首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many neurodegenerative diseases are caused by gain-of-function mechanisms in which the disease-causing protein is altered, becomes toxic to the cell, and aggregates. Among these 'proteinopathies' are Alzheimer's and Parkinson's disease, prion disorders and polyglutamine diseases. Members of this latter group, also known as triplet repeat diseases, are caused by the expansion of unstable CAG repeats coding for glutamine within the respective proteins. Spinocerebellar ataxia type 1 (SCA1) is one such disease, characterized by loss of motor coordination due to the degeneration of cerebellar Purkinje cells and brain stem neurons. In SCA1 and several other polyglutamine diseases, the expanded protein aggregates into nuclear inclusions (NIs). Because these NIs accumulate molecular chaperones, ubiquitin and proteasomal subunits--all components of the cellular protein re-folding and degradation machinery--we hypothesized that protein misfolding and impaired protein clearance might underlie the pathogenesis of polyglutamine diseases. Over-expressing specific chaperones reduces protein aggregation in transfected cells and suppresses neurodegeneration in invertebrate animal models of polyglutamine disorders. To determine whether enhancing chaperone activity could mitigate the phenotype in a mammalian model, we crossbred SCA1 mice with mice over-expressing a molecular chaperone (inducible HSP70 or iHSP70). We found that high levels of HSP70 did indeed afford protection against neurodegeneration.  相似文献   

2.
Polyglutamine diseases consist of a group of familial neurodegenerative disorders caused by expression of proteins containing expanded polyglutamine stretch. Over the past several years, tremendous progress has been made in identifying the molecular mechanisms by which the expanded polyglutamine tract leads to neuronal dysfunction and neurodegeneration. A common feature of most polyglutamine disorders is the occurrence of ubiquitin-positive neuronal intranuclear inclusions. The appearance of ubiquitinated aggregates implies an underline incapability of the cellular chaperones and proteasome machinery that normally functions to prevent the accumulation of misfolded proteins. Here we review the recent studies that have revealed a critical role for molecular chaperones and ubiquitin-proteasome pathway in the pathogenesis of polyglutamine diseases.  相似文献   

3.
The molecular chaperone hsp90 has emerged as an important therapeutic target in cancer and neurodegenerative diseases, including the polyglutamine expansion disorders, because of its ability to regulate the activity, turnover and trafficking of many proteins. For neurodegenerative disorders associated with protein aggregation, the rationale has been that inhibition of hsp90 by geldanamycin and related compounds activates heat shock factor 1 (HSF1) to induce the production of the chaperones hsp70 and hsp40 that promote disaggregation and protein degradation. However, we show here that geldanamycin blocks the development of aggregates of the expanded glutamine androgen receptor (AR112Q) of Kennedy disease in Hsf1(-/-) mouse embryonic fibroblasts where these chaperones are not induced. Geldanamycin is additionally known to inhibit hsp90-dependent protein trafficking and to promote proteasomal degradation of client proteins. Overexpression of the hsp90 cochaperone p23 also promotes AR112Q degradation, and inhibits both AR trafficking and AR112Q aggregation without altering levels of hsp70 or hsp40. The hsp90-dependent trafficking mechanism has been defined, and it is shown that key immunophilin (IMM) components of the trafficking machinery are present in polyglutamine aggregates in cell and mouse models of Kennedy disease. Our results indicate that inhibition of the hsp90-dependent trafficking mechanism prevents aggregation of the expanded glutamine androgen receptor, thereby opening a variety of novel therapeutic approaches to these neurodegenerative disorders.  相似文献   

4.
Spinal and bulbar muscular atrophy (SBMA) is a heritable neurodegenerative disease caused by the expansion of a polyglutamine [poly(Q)] repeat within the androgen receptor (AR) protein. We studied SBMA in Drosophila using an N-terminal fragment of the human AR protein. Expression of a pathogenic AR protein with an expanded poly(Q) repeat in Drosophila results in nuclear and cytoplasmic inclusion formation, and cellular degeneration, preferentially in neuronal tissues. We have studied the influence of ubiquitin-dependent modification and the proteasome pathway on neural degeneration and AR protein fragment solubility. Compromising the ubiquitin/proteasome pathway enhances degeneration and decreases poly(Q) protein solubility. Our data further suggest that Hsp70 and the proteasome act in an additive manner to modulate neurodegeneration. Through the over-expression of a mutant of the SUMO-1 activating enzyme Uba2, we further show that poly(Q)-induced degeneration is intensified when the cellular SUMO-1 protein conjugation pathway is altered. These data suggest that post-translational protein modification, including the ubiquitin/proteasome and the SUMO-1 pathways, modulate poly(Q) pathogenesis.  相似文献   

