首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Two brain regions often implicated in schizophrenia are the dorsolateral prefrontal cortex (DLPFC) and the hippocampal formation (HF). It has been hypothesized that the pathophysiology of the disorder might involve an alteration of functional interactions between medial temporal and prefrontal areas. METHODS: We used neuroimaging data acquired during a working memory challenge and a sensorimotor control task in 22 medication-free schizophrenic patients and 22 performance-, age-, and sex-matched healthy subjects to investigate "functional connectivity" between HF and DLPFC in schizophrenia. The HF blood flow, measured with positron emission tomography, was assessed within a probabilistic template. Brain areas whose activity was positively or negatively coupled to HF were identified using voxelwise analysis of covariance throughout the entire brain and analyzed using a random effects model. RESULTS: During working memory, patients showed reduced activation of the right DLPFC and left cerebellum. In both groups, inverse correlations were observed between the HF and the contralateral DLPFC and inferior parietal lobule. While these did not differ between diagnostic groups during the control task, the working memory challenge revealed a specific abnormality in DLPFC-HF functional connectivity-while the right DLPFC was significantly coupled to the left HF in both groups during the control task, this correlation was not seen in healthy subjects during working memory but persisted undiminished in patients, resulting in a significant task-by-group interaction. CONCLUSIONS: Our results suggest a regionally specific alteration of HF-DLPFC functional connectivity in schizophrenia that manifests as an unmodulated persistence of an HF-DLPFC linkage during working memory activation. Thus, a mechanism by which HF dysfunction may manifest in schizophrenia is by inappropriate reciprocal modulatory interaction with the DLPFC.  相似文献   

2.
Cognitive deficits, including impaired verbal memory, are prominent in schizophrenia and lead to increased disability. Functional neuroimaging of patients with schizophrenia performing memory tasks has revealed abnormal activation patterns in prefrontal cortex and temporo-limbic regions. Aberrant fronto-temporal interactions thus represent a potential pathophysiological mechanism underlying verbal memory deficits, yet this hypothesis of disturbed connectivity is not tested directly with standard activation studies. We performed within-subject correlations of frontal and temporal timeseries to measure functional connectivity during verbal encoding. Our results confirm earlier findings of aberrant fronto-temporal connectivity in schizophrenia, and extend them by identifying distinct alterations within dorsal and ventral prefrontal cortex. Relative to healthy controls, patients with schizophrenia had reduced connectivity between the dorsolateral prefrontal cortex (DLPFC) and temporal lobe areas including parahippocampus and superior temporal gyrus. In contrast, patients showed increased connectivity between a region of ventrolateral prefrontal cortex (VLPFC) and these same temporal lobe regions. Higher temporal-DLPFC connectivity during encoding was associated with better subsequent recognition accuracy in controls, but not patients. Temporal-VLPFC connectivity was uncorrelated with recognition accuracy in either group. The results suggest that reduced temporal-DLPFC connectivity in schizophrenia could underlie encoding deficits, and increased temporal-VLPFC connectivity may represent an ineffective compensatory effort.  相似文献   

3.
People with schizophrenia exhibit impaired social cognitive functions, particularly emotion regulation. Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia, suggesting its important role in emotion processing in patients. We used the resting-state functional connectivity approach, setting a functionally relevant region, the vMPFC, as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients. We found hypo-connectivity between the vMPFC and the medial frontal cortex, right middle temporal lobe (MTL), right hippocampus, parahippocampal cortex (PHC) and amygdala. Further, there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas. Among these connectivity alterations, reduced vMPFC-DLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale, while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients. These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia. The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.  相似文献   

4.

Objective:

Cognitive dysfunction is a core feature of schizophrenia, and persons at risk for schizophrenia may show subtle deficits in attention and working memory. In this study, we investigated the relationship between integrity of functional brain networks and performance in attention and working memory tasks as well as schizophrenia risk.

