首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 调查一个同时携带线粒体DNA A1555G突变和GJB2 235delC突变的非综合征型耳聋家系,分析其基因型和听力表型的关系.方法 对家系成员进行临床听力测试,收集家系中8名成员的外周静脉血样本,从白细胞中提取DNA,聚合酶链反应扩增GJB2基因和线粒体DNA(mitochondric DNA,mtDNA)目的 片段,对扩增片段直接测序进行GJB2基因、mtDNA 12S rRNA及tRNASer(UCN)基因突变分析.结果 此家系先证者存在mtDNA A1555G突变和GJB2 235delC杂合突变,听力表型为极重度感音神经性耳聋.其他母系成员携带mtDNA A1555G突变,未发现tRNASer(UCN)基因突变,家系中其他母系成员听力表型为双侧对称高频下降或听力正常.结论 GJB2 235delC单杂合突变可能参与了mtDNA A1555G的听力损害.  相似文献   

2.
目的 调查一个同时携带线粒体DNA A1555G突变和GJB2 235delC突变的非综合征型耳聋家系,分析其基因型和听力表型的关系.方法 对家系成员进行临床听力测试,收集家系中8名成员的外周静脉血样本,从白细胞中提取DNA,聚合酶链反应扩增GJB2基因和线粒体DNA(mitochondric DNA,mtDNA)目的 片段,对扩增片段直接测序进行GJB2基因、mtDNA 12S rRNA及tRNASer(UCN)基因突变分析.结果 此家系先证者存在mtDNA A1555G突变和GJB2 235delC杂合突变,听力表型为极重度感音神经性耳聋.其他母系成员携带mtDNA A1555G突变,未发现tRNASer(UCN)基因突变,家系中其他母系成员听力表型为双侧对称高频下降或听力正常.结论 GJB2 235delC单杂合突变可能参与了mtDNA A1555G的听力损害.  相似文献   

3.
目的 调查一个同时携带线粒体DNA A1555G突变和GJB2 235delC突变的非综合征型耳聋家系,分析其基因型和听力表型的关系.方法 对家系成员进行临床听力测试,收集家系中8名成员的外周静脉血样本,从白细胞中提取DNA,聚合酶链反应扩增GJB2基因和线粒体DNA(mitochondric DNA,mtDNA)目的 片段,对扩增片段直接测序进行GJB2基因、mtDNA 12S rRNA及tRNASer(UCN)基因突变分析.结果 此家系先证者存在mtDNA A1555G突变和GJB2 235delC杂合突变,听力表型为极重度感音神经性耳聋.其他母系成员携带mtDNA A1555G突变,未发现tRNASer(UCN)基因突变,家系中其他母系成员听力表型为双侧对称高频下降或听力正常.结论 GJB2 235delC单杂合突变可能参与了mtDNA A1555G的听力损害.  相似文献   

4.
Congenital deafness occurs in approximately 1 in 1000 live births. In developed countries about 60% of hearing loss is genetic. However, in Brazil most cases of hearing loss are due to environmental factors, such as congenital infections (mainly rubella), perinatal anoxia, kernicterus and meningitis. Recently, it has been demonstrated that the GJB2 gene is a major gene underlying congenital sensorial deafness. Mutations in this gene cause 10-20% of all genetic sensory hearing loss. One specific mutation, 35delG, accounts for the majority of mutant alleles. The extent of the hearing impairment varies from mild/moderate to profound, even within the patients homozygous for the common 35delG mutation. There may also be progression with age. Mutation analysis in the GJB2 gene was performed on 36 families (group A) presenting with at least one individual with non-syndromic deafness (NSD). An unselected series of 26 deaf individuals referred by other services where the environmental factors were not completely excluded was also part of the study (group B). Mutations in the GJB2 gene were found in 22% (eight patients) of the families tested in group A, and 11.5% (three patients) of individuals within group B. This finding should facilitate diagnosis of congenital deafness and allow early treatment of the affected subjects.  相似文献   