5.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by polyglutamine expansion in the disease protein, huntingtin. In HD patients and transgenic mice, the affected neurons form characteristic ubiquitin-positive nuclear inclusions (NIs). We have established ecdysone-inducible stable mouse Neuro2a cell lines that express truncated N-terminal huntingtin (tNhtt) with different polyglutamine lengths which form both cytoplasmic and nuclear aggregates in a polyglutamine length- and inducer dose-dependent manner. Here we demonstrate that newly synthesized polyglutamine-expanded truncated huntingtin interacts with members of Hsp40 and Hsp70 families of chaperones in a polyglutamine length-dependent manner. Of these interacting chaperones, only Hdj-2 and Hsc70 frequently (Hdj-2 > Hsc70) co-localize with both the aggregates in the cellular model and with the NIs in the brains of HD exon 1 transgenic mice. However, Hdj-2 and Hsc70 do not co-localize with cytoplasmic aggregates in the brains of transgenic mice despite these chaperones being primarily localized in the cytoplasmic compartment. This strongly suggests that the chaperone interaction and their redistribution to the aggregates are two completely different phenomena of the cellular unfolded protein response. This unfolded protein response is also evident from the dramatic induction of Hsp70 on expression of polyglutamine-expanded protein in the cellular model. Transient overexpression of either Hdj-1 or Hsc70 suppresses the aggregate formation; however, suppression efficiency is much higher in Hdj-1 compared with Hsc70. Overexpression of Hdj-1 and Hsc70 is also able to protect cell death caused by polyglutamine-expanded tNhtt and their combination proved to be most effective.  相似文献   

6.
Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), is one of at least eight inherited neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein. Here we present two lines of evidence implicating the ubiquitin-proteasome pathway in SCA3/MJD pathogenesis. First, studies of both human disease tissue and in vitro models showed redistribution of the 26S proteasome complex into polyglutamine aggregates. In neurons from SCA3/MJD brain, the proteasome localized to intranuclear inclusions containing the mutant protein, ataxin-3. In transfected cells, the proteasome redistributed into inclusions formed by three expanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion protein. Inclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein and occurred within specific subnuclear structures recently implicated in the regulation of cell death, promyelocytic leukemia antigen oncogenic domains. In a second set of experiments, inhibitors of the proteasome caused a repeat length-dependent increase in aggregate formation, implying that the proteasome plays a direct role in suppressing polyglutamine aggregation in disease. These results support a central role for protein misfolding in the pathogenesis of SCA3/MJD and suggest that modulating proteasome activity is a potential approach to altering the progression of this and other polyglutamine diseases.  相似文献   

7.
8.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of a polyglutamine repeat within the androgen receptor (AR). We have studied the mutant AR in an in vitro system, and find both aggregation and proteolytic processing of the AR protein to occur in a polyglutamine repeat length-dependent manner. In addition, we find the aberrant metabolism of expanded repeat AR to be coupled to cellular toxicity, indicating a likely molecular basis for the toxic gain of AR function that produces neuronal degeneration in SBMA.   相似文献   

9.
Spinocerebellar ataxia type 6 (SCA6) is one of the eight neurodegenerative diseases caused by a tri-nucleotide (CAG) repeat expansion coding polyglutamine (CAG repeat/polyglutamine diseases) and is characterized by late onset autosomal dominant cerebellar ataxia and predominant loss of cerebellar Purkinje cells. Although the causative, small and stable CAG repeat expansion for this disease has been identified in the [alpha]1A voltage-dependent calcium channel gene (CACNA1A), the mechanism which leads to predominant Purkinje cell degeneration is totally unknown. In this study, we show that the calcium channel mRNA/protein containing the CAG repeat/polyglutamine tract is most intensely expressed in Purkinje cells of human brains. In SCA6 brains, numerous oval or rod-shaped aggregates were seen exclusively in the cytoplasm of Purkinje cells. These cytoplasmic inclusions were not ubiquitinated, which contrasts with the neuronal intra-nuclear inclusions of other CAG repeat/polyglutamine diseases. In cultured cells, formation of perinuclear aggregates of the channel protein and apoptotic cell death were seen when transfected with full-length CACNA1A coding an expanded polyglutamine tract. The present study indicates that the mechanism of neurodegeneration in SCA6 is associated with cytoplasmic aggregations of the [alpha]1A calcium channel protein caused by a small CAG repeat/polyglutamine expansion in CACNA1A.  相似文献   

