首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to skin sensitisation, there are no accepted tests for the identification of chemicals or proteins with the potential to cause sensitisation of the respiratory tract. Although progress has been made, the assessment of respiratory sensitisation potential remains associated with significant challenges and uncertainties. Nevertheless, there is interest in determining whether it is possible to assess the relative potency of respiratory sensitisers. The second Adaptation to Technical Progress (ATP) to the EU Classification, Labelling and Packaging (CLP) Regulation recently introduced changes to criteria for classification and labelling of chemicals and preparations, bringing it in line with the 3rd revision to the UN Globally Harmonised System of Classification and Labelling of Chemicals (GHS). Among other things, the second ATP introduces sub-categories for respiratory and skin sensitisers, discriminating between strong sensitisers and other sensitisers. Here we examine whether such categorisation of protein and/or chemical respiratory allergens is realistic and/or feasible. For this purpose comparisons have been drawn with skin sensitisation, where potency categorisation has now been widely accepted and successfully integrated into the regulatory process. The conclusion drawn is that, on the basis of the currently available information, potency categorisation for respiratory sensitisers is premature and could potentially be misleading.  相似文献   

2.
In this paper, we propose a quantitative risk assessment methodology for skin sensitization aiming at the derivation of 'safe' exposure levels for sensitizing chemicals, used e.g., as ingredients in consumer products. Given the limited number of sensitizers tested in human sensitization tests, such as the human repeat-insult patch test (HRIPT) or the human maximization test (HMT), we used EC3 values from the local lymph node assay (LLNA) in mice because they provide the best quantitative measure of the skin sensitizing potency of a chemical. A comparison of LLNA EC3 values with HRIPT and HMT LOEL, and NOEL values was carried out and revealed that the EC3, expressed as area dose, can be used as a surrogate value for the human NOEL in risk assessment. The uncertainty/extrapolation factor approach was used to derive (a) an 'acceptable non-sensitizing area dose' (ANSAD) to protect non-allergic individuals against skin sensitization and (b) an 'acceptable non-eliciting area dose' (ANEAD) to protect allergic individuals against elicitation of allergic contact dermatitis. For ANSAD derivation, interspecies, intraspecies and time extrapolation factors are applied to the LLNA EC3. For ANEAD derivation, additional application of a variable sensitization-elicitation extrapolation factor is proposed. Values for extrapolation factors are derived and discussed, the proposed methodology is applied to the sensitizers methylchloroisothiazolinone/methylisothiazolinone, cinnamic aldehyde and nickel and results are compared to published risk assessments.  相似文献   

3.
Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: ‘extreme’, ‘strong’, ‘moderate’ and ‘weak’. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment.  相似文献   

4.
Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA.  相似文献   

5.
The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non‐sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non‐animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave‐one‐out cross‐validation. A one‐tiered strategy modeled all three categories of response together while a two‐tiered strategy modeled sensitizer/non‐sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two‐tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one‐tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non‐animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
An integral part of hazard and safety assessments is the estimation of a chemical's potential to cause skin sensitization. Currently, only animal tests (OECD 406 and 429) are accepted in a regulatory context. Nonanimal test methods are being developed and formally validated. In order to gain more insight into the responses induced by eight exemplary surfactants, a battery of in vivo and in vitro tests were conducted using the same batch of chemicals. In general, the surfactants were negative in the GPMT, KeratinoSens and hCLAT assays and none formed covalent adducts with test peptides. In contrast, all but one was positive in the LLNA. Most were rated as being irritants by the EpiSkin assay with the additional endpoint, IL1-alpha. The weight of evidence based on this comprehensive testing indicates that, with one exception, they are non-sensitizing skin irritants, confirming that the LLNA tends to overestimate the sensitization potential of surfactants. As results obtained from LLNAs are considered as the gold standard for the development of new nonanimal alternative test methods, results such as these highlight the necessity to carefully evaluate the applicability domains of test methods in order to develop reliable nonanimal alternative testing strategies for sensitization testing.  相似文献   