5.
Congenital sensorineural hearing loss affects approximately 1/1,000 live births. Mutations in the gene encoding connexin26 (GJB2) have been described as a major cause of genetic nonsyndromic hearing impairment. Additionally, another gap junction gene, connexin30 (GJB6), was found to be responsible for hereditary hearing loss. We have studied 134 patients with severe to profound hearing loss or deafness and 13 patients with mild to moderate nonsyndromic sensorineural hearing loss in order to evaluate the prevalence of connexin26 and connexin30 mutations in Germany. Mutations in the connexin26 gene were found in 30 patients (22%) with profound to severe hearing impairment whereas only one novel single nucleotide polymorphism (396G-->A) in the connexin30 gene was detected. Among the 13 patients with mild to moderate hearing loss neither mutations in the connexin26 nor in the connexin30 gene could be detected. These results demonstrate that mutations in the connexin26 gene are also a frequent cause of hereditary non-syndromic hearing loss in Germany. Therefore a screening of mutations in the connexin26 gene should be performed in every case of non-syndromic hearing loss of unknown origin.  相似文献   

6.
Mutations in GJB2 are the most common cause of hereditary congenital hearing loss in many countries and are found in about half of persons with severe-to-profound congenital autosomal recessive non-syndromic hearing loss (ARNSHL). We report the results of GJB2 mutation screening in 209 consecutive persons with congenital deafness of indeterminate etiology using an allele-specific polymerase chain reaction assay, single-strand conformational polymorphism analysis, and direct sequencing. GJB2 allele variants were detected in 74 of 209 deaf individuals (35%). Over one-fourth of screened individuals were either homozygous (n=31) or heterozygous (n=24) for the 35delG mutation. Of those with the 35delG mutation, 51 (92.7%) were diagnosed with GJB2-related deafness. Nineteen persons were identified with other GJB2 allele variants - two novel deafness-causing mutations (R32C, 645-648delTAGA), one mutation of unknown significance (E47K), and one benign polymorphism (I128I). While these data enable health care professionals to provide parents and patients with improved genetic counseling data, difficulty still exists is determining whether some missense mutations compromise auditory function and are deafness-causing.  相似文献   

7.
Hereditary hearing loss (HHL) is a very common disorder. When inherited in an autosomal recessive manner, it typically presents as an isolated finding. Interestingly and unexpectedly, in spite of extreme heterogeneity, mutations in one gene, GJB2, are the most common cause of congenital severe-to-profound deafness in many different populations. In this study, we assessed the contributions made by GJB2 mutations and chromosome 13 g.1777179_2085947del (the deletion more commonly known as del (GJB6-D13S1830) that includes a portion of GJB6 and is hereafter called Delta(GJB6-D13S1830)) to the autosomal recessive non-syndromic deafness (ARNSD) genetic load in Iran. Probands from 664 different nuclear families were investigated. GJB2-related deafness was found in 111 families (16.7%). The carrier frequency of the 35delG mutation showed a geographic variation that is supported by studies in neighboring countries. Delta(GJB6-D13S1830) was not found. Our prevalence data for GJB2-related deafness reveal a geographic pattern that mirrors the south-to-north European gradient and supports a founder effect in southeastern Europe.  相似文献   

8.
Fifty to eighty percent of autosomal recessive deafness is due to mutations in the GJB2 gene encoding connexin 26. Among Caucasians, the c.35delG mutation in this gene accounts for up to 30 to 70% of all cases with early childhood deafness. In this study, we present the analysis of the GJB2 gene in 159 Egyptians from 111 families with non-syndromic mild to profound hearing impairment. An additional family with Vohwinkel syndrome, a combination of hearing impairment and palmoplantar keratoderma with constriction of the digits, was also included. We used direct sequencing analysis to detect all possible coding GJB2 variants in this population. The presence of the g.1777179_2085947del mutation (hereafter called del(GJB6-D13S1830)) was also investigated as it was shown to be the second most common mutation causing non-syndromic prelingual hearing impairment in Spain. Sequencing analysis of one randomly chosen individual per family revealed that the c.35delG mutation was present in 24 out of 222 chromosomes (10.8%), making it the most frequent mutation in the GJB2 gene in Egypt. Five other mutations were already described previously [p.Thr8Met, p.Val37Ile, p.Val153Ile, c.333_334delAA, c.1-3172G>A (commonly designated as IVS1+1G>A)]. This study also revealed three other novel gene variants resulting in amino acid substitutions (p.Phe142del, p.Asp117His, p.Ala148Pro). In contrast with most populations, the del(GJB6-D13S1830) mutation upstream of the GJB2 gene was not present in this Egyptian population. A dominant mutation at a highly conserved residue, p.Gly130Val, was found in the family with Vohwinkel syndrome.  相似文献   