Methods:

A total of 235 adults representing 3 levels of risk (102 outpatients with schizophrenia, 70 unaffected first-degree relatives of persons with schizophrenia, and 63 unrelated healthy controls [HCs]) completed resting-state functional magnetic resonance imaging and a battery of attention and working memory tasks (Brief Test of Attention, Hopkins Verbal Learning Test, and Brief Visuospatial Memory Test) on the same day. Functional networks were defined based on coupling with seeds in the dorsal anterior cingulate cortex, dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and primary visual cortex. Networks were then dissected into regional clusters of connectivity that were used to generate individual interaction matrices representing functional connectivity within each network.

Results:

Both patients with schizophrenia and their first-degree relatives showed cognitive dysfunction compared with HCs. First canonicals indicated an inverse relationship between cognitive performance and connectivity within the DLPFC and MPFC networks. Multivariate analysis of variance revealed multivariate main effects of higher schizophrenia risk status on increased connectivity within the DLPFC and MPFC networks.

Conclusions:

These data suggest that excessive connectivity within brain networks coupled to the DLPFC and MPFC, respectively, accompany cognitive deficits in persons at risk for schizophrenia. This might reflect compensatory reactions in neural systems required for cognitive processing of attention and working memory tasks to brain changes associated with schizophrenia.Key words: resting state, fMRI, default-mode network, attention, working memory  相似文献   

5.
目的 利用静息状态功能磁共振成像(fMRI)研究阿尔茨海默病(AD)早期后扣带回相关的静息脑网络连通性是如何变化的.方法 运用fMRI研究了16例轻度AD患者和16名健康对照者在静息状态后扣带回的功能连通性.与后扣带回有功能连通性的脑区是通过检测低频波动信号的时程相关性获得的.应用通用的SPM2图像统计软件计算组间和组内连通性差异,激活区阈值设置:P<0.01(校正),像素范围>5.利用SPM2软件随机效应分析t检验(经校正P<0.01,t=2.47,像素范围>5),比较患者组和对照组连通性激活的脑区.结果 与后扣带回有功能连通性减弱的脑区包括前额叶中线区、楔前叶、双侧视皮质、双侧颞下回、左侧海马、右侧丘脑、右侧额叶背外侧区;偏左侧化的连通性增高的脑区包括前额叶中线区、左侧颞下回、左侧基底节区、双侧额叶背外侧区及左侧中央前区.结论 与后扣带回相关的静息状态脑网络连通性减低与AD早期情节记忆损害和高级视觉功能损害有关系,轻度AD保留着功能连接的重塑性以便维持脑功能.静息fMRI是一种探索AD脑功能机制的适宜方法.  相似文献   

6.
Characterizing working memory (WM) abnormalities represents a fundamental challenge in schizophrenia research given the impact of cognitive deficits on life outcome in patients. In prior work we demonstrated that dorsolateral prefrontal cortex (DLPFC) activation was related to successful distracter resistance during WM in healthy controls, but not in schizophrenia. Although understanding the impact of regional functional deficits is critical, functional connectivity abnormalities among nodes within WM networks may constitute a final common pathway for WM impairment. Therefore, this study tested the hypothesis that schizophrenia is associated with functional connectivity abnormalities within DLPFC networks during distraction conditions in WM. 28 patients and 24 controls completed a delayed non-verbal WM task that included transient visual distraction during the WM maintenance phase. We computed DLPFC whole-brain task-based functional connectivity (tb-fcMRI) specifically during the maintenance phase in the presence or absence of distraction. Results revealed that patients failed to modulate tb-fcMRI during distracter presentation in both cortical and sub-cortical regions. Specifically, controls demonstrated reductions in tb-fcMRI between DLPFC and the extended amygdala when distraction was present. Conversely, patients failed to demonstrate a change in coupling with the amygdala, but showed greater connectivity with medio-dorsal thalamus. While controls showed more positive coupling between DLPFC and other prefrontal cortical regions during distracter presentation, patients failed to exhibit such a modulation. Taken together, these findings support the notion that observed distracter resistance deficit involves a breakdown in coupling between DLPFC and distributed regions, encompassing both subcortical (thalamic/limbic) and control region connectivity.  相似文献   