7.
It is widely accepted that substances must have a molecular weight (MW) < 500 to penetrate effectively through the skin to induce sensitization. Roberts et al . (2012. Contact Dermatitis 68: 32–41) evaluated a data set of 699 substances taken from the TIMES‐SS expert system and identified that of the 13 substances with a MW > 500, five were sensitizers. This provided good evidence to refute such a MW 500 threshold. While Roberts et al . (2012) made a convincing case that the MW > 500 cut‐off was not a true requirement for sensitization, the number of counter examples identified were too few to draw any statistical conclusions. This updated analysis systematically interrogated a large repository of sensitization information collected under the EU REACH regulation. A data set of 2904 substances that had been tested for skin sensitization, using guinea pigs and/or mice were collected. The data set contained 197 substances with a MW > 500; 33 of these were skin sensitizers. Metal containing complexes, reaction products and mixtures were excluded from further consideration. The final set of 14 sensitizers substantiated the original findings. The study also assessed whether the same reaction chemistry principles established for low MW sensitizers applied to chemicals with a MW > 500. The existing reaction chemistry considerations were found appropriate to rationalize the sensitization behaviour of the 14 sensitizers with a MW > 500. The existence of the MW 500 threshold, based on the widespread misconception that the ability to penetrate efficiently the stratum corneum is a key determinant of skin sensitization potential and potency, was refuted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
An international workshop was held in 2006 to evaluate experimental techniques for hazard identification and hazard characterization of sensitizing agents in terms of their ability to produce data, including dose-response information, to inform risk assessment. Human testing to identify skin sensitizers is discouraged for ethical reasons. Animal-free alternatives, such as quantitative structure-activity relationships and in vitro testing approaches, have not been sufficiently developed for such application. Guinea pig tests do not generally include dose-response assessment and are therefore not designed for the assessment of potency, defined as the relative ability of a chemical to induce sensitization in a previously naive individual. In contrast, the mouse local lymph node assay does include dose-response assessment and is appropriate for this purpose. Epidemiological evidence can be used only under certain circumstances for the evaluation of the sensitizing potency of chemicals, as it reflects degree of exposure as well as intrinsic potency. Nevertheless, human diagnostic patch test data and quantitative elicitation data have provided very important information in reducing allergic contact dermatitis risk and sensitization in the general population. It is therefore recommended that clinical data, particularly dose-response data derived from sensitized patients, be included in risk assessment.  相似文献   

9.
Abstract

Summary: The murine local lymph node assay (LLNA) has been developed as an alternative method for the identification of skin sensitizing chemicals. Measurement is made of the proliferation of lymphocytes within lymph nodes draining the site of exposure to the test chemical. This report describes a collaborative study in which 25 test chemicals were evaluated in each of four participating laboratories and the results compared with existing data from guinea pig predictive tests. Nineteen chemicals were predicted to be sensitizers in the guinea pig. Of these, 14 were correctly identified in the LLNA (9 by all laboratories and 5 by two or three laboratories). Five chemicals predicted to be contact allergens by guinea pig tests failed to elicit positive LLNA responses. With adoption of a 5 day rather than a 4 day exposure period to the test chemical and administration of maximum soluble test concentrations, positive reactions could be obtained with each of the chemicals initially negative in the LLNA. The LLNA and guinea pig tests were in agreement for all three chemicals predicted to be nonsensitizers in the guinea pig. Positive LLNA responses were obtained with four chemicals (including a re-evaluation of one initially negative in the LLNA) for which guinea pig results were equivocal in three cases and negative in another. These results suggest that the LLNA may provide a rapid and reliable elective prescreen for the identification of contact allergens.  相似文献   

10.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA.  相似文献   

11.
The evaluation of chemicals for their skin sensitising potential is an essential step in ensuring the safety of ingredients in consumer products. Similar to the Threshold of Toxicological Concern, the Dermal Sensitisation Threshold (DST) has been demonstrated to provide effective risk assessments for skin sensitisation in cases where human exposure is low. The DST was originally developed based on a Local Lymph Node Assay (LLNA) dataset and applied to chemicals that were not considered to be directly reactive to skin proteins, and unlikely to initiate the first mechanistic steps leading to the induction of sensitisation. Here we have extended the DST concept to protein reactive chemicals. A probabilistic assessment of the original DST dataset was conducted and a threshold of 64 μg/cm2 was derived. In our accompanying publication, a set of structural chemistry based rules was developed to proactively identify highly reactive and potentially highly potent materials which should be excluded from the DST approach. The DST and rule set were benchmarked against a test set of chemicals with LLNA/human data. It is concluded that by combining the reactive DST with knowledge of chemistry a threshold can be established below which there is no appreciable risk of sensitisation for protein-reactive chemicals.  相似文献   

