首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cytogenetically analyzed short-term cultures from an in situ squamous cell carcinoma of the skin (Bowen's disease). The following mosaic tumor karyotype was found: 46,XX, -1, +der(1)(pter----p22::q11----cen----p22:), -9, +der(9)t(1;9)(q11; p24)/46,XX,t(3;6) (q21;p21)/46,XX,t(5;14)(q13;q24),t(7;18)(q32;q11)/46,XX,t(8;11)(p22;q13) /46, XX,t(8;11) (p22;q13),t(15;17) (q13;q24)/46,XX,t(12;15)(q12;p11). None of the rearrangements correspond to previously known cancer-associated abnormalities. Two of the clones are obviously related, and it is reasonable to assume that the t(15;17) developed as an evolutionary change in a cell that already contained t(8;11)(p22;q13). Since five clones without cytogenetic similarities were found in this in situ skin carcinoma, we suggest that the tumor was of polyclonal origin. It is impossible to decide whether all, or indeed any, of the visible abnormalities constitute pathogenetically essential primary changes, or merely represent chromosomal markers of secondary importance in tumorigenesis.  相似文献   

2.
We have cytogenetically examined short-term cultures from a squamous cell carcinoma of the tongue, a tumor type in which chromosome aberrations hitherto have not been reported. No less than 12 pseudodiploid clones were detected, giving the tumor karyotype 46,X,der(X)t(X;1)(q26;p32),der(1)(Xqter→Xq26::1p32→cen→1q42:),del(13)(q11q21),t(15;?) (q26;?)/46,XX,t(1;?)(p34;?),inv(2)(p21q11)/46,XX,t(1;10)(p32;q24)/46,XX,+der(1)(12pter→ 12p11::1p11→cen→1q32::11q13→11q32→1q42:),del(11)(q13q22), - 12, der(17)t(1:17) (q42;p13)/46,XX,inv(1)(p22q44)/47,XX,del(1)(q32),der(17)t(1:17)(p22;q25),der(1)inv(1) (q25q44)t(1;17)(p22;q25),ins(14;7)(q11;q22q36), + 14/46,XX,t(1;4)(q23;q35)/46,XX,t(1;21) (q25;q22),t(2;10)(q31;q26),t(22;?)(q12;?)/46,XX,del(1)(q32)/46,XX,t(1;8)(q44;q21)/46,XX, t(2;21)(q11;p11)/46,XX,t(9;11)(q34;q13). The large number of apparently unrelated abnormalities leads us to suggest that the carcinoma may have been of multiclonal origin.  相似文献   

3.
Cytogenetic analysis was performed on bone marrow cells from a 28-year-old woman who was diagnosed with acute lymphoblastic leukemia (ALL). Her karyotype was: 46,XX,t(9;22)(q34;q11)[6]/47, XX,+8,t(9;22)(q34;q11)[4]/47,XX,+8,t(9;22)(q34;q11),del(20)(q11)[2]/46, XX,t(9;22)(q34;q11),del[20](q11)[7]/45,XX,der(9)t(9;22)(q34;q11),-20,-22 , +mar1[8]/45,XX,der(9)t(9;22)(q34;q11),-20,-22,+mar2[3]. Both marker chromosomes are dicentric and have the same size and banding pattern but different primary constrictions. Fluorescence in situ hybridization (FISH) demonstrated that both markers were derived from chromosomes 9, 20, and 22. FISH with the bcr/abl probe showed fusion of the BCR gene with the ABL gene; however, this fusion signal was present in duplicate on both marker chromosomes. To our knowledge, duplication of the BCR/ABL fusion signal on a single chromosome arm has not been reported before, except for the extensive amplification of BCR/ABL fusion signals in the leukemic cell line K-562. These data demonstrate that the marker chromosomes are the result of complex genomic rearrangements. At the molecular level, the BCR/ABL fusion gene encodes the p190 fusion protein. Similar findings have never been observed in any case of ALL.  相似文献   