7.
Objective: Patients with Parkinson's disease (PD) often suffer from impairments in executive functions, such as working memory deficits. It is widely held that dopamine depletion in the striatum contributes to these impairments through decreased activity and connectivity between task‐related brain networks. We investigated this hypothesis by studying task‐related network activity and connectivity within a sample of de novo patients with PD, versus healthy controls, during a visuospatial working memory task. Methods: Sixteen de novo PD patients and 35 matched healthy controls performed a visuospatial n‐back task while we measured their behavioral performance and neural activity using functional magnetic resonance imaging. We constructed regions‐of‐interest in the bilateral inferior parietal cortex (IPC), bilateral dorsolateral prefrontal cortex (DLPFC), and bilateral caudate nucleus to investigate group differences in task‐related activity. We studied network connectivity by assessing the functional connectivity of the bilateral DLPFC and by assessing effective connectivity within the frontoparietal and the frontostriatal networks. Results: PD patients, compared with controls, showed trend‐significantly decreased task accuracy, significantly increased task‐related activity in the left DLPFC and a trend‐significant increase in activity of the right DLPFC, left caudate nucleus, and left IPC. Furthermore, we found reduced functional connectivity of the DLPFC with other task‐related regions, such as the inferior and superior frontal gyri, in the PD group, and group differences in effective connectivity within the frontoparietal network. Interpretation: These findings suggest that the increase in working memory‐related brain activity in PD patients is compensatory to maintain behavioral performance in the presence of network deficits. Hum Brain Mapp 36:1554–1566, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
OBJECTIVE: It has been suggested that in healthy persons higher-order cognitive processing engaged by incremental working memory load hierarchically employs more dorsal than ventral prefrontal resources in healthy individuals. Given that working memory performance is impaired in schizophrenia, especially at higher executive loads, the authors investigated how this prefrontal functional organization might be altered in disease, independent of performance deficits. METHOD: Using N-back working memory functional magnetic resonance imaging (fMRI) data, the authors studied 15 patients with schizophrenia and 26 healthy comparison subjects. Subgroups based on median performance accuracy at 2-back were analyzed; high performers included eight schizophrenia patients and 14 comparison subjects, and low performers included seven patients and 12 comparison subjects. RESULTS: High-performing but not low-performing comparison subjects responded to incremental working memory executive load with disproportionately greater dorsal but not ventral prefrontal cortex activation, which also predicted performance accuracy. In the high- and low-performing patient groups, incremental working memory load caused a disproportionate increase in ventral but not dorsal prefrontal cortex activation relative to the respective comparison group, which also correlated with accuracy. Functional connectivity between the ventral prefrontal cortex and posterior parietal cortex was relatively greater in patients, whereas comparison subjects had greater functional connectivity between the dorsal prefrontal cortex and posterior parietal cortex. CONCLUSIONS: The hierarchical organization of the prefrontal cortex may be compromised in schizophrenia, resulting in loss of functional specialization and integration at the dorsal prefrontal cortex and in compensatory activation from the ventral prefrontal cortex, which may ultimately affect working memory and executive cognition.  相似文献   

9.
Alterations in brain function in schizophrenia and other neuropsychiatric disorders are evident not only during specific cognitive challenges, but also from functional MRI data obtained during a resting state. Here we apply probabilistic independent component analysis (pICA) to resting state fMRI series in 25 schizophrenia patients and 25 matched healthy controls. We use an automated algorithm to extract the ICA component representing the default mode network (DMN) as defined by a DMN-specific set of 14 brain regions, resulting in z-scores for each voxel of the (whole-brain) statistical map. While goodness of fit was found to be similar between the groups, the region of interest (ROI) as well as voxel-wise analysis of the DMN showed significant differences between groups. Healthy controls revealed stronger effects of pICA-derived connectivity measures in right and left dorsolateral prefrontal cortices, bilateral medial frontal cortex, left precuneus and left posterior lateral parietal cortex, while stronger effects in schizophrenia patients were found in the right amygdala, left orbitofrontal cortex, right anterior cingulate and bilateral inferior temporal cortices. In patients, we also found an inverse correlation of negative symptoms with right anterior prefrontal cortex activity at rest and negative symptoms. These findings suggest that aberrant default mode network connectivity contributes to regional functional pathology in schizophrenia and bears significance for core symptoms.  相似文献   

