn neurons. Cellular changes are not restricted to neurons in the dorsal horn, however, and there is growing evidence for involvement of glia, and of glia-neuronal signaling, in initiating and sustaining enhancement of nociceptive transmission. In particular, a role has emerged for microglia in pain hypersensitivity following nerve injury. This expanded understanding of cellular and molecular signalling mechanisms in the dorsal horn, that includes both neurons and glia, provides a basis of creating new types of strategies for management, and also for diagnosis, of chronic pain.  相似文献   

7.
Antiepileptic drugs are often utilized in the treatment of neuropathic pain. The present study aims at the design and synthesis of newer gamma-aminobutyric acid (GABA) derivatives with the combination of aryl semicarbazone and the GABA pharmacophores in order to develop a multifunctional drug useful in the treatment of neurological disorders like epilepsy and neuropathic pain. Various GABA semicarbazones were synthesized and screened for anticonvulsant, peripheral analgesic, antiallodynic, and antihyperalgesic activities. The structures of the synthesized compounds were confirmed by the use of their spectral data in addition to elemental analysis. The synthesized derivatives of the inhibitory neurotransmitter GABA produced anticonvulsant and antinociceptive actions in the acetic acid induced writhing test and peripheral nerve injury (chronic constriction injury and L5 spinal nerve ligation) models of neuropathic pain. The underlying mechanisms are expected to be enhancement of peripheral GABAergic neurotransmission owing to their activity in the scPIC screen and due to various reports on the involvement of GABAergic pathway in peripheral models of neuropathic pain.  相似文献   

8.

BACKGROUND AND PURPOSE

The analgesic action of 5-HT and noradrenaline reuptake inhibitors (SNRIs) on nociceptive synaptic transmission in the spinal cord is poorly understood. We investigated the effects of milnacipran, an SNRI, on C-fibre-evoked field potentials (FPs) in spinal long-term potentiation (LTP), a proposed synaptic mechanism of hypersensitivity, and on the FPs in a neuropathic pain model.

EXPERIMENTAL APPROACH

C-fibre-evoked FPs by electrical stimulation of the sciatic nerve fibres were recorded in the spinal dorsal horn of anaesthetized adult rats, and LTP was induced by high-frequency stimulation of the sciatic nerve fibres. A rat model of neuropathic pain was produced by L5 spinal nerve ligation and transection.

KEY RESULTS

Milnacipran produced prolonged inhibition of C-fibre-evoked FPs when applied spinally after the establishment of LTP of C-fibre-evoked FPs in naïve animals. In the neuropathic pain model, spinal administration of milnacipran clearly reduced the basal C-fibre-evoked FPs. These inhibitory effects of milnacipran were blocked by spinal administration of methysergide, a 5-HT1/2 receptor antagonist, and yohimbine or idazoxan, α2-adrenoceptor antagonists. However, spinal administration of milnacipran in naïve animals did not affect the basal C-fibre-evoked FPs and the induction of spinal LTP.

CONCLUSION AND IMPLICATIONS

Milnacipran inhibited C-fibre-mediated nociceptive synaptic transmission in the spinal dorsal horn after the establishment of spinal LTP and in the neuropathic pain model, by activating both spinal 5-hydroxytryptaminergic and noradrenergic systems. The condition-dependent inhibition of the C-fibre-mediated transmission by milnacipran could provide novel evidence regarding the analgesic mechanisms of SNRIs in chronic pain.  相似文献   

9.
The importance of the GABAergic system in spinal nociceptive processing has long been appreciated but we have only recently begun to understand how this system is modulated by the regulation of anion gradients. In neuronal tissues, cation-chloride cotransporters regulate Cl- homeostasis and the activity and/or expression of these transporters has important implications for the direction and magnitude of anion flow through GABA-A channels. Here we review recent evidence that two cation-chloride cotransporters, NKCC1 and KCC2 are involved in pain and enhanced nociception. On the one hand, NKCC1 activity is upregulated in primary afferents following an inflammatory insult and this produces excessive GABAergic depolarization in primary afferents leading to cross excitation between low and high threshold afferents. On the other hand, KCC2 expression is reduced in dorsal horn neurons following peripheral nerve injury resulting in a loss of GABA-/glycinergic inhibitory tone and, in some cases, inverting its action into net excitation. Pharmacological targeting of these cation chloride cotransporters to restore normal GABA-/glycinergic transmission in the spinal cord represents an entirely novel approach to the development of analgesics.  相似文献   