4.
Short-term cultures initiated from a pancreatic adenocarcinoma were cytogenetically investigated. The composite karyotype was 74-76,XX,+X,+2,+3,+del(3)(p21),+5,+5,+der(7) t(1;7)(q21;p22),+der(7),del(8)(p21),+del(8)(p21),+der(8)t(8;?)(q24; +),+9,+9,+10,+10,+11,+11,+12,+13,+14,+der(14)t(14; +)(p11;?),+der(16)t(15;16)(q11;p13),+der(16),+der(17)t(17;?) (p11;?),+der(17),+18,+20,+20,-21,-21,+22,+22,+1-3mar. A comparison with the few previously cytogenetically characterized cases of this tumor type reveals no consistent abnormalities.  相似文献   

5.
Atypical cytogenetic abnormalities were detected in peripheral primitive neuroectodermal tumors (PPNET) of the extremity in two children. One had an osseous tumor with a balanced reciprocal translocation, t(5;9)(q22;q32), and had a complete response to therapy. The other had a non-osseous tumor with an interstitial deletion, del(18)(q12.2q21.2), was resistant to combination therapy, and at autopsy had evidence of possible clonal evolution with the karyotype 46,XX der(8)t (8;8)(p11.2;q13), inv(16)(p13.2q12), del(18)(q12.2q21.2). Neither tumor demonstrated the t(11;22)(q24;q12) typically found in Ewing's sarcoma and PPNET, suggesting heterogeneity of the cytogenetic aberrations seen in this rare childhood malignancy.  相似文献   

6.
目的探讨世界首报染色体异常核型产生的遗传效应.方法外周血染色体常规分析.结果1例不孕合并子宫肌瘤异常核型为46,XX,t(10;16)(q11;p13);1例为不良产和自然流产为46,XX,t(7;11)(q21;q24);另1例仅表现为自然流产为46,XX,t(2;8)(p25;q22).结论3例异常核型为世界首报,由此产生的遗传效应分别导致不孕、不良产、自然流产.  相似文献   

7.
We previously reported the non-random occurrence of monosomy 22 in rhabdoid or atypical teratoid tumors of the brain in three young children. We now present cytogenetic and molecular studies of an additional rhabdoid tumor with the karyotype 46,XX,-9,-22,+i(1q),+der(22)t(9;22)(p13;q11)/45,XX,-9,-10,- 22,+i(1q),+der(22)t(9;22)(p13;q11). These studies further demonstrate the involvement of chromosome 22, and they begin to define the critical region containing a gene or genes involved in the development or progression of rhabdoid tumors of the brain.  相似文献   

8.
A patient with myelofibrosis was found to have a 46,XX,del(1)(q24),del(11)(p11),-22,+mar karyotype in unstimulated peripheral blood (PB) and spleen cells. On detailed cytogenetic examination it was determined that this patient had an apparently "masked" Ph1 chromosome contained in a complex three-way translocation. Since phytohemagglutinin (PHA)-stimulated PB and spleen cells were essentially normal, the masked Ph1 chromosome was assumed to be an acquired cytogenetic abnormality. The portion missing from the masked Ph1 chromosome was apparently translocated onto del(1). Thus, the detailed karyotype was 46,XX,t(1;11;22)(q24;p11;q11 or q12),t(1;22)(q24;q11 or q12). This complex rearrangement was present primarily in cells belonging to the granulocyte-macrophage cell lineage, whereas E-rosetting cells, and presumably T lymphocytes, had normal karyotypes.  相似文献   

