首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present study was to determine whether a systematic optimization of Morris water maze (mwm) testing parameters could reveal a significant role of the septohippocampal cholinergic system in spatial working memory. Young adult rats were lesioned using 192 IgG-saporin infused bilaterally into the medial septum. Lesions were near complete as measured by choline acetyltransferase (ChAT) activity and immunohistochemistry. Behavioral testing was performed in three phases. In the first, lesioned and unlesioned rats were trained in the mwm focusing on working memory, which was tested using novel platform locations daily. In the second phase, the optimal locations were retested with increasing intertrial intervals (ITI). In the third phase, intracerebroventricular infusions of nerve growth factor (NGF) were employed to enhance cholinergic activity of the unlesioned rats and potentially further separate group performance. Neither the standard or increased ITI resulted in a consistent significant difference in spatial working memory between groups. In addition, NGF treatment also failed to induce a significant difference in behavioral performance. In conclusion, impairments in working memory as assessed by the mwm could not be revealed despite a greater than 90% loss of hippocampal ChAT and the use of optimal testing parameters and NGF treatment.  相似文献   

2.
We investigated the effects of hippocampally kindled seizures on spatial performance of rats in the Morris water maze (MWM). Seizures were elicited with stimulation of field CA1 of dorsal hippocampus 25-45 min prior to daily testing in the water maze. One group of rats was naive to the MWM (acquisition groups), while another group received pretraining in the MWM (retention groups). These groups were further subdivided into rats that experienced non-convulsive seizures prior to daily testing and rats that experienced fully generalized convulsive seizures prior to daily testing. We found that CA1 seizures significantly disrupted water maze performance during both acquisition and retention, and the effects were similar when either non-convulsive or fully generalized convulsive seizures were evoked. Our findings are consistent with previous reports suggesting that epileptiform activity in the hippocampus acutely impairs performance in tasks sensitive to spatial learning and memory deficits and suggest that both new learning and demonstration of an established place response are susceptible to such disruption.  相似文献   

3.
Applications of the Morris water maze in the study of learning and memory   总被引:1,自引:0,他引:1  
The Morris water maze (MWM) was described 20 years ago as a device to investigate spatial learning and memory in laboratory rats. In the meanwhile, it has become one of the most frequently used laboratory tools in behavioral neuroscience. Many methodological variations of the MWM task have been and are being used by research groups in many different applications. However, researchers have become increasingly aware that MWM performance is influenced by factors such as apparatus or training procedure as well as by the characteristics of the experimental animals (sex, species/strain, age, nutritional state, exposure to stress or infection). Lesions in distinct brain regions like hippocampus, striatum, basal forebrain, cerebellum and cerebral cortex were shown to impair MWM performance, but disconnecting rather than destroying brain regions relevant for spatial learning may impair MWM performance as well. Spatial learning in general and MWM performance in particular appear to depend upon the coordinated action of different brain regions and neurotransmitter systems constituting a functionally integrated neural network. Finally, the MWM task has often been used in the validation of rodent models for neurocognitive disorders and the evaluation of possible neurocognitive treatments. Through its many applications, MWM testing gained a position at the very core of contemporary neuroscience research.  相似文献   

4.
In previous studies, we have shown that P11-20 treatment with D-methamphetamine (MA) (10 mg/kg x 4/day at 2-h intervals) induces impairments in spatial learning and memory in the Morris water maze after the offspring reach adulthood. Using a split-litter, multiple dose, design (0, 5, 10, and 15 mg/kg MA administered s.c. 4/day at 2-h intervals), the spatial learning effect was further explored with a multiple shifted platform (reversal), reference memory-based procedure and a working memory procedure. Prior to spatial learning, animals were first tested for swimming ability (in a straight swimming channel), sequential learning (in the Cincinnati multiple-T water maze), and proximal cue learning (in the Morris water maze). Rats were then assessed in the hidden platform, reference memory-based spatial version of the Morris maze for acquisition and on five subsequent phases in which the platform was moved to new locations. After the reference memory-based, fixed platform position learning phases, animals were tested in the trial-dependent, matching-to-sample, working memory version of the Morris maze. No group differences were found in straight channel, sequential maze, or cued Morris maze performance. By contrast, all MA groups were impaired in spatial learning during acquisition, multiple shift, and shifted with a reduced platform phases of reference memory-based learning. In addition, MA animals were impaired on memory (probe) trials during the acquisition and shifted with a reduced platform phases of learning. No effects on trial-dependent, matching-to-sample, working memory were found. The findings demonstrate that neonatal treatment with MA induces a selective impairment of reference memory-based spatial learning while sparing sequential, cued, and working memory-based learning.  相似文献   