10.
It is without dispute that the treatment of neuropathic pain is an area of largely unmet medical need. Available analgesics, such as morphine, either have minimal effects in neuropathic pain patients, or are not always well tolerated due to concurrent adverse effects. The chronicity of neuropathic pain is thought to be related to many neurochemical changes in the dorsal root ganglia (DRG) and spinal cord, including a reduction in the retrograde transport of nerve growth factor (NGF). In this study, we have determined the ability of chronic intrathecal (i.t.) infusion of NGF to reverse neuropathic pain symptoms and to restore morphine's effectiveness in an animal model of neuropathic pain. Seven days after sciatic nerve constriction injury, NGF was administered to the spinal cord by continuous infusion (125 ng/microl/h) via osmotic pumps attached to chronically implanted i.t. catheters. Spinal infusion of NGF did not affect the expression of tactile allodynia or thermal (hot) hyperalgesia in neuropathic rats, although it significantly increased cold water responses frequency at day 14. Following infusion of vehicle, i.t. morphine (20 microg) was ineffective in altering somatosensory thresholds in neuropathic rats. In contrast, morphine substantially attenuated the neuropathy-induced warm and cold hyperalgesia, as well as tactile allodynia, in neuropathic rats chronically infused with i.t. NGF. In addition, we demonstrate that i.t. morphine-induced antinociception was augmented by a cholecystokinin (CCK) antagonist in animals chronically infused with i.t. antibodies directed against NGF. We hypothesize that NGF is critical in maintaining neurochemical homeostasis in the spinal cord of nociceptive neurons, and that supplementation may be beneficial in restoring and/or maintaining opioid analgesia in chronic pain conditions resulting from traumatic nerve injury.  相似文献   

11.
The investigators previously found that the administration of lemnalol, a natural marine compound isolated from the Formosan soft coral Lemnalia cervicorni, produced anti-inflammatory and analgesic effects in carrageenan-injected rats. Recently, several studies have demonstrated that the development and maintenance of neuropathic pain are accompanied by releasing of proinflammatory mediators from activated glial cells in the spinal cord. In this study, we investigated the antinociceptive properties of lemnalol, a potential anti-inflammatory compound, on chronic constriction injury (CCI) in a well-established rat model of neuropathic pain. Our results demonstrated that a single intrathecal administration of lemnalol (0.05-10 μg) significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia, 14 days postsurgery. Furthermore, immunohistofluorescence analyses showed that lemnalol (10 μg) also significantly inhibits CCI-induced upregulation of microglial and astrocytic immunohistochemical activation markers in the dorsal horn of the lumbar spinal cord. Double immunofluorescent staining demonstrated that intrathecal injection of lemnalol (10 μg) markedly inhibited spinal proinflammatory mediator tumor necrosis factor-α expression in microglial cells and astrocytes in neuropathic rats. Collectively, our results indicate that lemnalol is a potential therapeutic agent for neuropathic pain, and that further exploration of the effects of lemnalol on glial proinflammatory responses is warranted.  相似文献   

12.
Our previous study has demonstrated that topical and systemic administration of the 5-HT2A receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT2A receptors in neuropathic pain and (3) the blockade of 5-HT2A receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.  相似文献   

13.
A mouse model of neuropathic pain consisting of chronic constriction injury (CCI) of the sciatic nerve was used to examine the involvement of reactive oxygen species (ROS) in early spinal cord pro-apoptotic gene over-expression during the development of neuropathic pain. RT-PCR analysis showed increased expression of bax, apoptotic protease-activating factor-1 (apaf-1), and caspase-9 in the dorsal horn spinal cord 3 days after chronic constriction injury of sciatic nerve. Consistent with biomolecular data, a marked increase in TUNEL-positive and caspase-3 active form was observed by 3 days CCI. Administration of phenyl-N-tert-butylnitrone (PBN), a potent ROS scavenger, reduced the development of thermal hyperalgesia and mechanical allodynia at 1 and 3 days post-CCI, and decreased the mRNA levels of bax, apaf-1, and caspase-9. PBN also reduced apoptotic and active Caspase-3 positive profiles in the superficial laminae (I-III) of the spinal cord. This study provides evidence that PBN inhibits over-expression of pro-apoptotic genes and neural apoptosis in the spinal cord dorsal horn induced by early-CCI of the sciatic nerve. These findings suggest that ROS regulate expression of some apoptotic genes which might play a role in the onset of neuropathic pain.  相似文献   