10.
Machado–Joseph disease is an autosomal dominant spinocerebellar degeneration caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. We have previously shown that increased oxidative stress and decreased expression of Hsp27 may be contributory factors to the disease progression. In this study, we utilized neuroblastoma SK-N-SH cells stably transfected with full-length expanded ataxin-3 to further investigate the mechanism(s) resulting in the decreased expression of Hsp27. Results from 35S-methionine pulse-chase labeling and protein degradation assays revealed that decreased Hsp27 in mutant MJD cells is due to defects in protein synthesis. Our results further demonstrated that Hsp27 degradation is independent of the proteasome degradation pathway. In addition, we showed that overexpression of Hsp27 desensitizes mutant MJD cells to apoptotic stress. Taken together, these findings provide the first evidence that expanded ataxin-3 interferes with Hsp27 synthesis, which may contribute to the impairment of the cells’ ability to respond to stresses and trigger the progression of this late-onset disease.  相似文献   

11.
The key feature of polyglutamine aggregates accumulating in the course of Huntington disease (HD) is their resistance to protein denaturants, and to date only chaperones are proved to prevent mutant protein aggregation. It was suggested that expanded polyglutamine chains (polyQ) of mutant huntingtin are cross-linked to other proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Here we clarify the roles of GAPDH and molecular chaperone Hsp70 in the formation of sodium dodecyl sulfate (SDS)-insoluble polyQ aggregates. First, the addition of pure GAPDH was found to enhance the aggregation of polyQ in a cell-free model of HD. Secondly, the immunodepletion of GAPDH dose-dependently decreased polyQ aggregation. Finally, siRNA-mediated inhibition of GAPDH protein in SK-N-SH neuroblastoma cells has also reduced the aggregation of cellular polyQ. Regulated over-expression of Hsp70 decreased the amount of GAPDH associated with SDS-insoluble polyQ aggregates. Physical association of Hsp70 and GAPDH in SK-N-SH cells was shown by reciprocal immunoprecipitation and confocal microscopy. Pure Hsp70 dose-dependently inhibited the formation of polyQ aggregates in cell-free model of HD by sequestering both GAPDH and polyQ. We demonstrated that Hsp70 binds to polyQ in adenosine triphosphate-dependent manner, which suggests that Hsp70 exerts a chaperoning activity in the course of this interaction. Binding of Hsp70 to GAPDH was nicotinamide adenine dinucleotide-dependent suggesting another type of association. Based on our findings, we conclude that Hsp70 protects cells in HD by removing/sequestering two intrinsic components of protein aggregates: the polyQ itself and GAPDH. We propose that GAPDH might be an important target for pharmacological treatment of HD and other polyglutamine expansion-related diseases.  相似文献   

12.
Spinal bulbar muscular atrophy is a neurodegenerative disorder caused by a polyglutamine expansion in the androgen receptor (AR). We show in transiently transfected HeLa cells that an AR containing 48 glutamines (ARQ48) accumulates in a hormone-dependent manner in both cytoplasmic and nuclear aggregates. Electron microscopy reveals both types of aggregates to have a similar ultrastructure. ARQ48 aggregates sequester mitochondria and steroid receptor coactivator 1 and stain positively for NEDD8, Hsp70, Hsp90 and HDJ-2/HSDJ. Co-expression of HDJ-2/HSDJ significantly represses aggregate formation. ARQ48 aggregates also label with antibodies recognizing the PA700 proteasome caps but not 20S core particles. These results suggest that ARQ48 accumulates due to protein misfolding and a breakdown in proteolytic processing. Furthermore, the homeostatic disturbances associated with aggregate formation may affect normal cell function.  相似文献   