5.
Lee B  English JA  Paul IA 《Brain research》2000,856(1-2):129-134
Previous studies show that the LP-BM5 murine leukemia virus causes an acquired immunodeficiency syndrome in C57BL/6 mice (MAIDS) and impairs learning and memory without gross motor impairment. To assess spatial working memory impairment after LP-BM5 infection and the time course of this impairment, we tested mice in a modified working-memory version of the Morris water maze. Twenty mice were inoculated with LP-BM5; controls received medium (Minimum Essential Medium). In the test procedure, animals had two 1-min training sessions to learn the position of a randomly placed hidden platform. Thirty seconds after the second training session, animals were placed in the maze without the platform, and time and pathlength spent in each quadrant of the maze were measured. For 9 weeks after LP-BM5 infection, both groups showed preference for the target quadrant compared to the opposite quadrant. At 10 and 11 weeks after infection, the LP-BM5 virus infected mice lost this target quadrant preference. We conclude that LP-BM5 infection impaired spatial working memory in a modified working-memory version of the Morris water maze test in C57BL/6 mice at 10 and 11 weeks after virus infection.  相似文献   

6.
The ameliorating effect of phosphatidylserine (PS) isolated from krill (KR-PS) on the learning and memory deficits associated with normal aging in rats was investigated, as compared with soybean PS (SOY-PS). Rats were orally administered with KR-PS (20, 50 mg kg1) and SOY-PS (50 mg kg1) daily, for 7 days, 30 min before behavioral assessment using the Morris water maze (MWM). Changes in the cholinergic system were examined by measuring choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) immunoreactivity in the hippocampus. The daily administration of KR-PS produced a significant improvement in the escape latency for finding the platform in the MWM, as compared with SOY-PS. Consistent with the behavioral results, KR-PS treatments significantly alleviated age-associated losses of cholinergic immunoreactivity, and muscarinic acetylcholine receptor type 1 (mAChR-M1) and choline transporter (CHT) mRNA expression in the hippocampus. These findings demonstrate that KR-PS showed significant neuroprotective activity against the neuronal and cognitive impairments that occur with normal aging in rats; comparable results were obtained with SOY-PS. These data indicate that oral administration of PS derived from marine life could substitute for bovine cerebral cortex PS (BC-PS) as therapy for the improvement of diminished memory function in elderly people.  相似文献   

7.
The effects of abnormally high or low stress on learning are well established. The Barnes maze and Morris water maze are two commonly used tests of spatial memory, of which the water maze is considered more stressful; however, until now this has not been demonstrated empirically. In the present study, mice matched for performance on commonly used anxiety tasks were trained on either the Barnes maze or water maze or received no cognitive testing. Water-maze training induced greater increases in plasma corticosterone than did Barnes maze training, assessed 30 min after the final session. Importantly, spatial learning was inversely correlated with corticosterone levels in the water maze but not the Barnes maze, suggesting that performance on the water maze may be more affected by test-induced stress even within wild-type subjects of the same age and gender. These findings are important when considering the appropriate cognitive tasks for any experiment in which stress responses may differ systematically across groups.  相似文献   

8.
The high density of the androgen receptors in fundamental centers of learning and memory, such as hippocampus, shows that there must be some relationships between the androgen receptors and cognitive aspects. To determine the role of hippocampal androgen receptors in spatial learning, the current research has been conducted to assess the effect of testosterone enanthate, as the agonist, and flutamide, as the antagonist, of these receptors on spatial discrimination of rats, using the Morris water maze (MWM). Adult male rats were bilaterally cannulated into the CA1 region of their hippocampus. Different groups received different doses of flutamide (2, 5, 10 and 20 microg/0.5 microl) or testosterone enanthate (20, 40 and 80 microg/0.5 microl) through the cannulas 30 min before training for 3 days. The results showed dose-dependent increases in latencies and traveled distances to find the invisible platform both in flutamide- and testosterone-treated groups as compared to the control group, with peak effects at doses of 5 microg/0.5 microl for flutamide and 80 microg/0.5 microl for testosterone. Therefore, it seems that both androgen receptor blockade and exogenous testosterone can effect spatial localization of adult, male rats.  相似文献   