12.
The Local Lymph Node Assay (LLNA) is the preferred test for the identification of skin-sensitizing potentials of chemicals in Europe and is also the first choice method within REACH. In the formal validation, only a very few surfactant chemicals were evaluated and SDS was identified as a false positive. In this study, 10 nonionic sugar lipid surfactants were tested in an LLNA, guinea pig maximization test (GPMT) and human repeated insult patch test. Of the 10 surfactants tested in the LLNA, 5 showed stimulation indices above 3.0. Three of five positive reactions were concomitant with signs of skin irritation indicated by an increase in ear thickness. In the GPMT, all test products were classified as nonsensitizers. In human volunteers, no skin reactions suggestive of sensitization were reported. In conclusion, these results are indicative of the LLNA overestimating sensitization potentials for this category of chemicals. This may in part be due to irritant effects generated by these surfactants. Until suitable nonanimal alternative tests obtain regulatory acceptance, use of other tests, e.g. GPMTs, may in cases be justified. Results such as these need be taken into account when developing nonanimal alternative methods to ensure reliable data sets for method validation purposes.  相似文献   

13.
The original Organisation for Economic Co-operation and Development Test Guideline 429 (OECD TG 429) for the murine local lymph node assay (LLNA) required five mice/group if mice were processed individually. We used data from 83 LLNA tests (275 treated groups) to determine the impact on the LLNA outcome of reducing the group size from five to four. From DPM measurements, we formed all possible four- and five-mice combinations for the treated and control groups. Stimulation index (SI) values from each four-mice combination were compared with those from five-mice combinations, and agreement (both SI<3 or both SI ≥ 3) determined. Average agreement between group sizes was 97.5% for the 275 treated groups. Compared test-by-test, 90% (75/83) of the tests had 100% agreement; agreement was 83% for the remaining eight tests. Disagreement was due primarily to variability in animal responses and closeness of the SI to three (positive response threshold) rather than to group size reduction. We conclude that using four rather than five mice per group would reduce animal use by 20% without adversely impacting LLNA performance. This analysis supported the recent update to OECD TG 429 allowing a minimum of four mice/group when each mouse is processed individually.  相似文献   

14.
The local lymph node assay using 5-bromo-2-deoxyuridine (BrdU) with flow cytometry (LLNA: BrdU-FCM) is a modified LLNA that is used to identify skin sensitizers by counting BrdU-incorporated lymph node cells (LNCs) with flow cytometry. Unlike other LLNA methods (OECD TG 429, 442A and 442B) in which the CBA/J mouse strain is used, LLNA: BrdU-FCM was originally designed to be compatible with BALB/c, a mouse strain that is more widely used in many countries. To justify the substitution of CBA/J for BALB/c, the equivalence of the test results between two strains shall be established prior to the official implementation of LLNA: BrdU-FCM. This study aims to compare the test results of LLNA: BrdU-FCM produced in BALB/c mice with those in CBA/J mice for 18 reference substances, including 13 sensitizers and 5 non-sensitizers, listed in OECD Test Guideline 429. Based on the LLNA: BrdU-FCM test procedure, we selected an appropriate solvent and then performed preliminary tests to determine the non-irritating dose ranges for the main study, which revealed the difference in the irritation responses to 8 of the 18 chemicals between the two strains. In the main study, we measured the changes in the number of total LNCs, which indicated differences in the responses to test chemicals between the two strains. However, the stimulation index obtained with the counts of BrdU-incorporated LNCs with 7-AAD using flow cytometry yielded comparable results and 100% concordance between the BALB/c and CBA/J mouse strains was achieved, suggesting that the performance of LLNA: BrdU-FCM using BALB/c mice was equivalent to that with CBA/J mice.  相似文献   