9.
We report on a family ascertained through a 14-month-old girl with a terminal deletion of chromosome 8p23.1. Analysis of the karyotype of other relatives showed that the mother is the carrier of a balanced complex 4-break chromosome rearrangement, which she and her brother inherited from their father following recombination. This complex chromosome rearrangement (CCR) was confirmed by fluorescence in-situ hybridization (FISH) using libraries for chromosomes 1, 8, and 9, and telomeric probes for the long arm of chromosome 9. The karyotype of the maternal grandfather was 46,XY,t(1;8) (p31;q21.1),t(8;9)(p23.1;q34). The karyotype of his daughter is 46,XX,rec(8)t(1;8) (p31;q21.1)t(8;9)(p23.1;q34)pat. The karyotype of the proposita is 46,XX,rec(8)t(8;9) (p23.1;q34)mat, and that of her abnormal elder sister is 46,XX,t(1;8)(p31;q21.1)rec(8) t(8;9)(p23.1;q34)mat,der(9)t(8;9)(p23.1;q34) mat. Unbalanced segregation and/or recombination during maternal meiosis gave rise to the two abnormal sisters, one effectively with 8p trisomy and the other with monosomy for that same 8p segment. To our knowledge, this is the first case of a familial CCR giving rise to unbalanced recombination products. Am. J. Med. Genet. 79:30–34, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Cytogenetic analysis of a poorly differentiated adenocarcinoma of the prostate revealed the complex karyotype: 76-86,X, -Y, +X, +X, +del(X)(q24), +t(1;10) (p22;q24), -2, +der(2) t(1;2;?)(p32;q24p13;?), +der(2)t(1;2;?) (p32;dq24p13;?), +3, +3, +4, +5, +5, +6, +7, +del(7) (q22), -8, +der(8)t(8;?)(q24;?), + der(8)t(8;?)(q24;?), +9, +10, +10, +der(10)t (1;10)(q24;q22), +del (10)(q23), +11, +11, +12, +der(12)t(4;12)(q11;p11), +der(12)t(4;12) (q11;p11), +14, +der (15)t(1;15)(q21;p11), +t(16;?) (q21;?), +17, +18, +19, +19, +20, +20, +21, +22, +2-5 mar. The karyotype contains deletions of both 7q and 10q, abnormalities that also have been described previously in prostatic adenocarcinomas, and which hence may represent primary chromosomal rearrangements in this type of cancer.  相似文献   

11.
Complex karyotypic anomalies in a bizarre leiomyoma of the uterus   总被引:2,自引:0,他引:2  
Cytogenetic investigation of short-term cultures from a bizarre leiomyoma of the uterus, a tumor type not hitherto karyotypically characterized, revealed two abnormal clones with multiple complex rearrangements. Three-fourths of the aberrant cells were hypodiploid with the composite karyotype 38–44, XX,?6,?7,?10,?11,+20,?22, r(1), der(2) (:2p23→cen→2q13::1q21→1qter), der(2)t(2;9)(p21;q13), t(5;?)(q35;?), t(5;?),(q35;?), + der(5)t(5;15)(q11;q15), der(8)t(8;11)(q24;q13), t(15;?)(p12;?), der(16)t(12;16)(q13;p13),+r,+mar. The remaining abnormal mitoses were hypotetraploid, with chromosome numbers ranging from 74 to 86. These massively rearranged cells showed the same markers that were found in the hypodiploid clone, but in duplicate, indicating that this clone had arisen through polyploidization of hypodiploid cells. Flow cytometry revealed a DNA index of 1.03.  相似文献   