13.
Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB(+1), an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB(+1) in the NIIs and the cytoplasm of neurons in Huntington disease and spinocerebellar ataxia type-3, indicating inhibition of the proteasome by polyglutamine proteins in human brain. We found that UBB(+1) not only increased aggregate formation of expanded polyglutamines in neuronally differentiated cell lines, but also had a synergistic effect on apoptotic cell death due to expanded polyglutamine proteins. These findings implicate UBB(+1) as an aggravating factor in polyglutamine-induced neurodegeneration, and clearly identify an important role for the ubiquitin-proteasome system in polyglutamine diseases.  相似文献   

14.
A substantial body of evidence supports the identity of polyglutamine as the pathogenic agent in a variety of human neurodegenerative disorders where the mutation is an expanded CAG repeat. However, in apparent contradiction to this, there are several human neurodegenerative diseases (some of which are clinically indistinguishable from the 'polyglutamine' diseases) that are due to expanded repeats that cannot encode polyglutamine. As polyglutamine cannot be the pathogenic agent in these diseases, either the different disorders have distinct pathogenic pathways or some other common agent is toxic in all of the expanded repeat diseases. Recently, evidence has been presented in support of RNA as the pathogenic agent in Fragile X-associated tremor/ataxia syndrome (FXTAS), caused by expanded CGG repeats at the FRAXA locus. A Drosophila model of FXTAS, in which 90 copies of the CGG repeat are expressed in an untranslated region of RNA, exhibits both neurodegeneration and similar molecular pathology to the 'polyglutamine' diseases. We have, therefore, explored the identity of the pathogenic agent, and specifically the role of RNA, in a Drosophila model of the polyglutamine diseases by the expression of various repeat constructs. These include expanded CAA and CAG repeats and an untranslated CAG repeat. Our data support the identity of polyglutamine as the pathogenic agent in the Drosophila models of expanded CAG repeat neurodegenerative diseases.  相似文献   

15.
The family of small heat shock proteins (sHsp) is composed of 10 members in mammals, four of which are found mutated in diseases associated with the accumulation of protein aggregates. Though many sHsp have demonstrated molecular chaperone activity in vitro in cell-free conditions, their activity in vivo in the normal cellular context remains unclear. In the present study, we investigated the capacity of the sHsp, HspB8/Hsp22, to prevent protein aggregation in the cells using the polyglutamine protein Htt43Q as a model. In control conditions, Htt43Q accumulated in perinuclear inclusions composed of SDS-insoluble aggregates. Co-transfected with Htt43Q, HspB8 became occasionally trapped within the inclusions; however, in most cells, HspB8 blocked inclusion formation. Biochemical analyses indicated that HspB8 inhibited the accumulation of SDS-insoluble Htt43Q as efficiently as Hsp40 which was taken as a positive control. Htt43Q then accumulated in the SDS-soluble fraction, provided that protein degradation was blocked by proteasome and autophagy inhibitors. In contrast, the other sHsp Hsp27/HspB1 and alphaB-crystallin/HspB5 had no effect. This suggested that HspB8 functions as a molecular chaperone, maintaining Htt43Q in a soluble state competent for rapid degradation. Analyses of Hsp27-HspB8 chimeric proteins indicated that the C-terminal domain of HspB8 contains the specific sequence necessary for chaperone activity. Missense mutations in this domain at lysine 141, which are found in human motor neuropathies, significantly reduced the chaperone activity of the protein. A decrease in the HspB8 chaperone activity may therefore contribute to the development of these diseases.  相似文献   

16.
17.
CHIP (carboxy terminus of Hsc70-interacting protein) an E3 ubiquitin ligase that binds to Hsp70 and Hsp90, promotes degradation of several Hsp90-regulated signaling proteins and disease-causing proteins containing expanded glutamine tracts. In polyglutamine disease models, CHIP has been considered a primary protection factor by promoting degradation of these misfolded proteins. Here, we show that two CHIP substrates, the glucocorticoid receptor (GR), a classic Hsp90-regulated signaling protein, and the expanded glutamine androgen receptor (AR112Q), are degraded at the same rate in CHIP(-/-) and CHIP(+/+) mouse embryonic fibroblasts after treatment with the Hsp90 inhibitor geldanamycin. CHIP(-/-) cytosol has the same ability as CHIP(+/+) cytosol to ubiquitinate purified neuronal nitric oxide synthase (nNOS), another established CHIP substrate. To determine whether other E3 ubiquitin ligases that bind to Hsp70 (Parkin) or Hsp90 (Mdm2) act on CHIP substrates, each E3 ligase was co-expressed with the GR, nNOS, AR112Q or Q78 ataxin-3. CHIP lowered the levels of all four proteins, Parkin acted on nNOS and Q78 ataxin-3 but not on the steroid receptors, and Mdm2 did not affect any of the co-expressed proteins. Moreover, both CHIP and Parkin co-localized to aggregates of the expanded glutamine AR formed in cell culture and in a knock-in mouse model of spinal and bulbar muscular atrophy. These observations establish that CHIP does not play an exclusive role in regulating the turnover of Hsp90 client signaling proteins or expanded glutamine tract proteins, and show that the Hsp70-dependent E3 ligase Parkin acts redundantly to CHIP on some substrates.  相似文献   