15.
An essential step in ensuring the toxicological safety of ingredients in consumer products is the evaluation of their skin sensitising potential. Where skin exposure is low, it is possible to conduct a risk assessment using the Dermal Sensitisation Threshold (DST), a process similar to that of the Threshold of Toxicological Concern. This paper describes work building on that previously published, whose aim was to produce a more robust tool for assessing the safety of consumer products. This consisted of expanding the Local Lymph Node Assay dataset used to define the original DST and classifying chemicals in the dataset according to their mechanistic chemistry domains. A DST of 900μg/cm(2) was derived for chemicals classified as non-reactive and non-proreactive. This value was benchmarked against human potency data for 58 fragrance allergens and was lower than the measured No Expected Sensitisation Levels for those classified as non-reactive. Use of this DST will help to eliminate the need for animal testing of non-reactive and non-proreactive chemicals where skin exposure is sufficiently low. For chemicals where a Quantitative Risk Assessment based on the DST does not give an adequate margin of safety, and those classified as reactive, a case-by-case risk assessment will be required.  相似文献   

16.
A piperidinyl chlorotriazine (PCT) derivative, used as a plastic UV-stabilizer, caused an outbreak of occupational asthma. We verified, in BALB/c mice, the sensitizing potential of PCT in comparison to a known respiratory sensitizer (toluene diisocyanate [TDI]) and a known dermal sensitizer (oxazolone), using three different methods in order to evaluate the validity of current models of sensitization. These included the local lymph node assay (LLNA) and the mouse IgE test. In addition, respiratory hyper-reactivity was assessed following a novel protocol involving dermal sensitization (20 microl of a 3% solution on each ear for three days) and intranasal challenge (0.1% or 1%, 10 microl per nostril on day 10), followed, after 24 h, by a methacholine challenge (using whole-body plethysmography), bronchoalveolar lavage, and histology. PCT was also used for structure-activity relationship (SAR) models for (respiratory) sensitization. High concentrations of PCT (10 and 20%) resulted in significant responses in the local lymph node assay (LLNA; stimulation indices (SI) of 2.7 +/- 0.9 and 3.2 +/- 0.6, respectively). The mouse IgE test was positive with 20% PCT only. Methacholine responsiveness was increased only in previously sensitized mice receiving a challenge with TDI or PCT. However, there was no evidence for pulmonary inflammation. The SAR studies indicated that PCT could be a respiratory sensitizer. Based on an approved test protocol such as the LLNA and the mouse IgE test, PCT proved to be a weak sensitizer when compared to TDI and oxazolone. However, in a protocol involving an intranasal challenge, PCT appeared to be a respiratory sensitizer of similar potency to TDI.  相似文献   

17.
An essential step in ensuring the toxicological safety of chemicals used in consumer products is the evaluation of their skin sensitising potential. The sensitising potency, coupled with information on exposure levels, can be used in a Quantitative Risk Assessment (QRA) to determine an acceptable level of a given chemical in a given product. Where consumer skin exposure is low, a risk assessment can be conducted using the Dermal Sensitisation Threshold (DST) approach, avoiding the need to determine potency experimentally. Since skin sensitisation involves chemical reaction with skin proteins, the first step in the DST approach is to assess, on the basis of the chemical structure, whether the chemical is expected to be reactive or not. Our accompanying publication describes the probabilistic derivation of a DST of 64 μg/cm2 for chemicals assessed as reactive. This would protect against 95% of chemicals assessed as reactive, but the remaining 5% would include chemicals with very high potency. Here we discuss the chemical properties and structural features of high potency sensitisers, and derive an approach whereby they can be identified and consequently excluded from application of the DST.  相似文献   