9.
Homocystinuria is an inherited metabolic disease biochemically characterized by tissue accumulation of homocysteine. Affected patients present mental retardation and other neurological symptoms whose mechanisms are still obscure. In the present study, we investigated the effect of chronic hyperhomocysteinemia on rat performance in the Morris water maze task. Chronic treatment was administered from the 6th to the 28th day of life by s.c. injection of homocysteine, twice a day at 8-h intervals; control rats received the same volume of saline solution. Animals were left to recover until the 60th day of life. Morris water maze tasks were then performed, in order to verify any effect of early homocysteine administration on reference and working memory of rats. Results showed that chronic treatment with homocysteine impaired memory of the platform location and that homocysteine treated animals presented fewer crossings to the place where the platform was located in training trials when compared to saline-treated animals (controls). In the working memory task, homocysteine treated animals also needed more time to find the platform. Our findings suggest that chronic experimental hyperhomocysteinemia causes cognitive dysfunction and that might be related to the neurological complications characteristic of homocystinuric patients.  相似文献   

10.
We have previously shown that lurasidone, a novel atypical antipsychotic, potently reverses learning impairment induced by the N-methyl-D-aspartate receptor antagonist MK-801 in the rat passive avoidance test. However, the effects of lurasidone in other learning and memory tasks remain to be investigated. We investigated the effects of lurasidone and other marketed antipsychotics (risperidone, clozapine, aripiprazole, and haloperidol) on MK-801-induced impairment of learning and memory in the Morris water maze (MWM) and radial-arm maze (RAM) tests in rats. Learning and memory impairment in the MWM test, as measured by escape latency, escape distance, and diving behavior, and in the RAM test, as measured by reference and working memory errors, was induced by MK-801 (i.p.) at doses of 0.15 and 0.2 mg/kg, respectively. In the MWM test, lurasidone (1 and 3 mg/kg p.o.) potently reversed MK-801-induced learning impairment. In the RAM test, lurasidone (1 and 3 mg/kg p.o.) potently reversed MK-801-induced reference memory impairment and moderately but not significantly attenuated MK-801-induced working memory impairment. Risperidone (0.3 and 1mg/kg p.o.), clozapine (3 and 10 mg/kg p.o.), aripiprazole (0.3 and 1mg/kg p.o.), and haloperidol (0.3 and 1mg/kg p.o.) did not reverse MK-801-induced impairment of learning and memory in both tasks. Lurasidone, but not the other antipsychotics tested in this study, reverses MK-801-induced impairment of learning and memory in both the MWM test and the RAM test. These results suggest that lurasidone would be more effective in treating schizophrenics with cognitive dysfunction than current antipsychotics.  相似文献   

11.
Allopregnanolone inhibits learning in the Morris water maze   总被引:10,自引:0,他引:10  
The progesterone metabolite allopregnanolone (3alpha-OH-5alpha-pregnane-20-one) inhibits neural functions, enhancing the GABA induced GABA(A) receptor activation. This effect is benzodiazepine like and benzodiazepines are known to impair memory. Acute effects of allopregnanolone on the hippocampus dependent spatial learning in the Morris water maze have not been studied. Adult male Wistar rats where injected (i.v.) with allopregnanolone (2 mg/kg), or vehicle, daily for 11 days. At 8 or 20 min after each injection, studies of place navigation were performed in the Morris water maze. Allopregnanolone concentrations in plasma and in nine different brain areas where analyzed by radioimmunoassay. The latency to find the platform was increased 8 min after the allopregnanolone injection, while normal learning was seen after 20 min. Swim speed did not differ between groups. A higher number of rats were swimming close to the pool wall (thigmotaxis) in the 8 min allopregnanolone group compared to the other groups. Allopregnanolone concentrations in the brain tissue at 8 min were 1.5 to 2.5 times higher then at 20 min after the allopregnanolone injections. After vehicle injections the brain concentrations of allopregnanolone were at control levels. Plasma concentrations of allopregnanolone followed the same pattern as in the brain, with the exception of an increase 8 min after vehicle injections. The natural progesterone metabolite allopregnanolone can inhibit learning in the Morris water maze, an effect not caused by motor impairment. The learning impairment might be due to a combination of changed swimming behavior and difficulties in navigation.  相似文献   