12.
Cytogenetic investigation of short-term cultures from two leiomyosarcomas revealed complex karyotypic changes in both cases. The first tumor, a subcutaneous leiomyosarcoma of the knee, had the karyotype 70-80,XY, +X, +Y, +1, +1, +2, +2, +3, +3, +4, +4, +7, +7, +8, +8, +9, +10, +15, +15, +16, +16, +18, +19, +20, +21, +21, +22, +22,t(?;5)(5;21)(?;q35p11;q11), t(?;5)(5;21)(?;q35p11;q11), +del(11)(q22),der(13)t(12;13)(q13;q22),der(14)t(9;14)(p11;p11), +14p+, +t(20;?)(q13;?), +t(20;?)(q13;?), +2 mar. A polyploidized clone with 120-150 chromosomes was also observed. DNA flow cytometry revealed only one abnormal peak, corresponding to a DNA index of 1.76. The other tumor, a uterine leiomyosarcoma, had the karyotype 61-67, X, -X, +1, +3, +5, +6, +7, +8, +9, +12, +13, +15, +t(1;1)(p32;q32), +der(1)t(1;8)(p13;q11), +del(2)(p11), +del(2)(q22), +del(2)(q22), +del(3)(p13), +i(5p),t(8;14)(q24;q24), +der(8)t(8;14) (q24;q24), +del(10)(p12),der(11)t(11;15)(p15;q11),t(16;?)(p13;?),t(16;?)(q24;?), der dic(17) (17pter----cen----17q25::hsr::17q25----cen----17pte r), +t(19;?)(p13;?), +der dic(20)(20pter----cen----20q12::hsr::20q12----cen----+ ++20pter), +mar. The DNA index was 1.59. The finding in these leiomyosarcomas of rearrangements of the same regions of chromosomes 12 and 14 that are involved in the tumor-specific t(12;14)(q14-15;q23-24) of uterine leiomyoma indicates that the same genes in 12q and 14q might be important in the pathogenesis of benign and malignant smooth muscle tumors.  相似文献   

13.
目的 明确两例智力低下患儿8号染色体短臂异常性质和来源,分析其染色体改变与表型的相关性.方法 首先应用常规G显带分析2例患儿及父母外周血染色体改变,然后应用比较基因组杂交芯片(array comparative genomic hybridization,array CGH)对其中1例常规核型分析的结果进行精确定位.结果 例1母亲的染色体改变为8p和3q的平衡插入易位,该患儿继承了母亲的1条衍生3号染色体,核型为46,XX,der(3) inv ins (3;8)(q25.3;p23.1p11.2)mat,导致8p部分三体.Array CGH分析显示重复区域为8p11.21-8p22,片段大小为26.9 Mb,该患儿主要表现为智力低下,未见其他8p三体的典型临床特征.例2父亲的核型为8p和11q的平衡易位,该患儿继承了父亲的1条衍生11号染色体,核型为46,XX,der(11)t(8;11)(p11.2;q25)pat,临床表现为智力低下,特殊面容,同时伴有先天性心脏病和骨骼异常,与典型8p三体表型相似,但面容特征不典型.结论 8p部分三体是2例患儿异常表型的主要原因,但与典型的8p三体相比,表型存在异质性;父母染色体分析可以帮助明确易位的性质从而有利于再发风险评估;与传统的细胞遗传学分析方法相比,arrayCGH在染色体异常分析中具有更高的分辨率和准确性.
Abstract:
Objective To determine the origin of aberrant chromosomes involving the short arm of chromosome 8 in two mentally retarded children, and to correlate the karyotype with abnormal phenotype. Methods Routine G-banding was performed to analyze the karyotypes of the two patients and their parents, and array comparative genomic hybridization (array CGH) was used for the first patient for fine mapping of the aberrant region. Results The first patient presented with only mental retardation. The father had normal karyotype. The mother had an apparent insertion translocation involving chromosomes 8 and 3 [46,XX, inv ins (3;8) (q25.3;p23.1p11.2)], the karyotype of the child was ascertained as 46,XX,der(3) inv ins (3;8)(q25.3;p23.1p11.2). Array CGH finely mapped the duplication to 8p11.21-8p22, a 26.9Mb region. The other patient presented with mental retardation, craniofacial defects, congenital heart disease and minor skeletal abnormality. The mother had normal karyotype. The father had an apparently balanced translocation involving chromosome 8p and 11q, the karyotype was 46,XY, t(8;11)(p11.2;q25). The karyotype of the child was then ascertained as 46,XX,der(11)t(8;11)(p11.2;q25). Conclusion These results suggested that partial trisomy 8p was primary cause for the phenotypic abnormalities of the two patients, whereas a mild phenotypic effect was observed in patient 1. Parental karyotype analysis could help define the aberrant type and recurrent risk evaluation. In contract to routine karyotype analysis, aberrant regions could be mapped by array CGH with higher resolution and accuracy.  相似文献   