9.
Several studies have reported that mutations in the GJB2 gene (coding for connexin26) are a common cause of recessive non-syndromic hearing impairment. A GJB2 mutant allele, 35delG, has been found to have a high prevalence in most ethnic groups. Though mutations in the GJB2 gene have been shown to cause autosomal recessive deafness in Indian families, the frequencies of the various mutations are still unknown. In the present study, we analyzed 45 Indian families belonging to three different states, namely, Karnataka, Tamil Nadu, and Delhi with non-syndromic hearing impairment and an apparently autosomal recessive mode of inheritance. All the families were initially screened for three mutations (W24X, W77X, and Q124X) by using allele-specific PCR primers; mutations were confirmed by DNA sequencing. Families that were heterozygous or negative for tested mutations of the GJB2 gene were sequenced directly to identify the complementary mutation and other mutations in GJB2. Four families were homozygous for W24X, constituting around 8.8%. In two families, the affected individuals were compound heterozygotes for W24X; one family (DKB16) carried 35delG with W24X while the other family (DKB7) carried R143W with W24X. We suggest that W24X is a common allele among the mutations screened, causing autosomal recessive non-syndromic hearing impairment (ARNSHI) in the Indian population.  相似文献   

10.
?afka Bro?ková D, La?t?vková J, ?těpánková H, Kr?tová M, Trková M, My?ka P, Seeman P. DFNB49 is an important cause of non-syndromic deafness in Czech Roma patients but not in the general Czech population. Due to endogamy, the Roma have a higher risk for autosomal recessive (AR) disorders. We used homozygosity mapping on single-nucleotide polymorphism chips in one Czech Roma consanguineous family with non-syndromic hearing loss (NSHL). The second largest homozygous region in a deaf patient was mapped to the previously reported DFNB49 region. The MARVELD2 gene was recently reported as a causal gene for NSHL DFNB49. Sequencing of the MARVELD2 gene revealed a previously reported homozygous mutation c.1331+2 T>C (IVS4 + 2 T>C) in the deaf child. Subsequently, the same mutation was found in two more Roma families from an additional 19 unrelated Czech Roma patients with deafness tested for the MARVELD2 gene. To explore the importance of MARVELD2 mutations and DFNB49 for the general Czech and Central European population with early hearing loss we also tested 40 unrelated Czech patients with AR NSHL. No pathogenic mutation in the MARVELD2 gene was found in a group of 40 Czech non-Roma patients. Mutations in the MARVELD2 gene seem to be a significant cause of early NSHL in Czech Roma and this gene should be tested in this group of patients after GJB2.  相似文献   

11.
Prevalent connexin 26 gene (GJB2) mutations in Japanese   总被引:19,自引:0,他引:19  
The gene responsible for DNFB1 and DFNA3, connexin 26 (GJB2), was recently identified and more than 20 disease causing mutations have been reported so far. This paper presents mutation analysis for GJB2 in Japanese non-syndromic hearing loss patients compatible with recessive inheritance. It was confirmed that GJB2 mutations are an important cause of hearing loss in this population, with three mutations, 235delC, Y136X, and R143W, especially frequent. Of these three mutations, 235delC was most prevalent at 73%. Surprisingly, the 35delG mutation, which is the most common GJB2 mutation in white subjects, was not found in the present study. Our data indicated that specific combinations of GJB2 mutation exist in different populations.  相似文献   