10.
Background: Genome‐wide association studies have identified the rs1006737 single nucleotide polymorphism (SNP) in the CACNA1C gene as a susceptibility locus for schizophrenia and bipolar disorder. On the neural systems level this association is explained by altered functioning of the dorsolateral prefrontal cortex (DLPFC) and the hippocampal formation (HF), brain regions also affected by mental illness. In the present study we investigated the association of rs1006737 genotype with prefrontal activation and fronto‐hippocampal connectivity. Methods: We used functional magnetic resonance imaging to measure neural activation during an n‐back working memory task in 94 healthy subjects. All subjects were genotyped for the SNP rs1006737. We tested associations of the rs1006737 genotype with changes in working‐memory‐related DLPFC activation and functional integration using a seed region functional connectivity approach. Results: Rs1006737 genotype was associated with altered right‐hemispheric DLPFC activation. The homozygous A (risk) group showed decreased activation compared to G‐allele carriers. Further, the functional connectivity analysis revealed a positive association of fronto‐hippocampal connectivity with rs1006737 A alleles. Conclusions: We did not replicate the previous findings of increased right DLPFC activation in CACNA1C rs1006737 A homozygotes. In fact, we found the opposite effect, thus questioning prefrontal inefficiency as rs1006737 genotype‐related intermediate phenotype. On the other hand, our results indicate that alterations in the functional coupling between the prefrontal cortex and the medial temporal lobe could represent a neural system phenotype that is mediated by CACNA1C rs1006737 and other genetic susceptibility loci for schizophrenia and bipolar disorder. Hum Brain Mapp 35:1190–1200, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Zhou Y  Liang M  Tian L  Wang K  Hao Y  Liu H  Liu Z  Jiang T 《Schizophrenia Research》2007,97(1-3):194-205
Functional disintegration has been observed in schizophrenia during task performance. We sought to investigate functional disintegration during rest because an intrinsic functional brain organization, including both "task-negative" (i.e., "default mode") and "task-positive" networks, has been suggested to play an important role in integrating ongoing information processing. Additionally, the brain regions that are involved in the intrinsic organization are believed to be abnormal in schizophrenia. Patients with paranoid schizophrenia (N=18) and healthy volunteers (N=18) underwent a resting-state fMRI scan. Functional connectivity analysis was used to identify the connectivity between each pair of brain regions within this intrinsic organization, and differences were examined in patients versus healthy volunteers. Compared to healthy volunteers, patients showed significant differences in connectivity within networks and between networks, most notably in the connectivities associated with the bilateral dorsal medial prefrontal cortex, the lateral parietal region, the inferior temporal gyrus of the "task-negative" network and with the right dorsolateral prefrontal cortex and the right dorsal premotor cortex of the "task-positive" network. These results suggested that the interregional functional connectivities in the intrinsic organization are altered in patients with paranoid schizophrenia. These abnormalities could be the source of abnormalities in the coordination of and competition between information processing activities in the resting brain of paranoid patients.  相似文献   

12.
Purpose: To investigate the intrinsic brain connections at the time of interictal generalized spike‐wave discharges (GSWDs) to understand their mechanism of effect on brain function in untreated childhood absence epilepsy (CAE). Methods: The EEG‐functional MRI (fMRI) was used to measure the resting state functional connectivity during interictal GSWDs in drug‐naïve CAE, and three different brain networks—the default mode network (DMN), cognitive control network (CCN), and affective network (AN)—were investigated. Results: Cross‐correlation functional connectivity analysis with priori seed revealed decreased functional connectivity within each of these three networks in the CAE patients during interictal GSWDS. It included precuneus‐dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and inferior parietal lobule in the DMN; DLPFC‐inferior frontal junction (IFJ), and pre‐supplementary motor area (pre‐SMA) subregions connectivity disruption in CCN; ACC‐ventrolateral prefrontal cortex (VLPFC) and DMPFC in AN; There were also some regions, primarily the parahippcampus, paracentral in AN, and the left frontal mid orb in the CCN, which showed increased connectivity. Conclusions: The current findings demonstrate significant alterations of resting‐state networks in drug naïve CAE subjects during interictal GSWDs and interictal GSWDs can cause dysfunction in specific networks important for psychosocial function. Impairment of these networks may cause deficits both during and between seizures. Our study may contribute to the understanding of neuro‐pathophysiological mechanism of psychosocial function impairments in patients with CAE. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