14.
The cytogenetic analysis of a spindle-cell rhabdomyosarcoma of the parotid gland in a 6-year-old boy is reported. The tumor cells showed an abnormal karyotype with a hypotriploid modal chromosome number and clonal structural rearrangements affecting chromosomes 1, 8, 12, 21, and 22. The tumor karyotype was: 59, XY, -1, -3, -4, -5, -6, +8, +8, +del(8)(q22q24), -9, -10, del(12)(q13), -15, -16, -17, -18, der(21)t(12;21)(p11;p11), -22, der(22)t(1;22)(q12;p11).  相似文献   

15.
Liu JY  Ji MF  Wang XR  Luo RL  Ren X  Liu M  Wang QK 《Clinical genetics》2006,69(1):65-71
Chromosomal abnormalities are associated with a variety of diseases. We have developed a new technique for detecting chromosomal abnormalities, and the technique combines conventional 4',6-diamidino-2-phenyl-indole staining (DAPI) with image analysis. The image analysis consists of two simple steps: deconvolution and three-dimensional reconstruction. The technique has been reported for analyzing plant chromosomes but has not been applied to analyze human chromosomes yet. To test the technique, we analyzed five translocations: 46,XX,t(3;21)(12;18), 46,XX,t(11;22), 46,XY,t(7;22), 46,XY,t(11;18), and 46,XY,t(3;7). The results showed that the karyotype of the 46,XX,t(3;21)(12;18) was 46,XX,t(3;21)(q11.1;p13),t(12;18) (q21.2;q23), and the karyotypes of the 46,XX,t(11;22), 46,XY,t(7;22), 46,XY,t(11;18), and 46,XY,t(3;7) were 46,XX,t(11;22)(q23;q12.1); 46,XY,t(7;22)(q32;q13.2); 46,XY,t(11;18)(q13.3;q23), and 46,XY,t(3;7)(q22.1;p13), respectively. The identity of derivative chromosomes involved in the translocations was verified by chromosome painting as well as FISH analyses with centromere probes. The new technique has two advantages: the procedure is simple and convenient, and the results are accurate. The technique has the potential to be used in cytogenetic studies and clinical diagnosis of human diseases in the future.  相似文献   

16.
Cytogenetic study of malignant triton tumor: a case report   总被引:3,自引:0,他引:3  
Malignant triton tumor (MTT) is a highly malignant neoplasm, classified as a variant of malignant peripheral nerve sheath tumor (MPNST) with rhabdomyoblastic differentiation. Few cytogenetic studies of MTT have been reported using conventional cytogenetic analysis. Here, we report a comprehensive cytogenetic study of a case of MTT using G-banding, Spectral Karyotyping(), and fluorescence in situ hybridization (FISH) for specific regions. A complex hyperdiploid karyotype with multiple unbalanced translocations was observed: 48 approximately 55,XY,der(7)add(7)(p?)dup(7)[2],der(7) t(7;20)(p22;?)ins(20;19)[5],der(7)ins(8;7)(?;p22q36)t(3;8)t(8;20)[15],-8[5],-8[19],r(8)dup(8), +der(8)r(8;22)[4],-9[9],der(11)t(11;20)(p15;?)ins(20;19)[22],der(12)t(8;12)(q21;p13)[21],der(13) t(3;13)(q25;p11),-17,-19,der(19)t(17;19)(q11.2;q13.1),-20,-22,+4 approximately 7r[cp24]/46,XY[13]. The 1995 International System for Human Cytogenetic Nomenclature was followed where possible. Note that breakpoints were frequently omitted where only SKY information was known for a small part of an involved chromosome. Our analysis revealed some breakpoints in common with those previously reported in MTT, MPNST, and rhabdomyosarcoma, namely 7p22, 7q36, 11p15, 12p13, 13p11.2, 17q11.2, and 19q13.1. FISH showed high increase of copy number for MYC and loss of a single copy for TP53.  相似文献   