12.
Dominant mutations in the GJB2 gene encoding connexin 26 (Cx26) can cause non-syndromic hearing impairment alone or in association with palmoplantar keratoderma (PPK). We have identified the novel G224A (R75Q) mutation in the GJB2 gene in a four-generation family from Turkey with autosomal dominant inherited hearing impairment and PPK. The age of onset and progression of hearing loss were found to be variable among affected family members, but all of them had more severe impairment at higher hearing frequencies. Interestingly, the novel R75Q mutation affects the same amino acid residue as described recently in a small family (R75W) with profound prelingual hearing loss and PPK. However, the R75W mutation was also observed in a control individual without PPK and unknown hearing status. Therefore, the nature of the R75W mutation remains ambiguous. Our molecular findings provide further evidence for the importance of the conserved R75 in Cx26 for the physiological function of the inner ear and the epidermal cells of the skin.  相似文献   

13.
目的探讨线粒体DNA(mitochondrial DNA,mtDNA)12S rRNA基因与中国人非综合征型遗传性耳聋的关系。方法对两个母系遗传性的非综合征型耳聋家系中20名成员及32例散发耳聋患者外周血DNA进行12S rRNA、tRNA^ser(UCN)以及GJB2基因PCR扩增,产物通过限制性片段多态性分析及基因测序,进行突变检测和分析。结果所有研究对象的基因区域均扩增成功。12S rRNA全序列测定发现两家系中所有受检的母系成员(包括12例耳聋患者)均存在nt827A→G转换,并表现为同质性突变。而非母系成员该位点序列正常。32例散发耳聋中有1例A827G突变阳性。未检测到GJB2基因、tRN^ser(UCN) A7445G及12S rRNA A1555G突变。结论再次验证了mtDNA 12S rRNA基因突变在母系遗传性非综合征型耳聋发病中的重要性。首次发现mt DNA 12S rRNA nt827A→G转换是导致两个中国家系耳聋遗传易感性的分子基础。  相似文献   

14.
Mutations in the GJB2 gene are a major cause of non-syndromic recessive hearing loss in many countries. In a significant fraction of patients, only monoallelic GJB2 mutations known to be either recessive or of unclear pathogenicity are identified. This paper reports a novel GJB2 mutation, -3438C-->T, found in the basal promoter of the gene, in trans with V84M, in a patient with profound hearing impairment. This novel mutation can abolish the basal promoter activity of GJB2. These results highlight the importance of extending the mutational screening to regions outside the coding region of GJB2.  相似文献   

15.
We have previously found linkage to chromosome 1p34 in five large families with autosomal dominant non-syndromic hearing impairment (DFNA2). In all five families, the connexin31 gene ( GJB3 ), located at 1p34 and responsible for non-syndromic autosomal dominant hearing loss in two small Chinese families, has been excluded as the responsible gene. Recently, a fourth member of the KCNQ branch of the K+channel family, KCNQ4, has been cloned. KCNQ4 was mapped to chromosome 1p34 and a single mutation was found in three patients from a small French family with non-syndromic autosomal dominant hearing loss. In this study, we have analysed the KCNQ4 gene for mutations in our five DFNA2 families. Missense mutations altering conserved amino acids were found in three families and an inactivating deletion was present in a fourth family. No KCNQ4 mutation could be found in a single DFNA2 family of Indonesian origin. These results indicate that at least two and possibly three genes responsible for hearing impairment are located close together on chromosome 1p34 and suggest that KCNQ4 mutations may be a relatively frequent cause of autosomal dominant hearing loss.  相似文献   