12.
The independent effects of ovarian and adrenal hormones on spatial place learning were examined in male and female Long-Evans hooded rats. Experimental groups received bilateral ovariectomy (females only) and adrenalectomy (both sexes), followed by hormone administration according to a predetermined schedule. Spatial and reversal training in the Morris water maze were used to measure behavioural performance in locating a hidden platform. General proficiency and strategies use were assessed using search times and time spent in the periphery, respectively. The number of direct and circle swims to the platform was used to assess memory for the location of the hidden platform. Experiment 1 investigated the roles of estradiol and progesterone in spatial navigation in the absence of high levels of adrenal steroids. The female group that received estradiol alone showed longer search times, greater periphery swimming, and fewer direct and circle swims to the target than all other female groups. Experiment 2 investigated the role of corticosterone (CORT) in spatial navigation in the absence of ovarian hormones. Male and female rats that received acute matched doses of exogenous CORT were equally impaired during spatial training. During reversal training, the impairment in search time, periphery swimming, and direct and circle swims persisted in the female CORT group only. Analysis of serum CORT levels in the male and female experimental groups revealed no significant differences. These data suggest that estradiol and CORT can independently impair acquisition of spatial navigation skills and strategies use in adult female rats.  相似文献   

13.
研究已证实,亚甲二氧基甲基苯丙胺(迷魂药)对成年和新生大鼠的学习记忆功能均有损害作用,且许多研究聚焦于MDMA的急性效应。实验为研究不同剂量MDMA对成年雄性大鼠空间记忆功能(Morris水迷宫试验)、体温、死亡率的影响,分别给予大鼠腹腔注射MDMA 0,5,10,20mg/kg,2次/d,共7d。结果发现,MDMA剂量依赖性损害大鼠空间记忆功能,以最高剂量(20mg/kg)作用最为明显。另外,MDMA还使大鼠出现体温过高和死亡增加。  相似文献   

14.
Alzheimer's disease (AD) is multi-factorial mental disorder characterized by a copious array of congruent features cumulating in disrupted memory and dysthymia. Though the mechanism remains elusive, the highly unspecific pharmaceutical, memantine, provides modest benefits for patients with moderate-to-severe AD. A greater understanding of how memantine affects cognitive function promises to facilitate the search for better therapeutics. We therefore examined cognitive flexibility of mice following 5 and 10 mg/kg memantine administration using a platform re-location water maze. Strikingly, subjects receiving memantine demonstrated memory impairment relative to controls when re-trained off drug, revealing a novel and unusual disruption of cognitive flexibility.  相似文献   

15.
Both the hippocampus and the entorhinal cortex are known to be crucial for spatial learning, but the contribution of the pathway linking the two structures, the perforant path (PP), has never been tested in a spatial learning paradigm. The present study examined the role of the PP in spatial learning using the Morris water maze. Seven days after bilateral transection of the PP with a fine-bladed knife, rats were habituated to the pool, then trained to swim from varying start locations to a platform submerged in a fixed location. After 28 training trials over 5 days, probe trials (without any platform present) were given to assess spatial memory for the location. Compared to sham-operated controls, lesioned rats showed slower learning and poorer asymptotic performance in terms of both swim path distance and escape latency, and less preference for the correct quadrant during probe trials. When the platform location was "reversed" to the opposite quadrant, the lesioned rats again showed poorer learning, poorer asymptotic performance, and reduced preference for the correct quadrant on the probe trial. When tested with a visible platform whose position varied from trial to trial, lesioned rats performed as well as controls. These results are congruent with previous analyses of the contributions of the entorhinal cortex and hippocampus to spatial learning and suggest that for spatial learning, the PP is a critical functional link between these two structures.  相似文献   

16.
This experiment investigated the involvement of the dorsal hippocampal CA3-region in the different phases of learning and memory in spatial and non-spatial tasks. To do so, we temporarily inactivated the CA3-subfield by a focal injection of diethyldithiocarbamate (DDC) which chelates most of the heavy metals present in this region. The effects of temporary inactivation of the CA3-region were examined in an associative task, the Morris water maze (MWM). To study the different phase of memory we used a new behavioural massed-procedure founded on four massed training sessions in the spatial and the non-spatial (cue) version of this task. In the spatial version, we showed that a bilateral injection of DDC into the CA3-region impairs the acquisition but not the recall of spatial information. The main result of this study is that the same injection performed immediately after the training session also perturbed memory consolidation. In the cue version of the MWM, we found no difference between the DDC-injected mice and their controls in acquisition or memory consolidation of non-spatial information. These results suggest that the hippocampal CA3-region is essential for spatial memory processes and specifically in memory consolidation of spatial information.  相似文献   