17.
Cytogenetic analysis of short-term cultures from a case of monostotic fibrous dysplasia in a 14-year-old girl revealed multiple clonal structural rearrangements with evidence of clonal evolution. The karyotype was 46,XX,del(3)(q27),add(10)(q22), add(12)(p13)/46,idem,t(3;8)(p21;q13),add(10)(q26),der(15)del(15)(q15q22)ins(15;?)(q15;?)/46,idem,-X, + 2,t(3;8),add(10),der(15). The finding of clonal structural aberrations suggests that fibrous dysplasia is a neoplastic lesion which develops as the result of somatic mutations.  相似文献   

18.
We detected 2 patients with whole-arm translocations resulting in a derivative chromosome consisting of 18q and 21q. Because the breakpoints were near the centromere, classical cytogenetic techniques could not determine the centromeric origin of the derivative chromosomes. Using nonradioactive in situ hybridization with a chromosome 18 alpha-satellite DNA probe (D18Z1), the centromeres in the abnormal chromosomes were determined to be from chromosome 18. The abnormality in one patient resulted in monosomy 18p with a karyotype 45,XX, -18, -21, + der(18)t(18;21) (p11;q11)mat complement. The second patient with a 46,XX, -21, + der(18)t(18;21)(p11;q11) de novo karyotype had complete trisomy of 18q. In both cases the appropriate phenotype was observed.  相似文献   

19.
Two cases are described with the rare combination of inv(16)(p13q22), strongly associated with acute myelomonocytic leukemia with eosinophilia, M4Eo, and the Philadelphia translocation, t(9;22)(q34;q11), hallmark of chronic myeloid leukemia (CML) and rarely found, (less than 1%), in acute nonlymphocytic leukemia. The patients were: case 1, a 9-year-old girl presenting with a white blood cell count (WBC) 42 x 10(9)/L with 32% blasts and bone marrow with blasts and eosinophil precursors consistent with M4Eo, and case 2, a 25-year-old man with WBC 34.7 x 10(9)/L with 13% blasts and bone marrow with features of M4Eo and basophilia. Both patients achieved remission but died following bone marrow transplantation in first remission (case 1) or in relapse (case 2). Cytogenetic findings were: case 1, at diagnosis, 46,XX,inv(16)(p13q22)(21)/46,XX,t(9;22) (q34;q11),inv(16)(8)/46,XX(10), and case 2, at diagnosis, 46,XY,t(9;22) (q34;q11),inv(16)(p13q22) (16) and in remission, 46,XY,t(9;22)(q34;q11) (1)/46,XY (24). Investigation of the breakpoint on 22 in case 1 with Southern blotting and the polymerase chain reaction demonstrated the presence of a p190 mRNA and a breakpoint typical of acute leukemia. Thus a diagnosis of M4Eo was supported by clinical and cytogenetic sequelae in each case; the Ph in case 1 was apparently secondary to inv(16), in case 2 the Ph probably preceded inv(16) in the etiology of the leukemia.  相似文献   

20.
A moderately retarded girl had a 47,XX,+der(18),t(9;18)(p24;q21)mat abnormality that was inherited from her mother, who had a 46,XX,t(9;18)(p24;q21) karyotype in most cells, and a minor cell line of 47,XX,+der(18),-t(9;18)(p24;q21). Her dysmorphic features--bilateral epicanthic folds, low-set, abnormal ears, low posterior hairline, clinodactyly of the 5th fingers, and broad great toes--were similar to those of other patients with an additional number 18 chromosome in which all or most of the long arm was missing, thus raising the possibility of a distinct syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号