16.
17.
目的 通过对一个母系遗传非综合征型耳聋家系进行线粒体DNA(mitochondrial DNA,mtDNA)12S rRNA、tRNA~(Ser(UCN))以及核基因GJB2突变分析,研究mtDNA突变与遗传性耳聋的相关性.方法 临床听力测试以明确诊断,收集非综合征型遗传性耳聋家系中18例母系成员和53名对照(包括6名父系亲属、7名配偶对照和40名当地无关对照)外周静脉血样本,采用聚合酶链反应和测序技术对mtDNA 12S rRNA、tRNA~(ser(UCN))和GJB2基因进行突变分析,并对发现的基因突变进行计算机辅助的二级结构模拟分析.结果 测序结果表明,此家系线粒体DNA 12S rRNA存在mtDNA G709A点突变,该突变未见报道;无tRNA~(Ser(UCN))基因突变;对GJB2突变分析发现4例具有299-300 delAT.计算机分析显示12SrRNA的二级结构中第8、9茎环结构发生改变.结论 家系中8例耳聋患者都具有线粒体12S rRNAG709A位点的突变,该突变在正常人群中具有高度保守性,提示GT09A点突变与母系遗传家系成员的进行性耳聋具有相关性;10例具有G709A突变的母系遗传家系成员未出现耳聋的临床表现,提示G709A点突变可能在其他核修饰基因的协同作用下参与了听力损害的过程.  相似文献   

18.
Biallelic pathogenic GJB2 gene mutations cause pre-lingual genetic hearing loss in up to 50% of individuals with bilateral sensorineural hearing loss worldwide. Sequencing of the entire GJB2 gene-coding region in Czech patients with pre-lingual bilateral hearing loss revealed that 10.3% of Czech patients carry only one monoallelic pathogenic mutation in the coding region of the GJB2 gene, which is significantly more than the population frequency of 3.4%. The 309-kb GJB6 deletion, frequent in Spain and France, is very rare in the Czech population. In order to evaluate the impact of the IVS1 + 1 G to A splice site mutation in the non-coding part of the GJB2 gene among Czech patients, we tested all available patients with pre-lingual hearing loss with only one monoallelic mutation in the coding part of GJB2. By sequencing of the exon 1 region of the GJB2 gene and HphI restriction analysis in 20 Czech patients we identified nine patients carrying IVS1 + 1 G to A. Testing for this mutation explained deafness in 45% of Czech GJB2 monoallelic patients. This mutation represents now 4% of GJB2 pathogenic mutations in Czech patients and is the third most common GJB2 mutation found in our cohort of 242 unrelated Czech patients with prelingual hearing loss. A similar frequency may also be expected in other Central European or Slavic populations.  相似文献   

19.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

20.
Mutations in genes encoding gap- and tight-junction proteins have been shown to cause distinct forms of hearing loss. We have now determined the GJB2[connexin 26 (Cx26)] mutation spectrum in 60 index patients from mostly large Turkish families with autosomal-recessive inherited non-syndromic sensorineural hearing loss (NSSHL). GJB2 mutations were found in 31.7% of the families, and the GJB2-35delG mutation accounted for 73.6% of all GJB2 mutations. The carrier frequency of GJB2-35delG in the normal Turkish population was found to be 1.17% (five in 429). In addition to the described W24X, 233delC, 120delE and R127H mutations, we also identified a novel mutation, Q80R, in the GJB2 gene. Interestingly, the Q80R allele was inherited on the same haplotype as V27I and E114G polymorphisms. As little is known about the mutation frequencies of most other recently identified gap- and tight-junction genes as a cause for hearing loss, we further screened our patients for mutations in GJB3 (Cx31), GJA1 (Cx43), DeltaGJB6-D13S1830 (Cx30) and the gene encoding the tight-junction protein, claudin 14 (CLDN14). Several novel polymorphisms, but no disease-associated mutations, were identified in the CLND14 and GJA1 genes, and we were unable to detect the DeltaGJB6-D13S1830 deletion. A novel putative mutation, P223T, was found in the GJB3 gene in heterozygous form in a family with two affected children. Our data shows that the frequency of GJB2 mutations in Turkish patients with autosomal-recessive NSSHL and the carrier rate of the GJB2-35delG mutation in the Turkish population, is much lower than described for other Mediterranean countries. Furthermore, mutations in other gap- and tight-junction proteins are not a frequent cause of hearing loss in Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号