14.
Aim: To investigate whether activation and translocation of extracellular signalregulated kinase (ERK) is involved in the induction and maintenance of neuropathic pain, and effects of activation and translocation of ERK on expression of pCREB and Fos in the chronic neuropathic pain. Methods: Lumbar intrathecal catheters were chronically implanted in male Sprague-Dawley rats. The left sciatic nerve was loosely ligated proximal to the sciatica‘s trifurcation at approximately 1.0 mm intervals with 4-0 silk sutures. The mitogen-activated protein kinase kinase (MEK) inhibitor U0126 or phosphorothioate-modified antisense oligonucleotides (ODN) were intrathecally administered every 12 h, 1 d pre-chronic constriction injury (CCI) and 3 d post-CCI. Thermal and mechanical nociceptive thresholds were assessed with the paw withdrawal latency (PWL) to radiant heat and von Frey filaments. The expression of pERK, pCREB, and Fos were assessed by both Western blotting and immunohistochemical analysis. Results: Intrathecal injection of U0126 or ERK antisense ODN significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia. CCI significantly increased the expression of p-ERK-IR neurons in the ipsilateral spinal dorsal horn to injury, not in the contralateral spinal dorsal horn. The time courses of pERK expression showed that the levels of both cytosol and nuclear pERK, but not total ERK, were increased at all points after CCI and reached a peak level on postoperative d 5. CCI also significantly increased the expression of pCREB and Fos. Phospho-CREB-positive neurons were distributed in all laminae of the bilateral spinal cord and Fos was expressed in laminae I and II of the ipsilateral spinal dorsal horn. Intrathecal injection of U0126 or ERK antisense ODN markedly suppressed the increase of CCI-induced pERK, pCREB and c-Fos expression in the spinal cord. Conclusion:The activation of ERK pathways contributes to neuropathic pain in CCI rats, and the function of pERK may partly be accomplished via the cAMP response element binding protein (CREB)-dependent gene expression.  相似文献   

15.
Intravenous GABAergic anesthetics are potent hypnotics but are rather ineffective in depressing movements. Immobility is mediated, in part, by the ventral horn of the spinal cord. We hypothesized that the efficacy of these anesthetics in producing immobility is compromised by the activation of GABA(A) receptors located presynaptically, which modulate GABA release onto neurons in the ventral horn. Because anesthetics acting by modulation of GABA(A) receptor function require GABA to be present at its binding site, a decrease in GABA release would abate their efficacy in reducing neuronal excitability. Here we report that in organotypic spinal cord slices, the efficacy of the intravenous anesthetic etomidate to depress network activity of ventral horn neurons is limited to approximately 60% at concentrations greater than 1 microM that produce immobility. Depression of spinal network activity was almost abolished in spinal slices from beta3(N265M) knock-in mice. In the wild type, etomidate prolonged decay times of GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) and concomitantly reduced the frequency of action potential-dependent IPSCs. Etomidate prolonged the decay time of GABA(A) receptors at all tested concentrations. At concentrations greater than 1.0 microM, anesthetic-induced decrease of GABA release via modulation of presynaptic GABA(A) receptors and enhancement of postsynaptic GABA(A) receptor-function compensated for each other. The results suggest that the limited immobilizing efficacy of these agents is probably due to a presynaptic mechanism and that GABAergic agents with a specificity for post-versus presynaptic receptors would probably have much stronger immobilizing actions, pointing out novel avenues for drug development.  相似文献   