18.
Recently UN GHS has introduced the sub-categorization of skin sensitizers for which ECt (concentration estimated to induce stimulation index above threshold) of the murine local lymph node assay (LLNA) is used as criteria. Non-radioisotopic variants of LLNA, LLNA: DA, LLNA: BrdU-ELISA, LNCC and LLNA: BrdU-FCM were developed yet their utilities for potency sub-categorization are not established. Here we assessed the agreement of LLNA variants with LLNA or human data in potency sub-categorization for 22 reference substances of OECD TG429. Concordance of sub-categorization with LLNA was highest for LLNA: BrdU-FCM(91%, κ = 0.833, weighted kappa) followed by LLNA: BrdU-ELISA (82%, κ = 0.744) and LLNA: DA (73%, κ = 0.656) whereas LNCC only showed a modest association (64%, κ = 0.441). With human data, LLNA agreed best (77%) followed by LLNA: DA and LLNA: BrdU-FCM(73%), LLNA: BrdU-ELISA (68%) and LNCC(55%). Bland-Altman plot revealed that ECt's of LLNA variants largely agreed with LLNA where most values fell within 95% limit of agreement. Correlation between ECt's of LLNA and LLNA variants were high except for LNCC(pair-wise with LLNA, LLNA: DA, r = 0.848, LLNA: BrdU-ELISA, r = 0.744, LLNA: BrdU-FCM, r=0.786, and LNCC, r = 0.561 by Pearson). Collectively, these results demonstrated that LLNA variants exhibit performance comparable to LLNA in the potency sub-categorization although additional substances shall be analyzed in the future.  相似文献   

19.
The growing focus on nanotechnology and the increased use of nano-sized structures, e.g. vesicles, in topical formulations has led to safety concerns. We have investigated the sensitizing capacity and penetration properties of a fluorescent model compound, rhodamine B isothiocyanate (RBITC), when administered in micro- and nano-scale vesicle formulations. The sensitizing capacity of RBITC was studied using the murine local lymph node assay (LLNA) and the skin penetration properties were compared using diffusion cells in combination with two-photon microscopy (TPM).The lymph node cell proliferation, an indicator of a compounds sensitizing capacity, increased when RBITC was applied in lipid vesicles as compared to an ethanol:water (Et:W) solution. Micro-scale vesicles showed a slightly higher cell proliferative response compared to nano-scale vesicles. TPM imaging revealed that the vesicle formulations improved the skin penetration of RBITC compared to the Et:W solution. A strong fluorescent region in the stratum corneum and upper epidermis implies elevated association of RBITC to these skin layers when formulated in lipid vesicles.In conclusion, the results indicate that there could be an elevated risk of sensitization when haptens are delivered in vehicles containing lipid vesicles. Although the size of the vesicles seems to be of minor importance, further studies are needed before a more generalized conclusion can be drawn. It is likely that the enhanced sensitizing capacity is a consequence of the improved penetration and increased formation of hapten-protein complexes in epidermis when RBITC is delivered in ethosomal formulations.  相似文献   

20.
Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity (DTH) reaction induced by repeated contact with sensitizers. The ability of a chemical to act as a sensitizer has most frequently been tested in animals. As the use of animals for these purposes is gradually and globally being phased out, there is a need for reliable in vitro surrogate assays. Currently proposed in vitro assays are designed to test four key events of the adverse outcome pathway (AOP) involving covalent modification of self-proteins by sensitizers (haptenation) and presentation of new antigens (hapten/carrier complexes) to the immune system. There appears to be imperfect alignment of in vitro assays with clinical and/or animal data, suggesting possibly additional mechanisms of ACD development. Indeed, studies on allergies to small drugs, small chemical-induced HLA-peptide exchange for vaccination purposes and cosmetic ingredient-induced exposure of autoantigens suggest a possibility of DTH response promotion by hapten/carrier-independent mechanisms. Therefore, there is a need for additional appropriate in vitro assays, in order to achieve maximal concordance between clinical and/or animal data and in vitro assays. In this paper, we will review evidence supporting the idea of diverse mechanisms of ACD development. We will also discuss the impact of these multiple mechanisms, on the AOP and on the in vitro assays that should be used for allergen detection. We will propose alloreactivity-like reactions, aided by computer modeling and biochemical tests of compound-HLA binding, as additional tools for better prediction of DTH reactions, resulting from exposure to ingredients in cosmetic products. The combination of the proposed tests, along with the existing assays, should further enhance animal-free assessment of sensitizing potential of individual chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号