17.
Notwithstanding the development of reliable tracking systems, the quantification methodology of the Morris water maze (MWM) has witnessed an operational mismatch between the indexes used to quantify MWM performance and the cognitive concepts derived from these indexes. Indeed, escape latency is the main, and often unique, performance measure used for the quantification of behavior. Aim of the present work was to overcome this limitation by presenting a methodology that allows for automatic categorical pattern recognition of the behavioral strategies performed in the MWM. By selecting few a priori and user-defined behavioral categories, many quantitative variables and regions of interest (ROIs), we used discriminant analysis (DA) to obtain 97.9% of correct automatic recognition of categories. The developed discriminant model (DM) also allowed to predict category membership of newly recorded swim paths with the same statistical efficacy (96%), and to identify the variables that better discriminate between adjacent categories. The combination of DA with a tracking system, a selection of many variables, different ROIs and qualitative categorization, reduces the gap between the measurement process and the categories used to describe a given behavior, and offers a methodology to computationally reproduce the human categorization of behaviors in the MWM.  相似文献   

18.
Neurohormones such as testosterone (TE) are important in modulation of learning and memory. In the present study, we investigated the interactive effects of pre-training bilateral intra-hippocampal infusions of testosterone and H-89, a selective PKAII inhibitor, on spatial acquisition in the Morris water maze (MWM). Different doses of TE (20, 40 and 80 μg/side) and H-89 (5 and 10 μM/side) were administered 30 min before start of the training each day. Control animals received bilateral intra-hippocampal infusions of DMSO as vehicle for TE and H-89. Animals were trained for 4 days and each day included one block of four trials. The results of this study showed that bilateral infusion of TE (40 and 80 μg/side) or H-89 (10 μM/side) impaired spatial learning as indicated by significant increases in escape latency and traveled distance compared to the control group. Although pre-training bilateral infusions of a low concentration of either TE (20 μg/side) or H-89 (5 μM/side) into the CA1 region of the hippocampus did not affect learning capabilities, but the combination of the low doses of the drugs led to significant deficits in spatial acquisition. Overall, our data suggest that spatial acquisition was affected by PKAII inhibition or TE administration. Moreover, when co-administered, these drugs had a negative synergistic impact on acquisition.  相似文献   

19.
Glutamatergic transmission within the nucleus accumbens (Nac) is considered to subserve the transfer of different types of information from the cortical and limbic regions. In particular, it has been suggested that glutamatergic afferences from the hippocampus and the prefrontal cortex provide the main source of contextual information to the Nac. Accordingly, several authors have demonstrated that the blockade of glutamate receptors within the Nac impairs various spatial tasks. However, the exact role of the different classes of glutamate receptors within the Nac in short-term spatial memory is still not clear. In this study we investigated the involvement of two major classes of glutamate receptors, NMDA and AMPA receptors, within the Nac in the acquisition of spatial information, using the Morris water maze task. Focal injections of the NMDA antagonist, AP-5 (0.1 and 0.15 microg/side), and the AMPA antagonist, DNQX (0.005, 0.01 microg/side), were performed before a massed training phase, and mice were tested for retention immediately after. NMDA and AMPA receptor blockade induced no effect during training. On the contrary, injection of the two glutamatergic antagonists impaired spatial localization during the probe test. These data demonstrate an involvement of the Nac in short-term spatial learning. Moreover, they prove that within this structure the short-term processing of spatial information needs the activation of both NMDA and AMPA receptors.  相似文献   

20.
化学点燃癫痫大鼠在水迷宫中学习记忆能力的测定   总被引:4,自引:0,他引:4  
目的 观察印防己毒(Picrotoxin,PTX)化学点燃癫痫大鼠在水迷宫中学习记忆能力与发作频率及类型的关系。为进一步研究癫痫患者记忆损害的治疗提供线索。方法 34只雄性SD大鼠随机分为点燃组和对照组。分别用PTX和生理盐水腹腔注射,根据点燃情况点燃组再分为全面发作(A),频繁发作(B)和部分发作(C)组,对照组即为迷宫训练(D)组。然后进行水迷宫行为测试,评价其学习记忆能力。结果 癫痫大鼠在水迷宫测定中,除B组第1天的成绩较对照组差外,其余各组及B组在第2,3,4、5天中寻找平台的潜伏期时间与对照组相比没有显著性差异。点燃各组对平台空间位置的记忆能力较对照组要差。差异有显著性。结论 首次用化学点燃模型研究癫痫大鼠在水迷宫中的学习记忆能力后发现。PTX化学点燃癫痫大鼠在水迷宫中学习记忆能力下降。发作频繁者学习记忆受损明显,但与发作的严重程度无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号