16.
Loading of GABA and glycine into synaptic vesicles via the vesicular GABA transporter (VGAT) is an essential step in inhibitory neurotransmission. As a result of the evidence linking alterations in GABAergic and/or glycinergic neurotransmission to various pain disorders, we investigated the possible influence of down-regulation of VGAT on pain threshold and behavioral responses in mice. The phenotypes of heterozygous VGAT knockout [VGAT(+/-)] mice were compared with wild-type (WT) mice using behavioral assays. In addition, GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded in dorsal horn neurons. Western blot analysis confirmed significant reduction of VGAT protein levels in VGAT(+/-) mice. However, high-performance liquid chromatography revealed that glutamate, GABA, and glycine contents in the whole brain and spinal cord were normal in VGAT(+/-) mice. Behavioral analysis of VGAT(+/-) mice showed unchanged motor coordination, anxiety, memory performance, and anesthetic sensitivity to propofol and ketamine, although thermal nociception and inflammatory pain were enhanced. Patch-clamp recordings revealed that the frequency and amplitude of glycinergic mIPSCs in lamina II neurons were reduced in VGAT(+/-) mice. Genotype differences in glycinergic mIPSCs were more evident during sustained stimulation by solutions with high potassium levels, suggesting that the estimated size of the readily releasable pool of glycine-containing vesicles was reduced in VGAT(+/-) mice. These results provide genetic, behavioral, and electrophysiological evidence that VGAT-mediated inhibitory drive alters very specific forms of sensory processing: those related to pain processing. More close examination will be needed to verify the possibility of VGAT as a new therapeutic target for the treatment of inflammatory pain.  相似文献   

17.
目的观察大鼠坐骨神经慢性压迫性损伤(CCI)后脊髓背角P物质表达的变化,探讨P物质在疼痛发生机制中的作用。方法SD雄性大鼠60只,随机分为:A组:CCI组(30只);B组:对照组(30只)。术前及术后3、7、14、28 d分别测定大鼠热痛阈值、机械痛阈值和行为学评分。术后3、7、14、28d每组取4只,麻醉后用4%多聚甲醛灌注固定,取L4-6段脊髓,以备免疫组化,测定SP的变化。结果所有CCI动物从术后第3天起,出现明显的疼痛行为学改变和热痛阈值、机械痛阈值的降低,与对照组比较差异有统计学意义(P〈0.05或P〈0.01)。免疫组织化学结果表明,A组术后术侧明显高于B组(P〈0.05或P〈0.01);A组术侧明显高于健侧(P〈0.05或P〈0.01);而B组仅在第4天术侧高于健侧(P〈0.05)。结论慢性坐骨神经损伤后,脊髓背角SP的表达增加,而且表达增加与CCI大鼠的痛觉过敏、行为变化在时相上基本一致,说明CCI大鼠痛觉过敏与脊髓背角SP的表达增加有关。  相似文献   

18.
Gabapentin is a lipophilic analog of gamma-amino butyric acid (GABA) with therapeutic activity against certain forms of epilepsy and neuropathic pain. Despite its structural similarity to GABA, it does not bind GABAA or GABAB receptors and the mechanism, especially of its analgesic action, has remained elusive. Here, we have studied its effects on synaptic transmission mediated by the major spinal fast excitatory and inhibitory neurotransmitters, L-glutamate and glycine, in the superficial layers of the spinal cord dorsal horn, a CNS area, which is critically involved in nociception. Gabapentin reversibly reduced evoked excitatory postsynaptic currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA-EPSCs) and inhibitory postsynaptic currents mediated by glycine (gly-IPSCs). Inhibition of AMPA-EPSCs and gly-IPSCs occurred with similar potencies (approximately 10-50 nM) and by about the same degree (approximately 40% at 1 microM). Gabapentin did not affect membrane currents elicited by exogenously applied glutamate or glycine arguing against a postsynaptic site of action. Selective blockade of N-type Ca2+ channels with omega-conotoxin GVIA dramatically increased and blockade of P/Q-type channels with omega-agatoxin IVA strongly attenuated inhibition of evoked synaptic transmission by gabapentin. These results show that gabapentin affects both excitatory and inhibitory spinal neurotransmission via a presynaptic mechanism which preferentially involves P/Q-type Ca2+ channels.  相似文献   

19.
Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the ''pain matrix'' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the ''pain matrix'' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.  相似文献   

20.
Gabapentin (GBP, CAS 60142-96-3) has anticonvulsant and antinociceptive properties; the latter relate especially to chronic neuropathic pain. The mode of action of GBP, possibly different in epilepsy and chronic pain syndromes, is only poorly understood. This minireview is aimed at compiling the different mechanisms by which GBP may diminish the nociceptive transmission in the dorsal horn of the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号