14.
Working memory capacity in schizophrenia: a parametric fMRI study   总被引:9,自引:0,他引:9  
Impaired working memory (WM) function in schizophrenia has been associated with abnormal activation of the dorsolateral prefrontal cortex (DLPFC). It is, however, not clear whether abnormal activation is a sign of DLPFC pathology, or a correlate of poor performance. We address this question by examining activity in the WM brain system at different levels of task difficulty. A parametric fMRI paradigm is used to examine how the WM system responds to increasing load. A parametric fMRI design with four levels of a spatial N-back task was used to examine the relationships between working memory load, functional output (performance) and brain activity in 10 schizophrenic patients on atypical antipsychotic medication and to compare these to 10 healthy controls. In spite of increasingly poor performance in schizophrenic patients, activity increased normally in DLPFC and inferior parietal cortex bilaterally and in anterior cingulate, with increasing load. At 3-back, activity dropped in DLPFC in comparison with controls, but not in the other regions. The results indicate that peak activation of the WM-system is reached at a lower processing load in schizophrenic patients than in healthy controls. As a decline of DLPFC activity at high processing loads in itself is not abnormal, WM dysfunction in schizophrenia appears to be the result of an impaired functional output of the whole WM system, causing elevation of the effective burden imposed by WM tasks.  相似文献   

15.
22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with a microdeletion of chromosome 22q11. In addition to high rates of neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder, children with 22q11DS have a specific neuropsychological profile with particular deficits in visuospatial and working memory. However, the neurobiological substrate underlying these deficits is poorly understood. We investigated brain function during a visuospatial working memory (SWM) task in eight children with 22q11DS and 13 healthy controls, using fMRI. Both groups showed task-related activation in dorsolateral prefrontal cortex (DLPFC) and bilateral parietal association cortices. Controls activated parietal and occipital regions significantly more than those with 22q11DS but there was no significant between-group difference in DLPFC. In addition, while controls had a significant age-related increase in the activation of posterior brain regions and an age-related decrease in anterior regions, the 22q11DS children showed the opposite pattern. Genetically determined differences in the development of specific brain systems may underpin the cognitive deficits in 22q11DS, and may contribute to the later development of neuropsychiatric disorders.  相似文献   

16.
ObjectiveEvidence of the brain network involved in cognitive dysfunction has been inconsistent for major depressive disorder (MDD), especially during early stage of MDD. This study seeks to examine abnormal cognition connectivity network (CCN) in MDD within the whole brain.MethodsSixteen patients with MDD and 16 health controls were scanned during resting-state using 3.0 T functional magnetic resonance imaging (fMRI). All patients were first episode without any history of antidepressant treatment. Both the left and right dorsolateral prefrontal cortex (DLPFC) were used as individual seeds to identify CCN by the seed-target correlation analysis. Two sample t test was used to calculate between-group differences in CCN using fisher z-transformed correlation maps.ResultsThe CCN was constructed by bilateral seed DLPFC in two groups separately. Depressed subjects exhibited significantly increased functional connectivity (FC) by left DLPFC in one cluster, overlapping middle frontal gyrus, BA7, BA43, precuneus, BA6, BA40, superior temporal gyrus, BA22, inferior parietal lobule, precentral gyrus, BA4 and cingulate gyrus in left cerebrum. Health controls did not show any cluster with significantly greater FC compared to depressed subjects in left DLPFC network. There was no significant difference of FC in right DLPFC network between depressed subjects and the health controls.ConclusionThere are differences in CCN during early stage of MDD, as identified by increased FCs among part of frontal gyrus, parietal cortex, cingulate cortex, and BA43, BA22, BA4 with left DLPFC. These brain areas might be involved in the underlying mechanisms of cognitive dysfunction in MDD.  相似文献   