18.
Transgenic Mice in the Study of Polyglutamine Repeat Expansion Diseases   总被引:3,自引:0,他引:3  
An increasing number of neurodegenerative diseases, including Huntington's disease (HD), have been found to be caused by a CAG/polyglutamine expansion. We have generated a mouse model of HD by the introduction of exon 1 of the human HD gene carrying highly expanded CAG repeats into the mouse germ line. These mice develop a progressive neurological phenotype. Neuronal intranuclear inclusions (NII) that are immunoreactive for huntingtin and ubiquitin have been found in the brains of symptomatic mice. In vitro analysis indicates that the inclusions are formed through self aggregation via the polyglutamine repeat into amyloid-like fibrils composed of a cross β-sheet structure that has been termed a polar zipper. Analysis of patient material and other transgenic lines has now shown NII to be a common feature of all of these diseases. In the transgenic models, inclusions are present prior to the onset of symptoms suggesting a causal relationship. In contrast, neurodegeneration occurs after the onset of the phenotype indicating that the symptoms are caused by a neuronal dysfunction rather than a primary cell death.  相似文献   

19.
Spinobulbar muscular atrophy is a progressive motor neuron disease caused by abnormal polyglutamine tract expansion in the androgen receptor (AR) gene, and is part of a family of central nervous system (CNS) neurodegenerative diseases, including Huntington's disease (HD). Each pathologic protein is widely expressed, but the cause of neuronal degeneration within the CNS remains unknown. Many reports now link abnormal polyglutamine protein aggregation to pathogenesis. A previous study reported that activation of the wild-type glucocorticoid receptor (wtGR) suppressed the aggregation of expanded polyglutamine proteins derived from AR and huntingtin, whereas a mutant receptor containing an internal deletion, GRDelta108-317, increased polyglutamine protein aggregation, in this case primarily within the nucleus. In this study, we use these two forms of GR to study expanded polyglutamine AR protein in different cell contexts. Using cell biology and biochemical approaches, we find that wtGR promotes soluble forms of the protein and prevents nuclear aggregation in NIH3T3 cells and cultured neurons. In contrast, GRDelta108-317 decreases polyglutamine protein solubility, and causes formation of nuclear aggregates in non-neuronal cells. Nuclear aggregates recruit hsp72 more rapidly than cytoplasmic aggregates, and are associated with decreased cell viability. Limited proteolysis and chemical cross-linking suggest unique soluble forms of the expanded AR protein underlie these distinct biological activities. These observations provide an experimental framework to understand why expanded polyglutamine proteins may be toxic only to certain populations of cells, and suggest that unique protein associations or conformations of expanded polyglutamine proteins may determine subsequent cellular effects such as nuclear localization and cellular toxicity.  相似文献   

20.
Insoluble protein aggregates are consistently found in neurodegenerative disorders caused by expanded polyglutamine [poly(Q)] repeats. The aggregates contain various components of the ubiquitin/proteasome system, suggesting an attempt of the cell to clear the aberrant substrate. To investigate the effect of expanded poly(Q) repeats on ubiquitin/proteasome-dependent proteolysis, we targeted these proteins for proteasomal degradation by the introduction of an N-end rule degradation signal. While soluble poly(Q) proteins were degraded, they resisted proteasomal degradation once present in the aggregates. Stabilization was also observed for proteins that are co-aggregated via interaction with the expanded poly(Q) domain. Introduction of a degradation signal in ataxin-1/Q92 reduced the incidence of nuclear inclusions and the cellular toxicity, conceivably by accelerating the clearance of the soluble substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号