17.
Functional neuroimaging studies have shown that the detection of a target defined by more than one feature (for example, a conjunction of colour and orientation) amongst distractors is associated with the activation of a network of brain areas. Dorsolateral prefrontal cortex (DLPFC), along with areas such as the frontal eye fields (FEF) and posterior parietal cortex (PPC), is a component of this network. While transcranial magnetic stimulation (TMS) had shown that both FEF and PPC are necessary for, and not just correlated with, successful conjunction search, this is not the case for DLPFC. To test the hypothesis that this area is also necessary for efficient conjunction search, TMS was applied over DLPFC and the effects on conjunction and feature (in this case colour) search performance compared with those when TMS was delivered over area MT/V5 and a vertex control stimulation condition. DLPFC TMS impaired performance on the conjunction search task but was without effect on feature search, similar to findings when TMS is delivered over PPC or FEF. Vertex TMS had no effects whereas MT/V5 TMS significantly improved performance with a time course that may indicate that this was due to modulation of V4 activity. These findings illustrate that, like FEF and PPC, DLPFC is necessary for fully effective conjunction visual search performance.  相似文献   

18.
Patients with schizophrenia exhibit deficits in semantic processing, which can form the basis of thought disorders. The objective of this study was to explore functional connectivity between the activated areas during semantic processing in schizophrenia. Twelve patients with schizophrenia and 12 healthy controls were studied with [15O]H2O positron-emission tomography during semantic judgment. The expected activation in the left inferior occipitotemporal cortex significantly correlated with several other regional activations in normal study participants, but with no other regional activations in patients with schizophrenia. This finding suggests that schizophrenia involves a disconnection of semantic networks. The resultant distortion in semantic processing may have an impact on thought disorders.  相似文献   

19.
Many studies have shown that visuospatial orienting attention depends on a network of frontal and parietal areas in the right hemisphere. Rushworth et al. [Rushworth, M. F., Krams, M., & Passingham, R. E. The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13, 698-710, 2001] have recently provided evidence for a left-lateralized network of parietal areas involved in motor attention. Using two variants of a cued reaction time (RT) task, we set out to investigate whether high-frequency repetitive transcranial magnetic stimulation (rTMS; 5 Hz) delivered "off-line" in a virtual lesion paradigm over the right or left dorsolateral prefrontal cortex (DLPFC) or the posterior parietal cortex (PPC) would affect performance in a motor versus a visual attention task. Although rTMS over the DLPFC on either side did not affect RT performance on a spatial orienting task, it did lead to an increase in the RTs of invalidly cued trials in a motor attention task when delivered to the left DLPFC. The opposite effect was found when rTMS was delivered to the PPC: In this case, conditioning the right PPC led to increased RTs in invalidly cued trials located in the left hemispace, in the spatial orienting task. rTMS over the PPC on either side did not affect performance in the motor attention task. This double dissociation was evident in the first 10 min after rTMS conditioning. These results enhance our understanding of the networks associated with attention. They provide evidence of a role for the left DLPFC in the mechanisms of motor preparation, and confirm Mesulam's original proposal for a right PPC dominance in spatial attention [Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309-325, 1981].  相似文献   

20.
Turner syndrome is a genetic disorder caused by the complete or partial absence of an X chromosome in affected women. Individuals with TS show characteristic difficulties with executive functions, visual‐spatial and mathematical cognition, with relatively intact verbal skills, and congruent abnormalities in structural development of the posterior parietal cortex (PPC). The functionally heterogeneous PPC has recently been investigated using connectivity‐based clustering methods, which sub‐divide a given region into clusters of voxels showing similar structural or functional connectivity to other brain regions. In the present study, we extended this method to compare connectivity‐based clustering between groups and investigate whether functional networks differentially recruit the PPC in TS. To this end, we parcellated the PPC into sub‐regions based on temporal correlations with other regions of the brain. fMRI data were collected from 15 girls with TS and 14 typically developing (TD) girls, aged 7–14, while they performed a visual‐spatial task. Temporal correlations between voxels in the PPC and a set of seed regions were calculated, and the PPC divided into clusters of voxels showing similar connectivity. It was found that in general the PPC parcellates similarly in TS and TD girls, but that regions in bilateral inferior parietal lobules, and posterior right superior parietal lobule, were reliably recruited by different networks in TS relative to TD participants. These regions showed weaker correlation in TS with a set of regions involved in visual processing. These results suggest that abnormal development of visuospatial functional networks in TS may relate to the well documented cognitive difficulties in this disorder. Hum Brain Mapp 34:3117–3128, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号