首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Autosomal-dominant medullary cystic kidney disease type 1 (MCKD1) [OMIM 174000] is a hereditary nephropathy that leads to renal salt wasting and end-stage renal failure at a median age of 62 years. In a Welsh MCKD1 kindred we have recently demonstrated linkage to the MCKD1 locus on chromosome 1q23.1 and refined the critical MCKD1 region to <3.3 Mb. METHODS: In order to refine the candidate gene region for MCKD1, high-resolution haplotype analysis in three large kindreds with MCKD1 was performed. RESULTS: We report here on high-resolution haplotype analysis in this Welsh kindred, as well as in the Arizona kindred, which was used for the first definition of MCKD as a disease entity, and in a kindred from the Dutch/German border. We detected extensive haplotype sharing among all affected individuals of all three kindreds. Scrutinization of the genealogy of the Arizona kindred revealed an origin from Germany in the 17th century, thereby providing historical data for haplotype sharing by descent at the MCKD1 locus. CONCLUSION: Under the hypothesis of haplotype sharing by descent, we refined the critical genetic interval to <650 kb, thus enabling candidate gene analysis.  相似文献   

2.
BACKGROUND: Autosomal-dominant medullary cystic kidney disease (MCKD) is an interstitial nephropathy characterized by structural renal tubular defects that result in salt wasting and a reduction in urinary concentration. The condition has clinical and morphological similarities to autosomal-recessive juvenile nephronophthisis. Two genes predisposing to MCKD have been localized. MCKD1 on chromosome 1q21 was localized in two Cypriot families, and MCKD2 on chromosome 16p12 was localized in a single Italian family. We have evaluated a large Welsh MCKD family for linkage at these two loci. METHODS: Clinical data and DNA samples were collected from affected family members. Polymorphic microsatellite markers spanning the critical regions on chromosome 1 and chromosome 16 that encompass MCKD1 and MCKD2 were analyzed. Two-point and multipoint LOD scores were calculated. RESULTS: The family fulfilled previously published criteria for the diagnosis of MCKD, but hyperuricemia and gout were not prominent features. Twenty-one affected individuals were identified. Mean age at death or end-stage renal disease was 47 years (37 to 60). Linkage and haplotype analysis generated strongly negative results at MCKD1 on chromosome 1q21 (two-point LOD score = -5.32). Strong evidence of linkage to MCKD2 was generated with a maximum multi-point LOD score of 3.75. CONCLUSION: These results provide the first independent confirmation of a gene predisposing to MCKD on chromosome 16p12 and indicate that mutation of this gene is not restricted to a single family or population. The absence of hyperuricemia and gout in our family indicates that these are not obligatory features of MCKD2 mutations.  相似文献   

3.
BACKGROUND: Autosomal dominant medullary cystic kidney disease is a genetically heterogeneous nephropathy with clinical and morphological features similar to recessively inherited juvenile nephronophthisis. Recently, a second gene locus on chromosome 16p12, MCKD2 has been mapped [1] in addition to the known locus on chromosome 1q21 (MCKD1) [2]. In a previous study we have excluded linkage for three caucasian families to the MCKD1 locus [3]. METHODS: Haplotype analysis was performed on 72 individuals (including 24 affected subjects), using a set of seven microsatellite markers spanning the critical region on chromosome 16p12-p13 of about 10.5 cM. RESULTS:We report on haplotype analysis of closely linked markers to the MCKD2 locus in the previously studied families and two additional families. CONCLUSION: In all five families the association of MCKD2 with the disease was excluded by a multipoint LOD score <-2, thus suggesting the involvement of a third MCKD locus.  相似文献   

4.
BACKGROUND: Autosomal-dominant juvenile hyperuricemia, gouty arthritis, medullary cysts, and progressive renal insufficiency are features associated with familial juvenile hyperuricemic nephropathy (FJHN), medullary cystic kidney disease type 1 (MCKD1) and type 2 (MCKD2). MCKD1 has been mapped to chromosome 1q21. FJHN and MCKD2 have been mapped to chromosome 16p11.2. FJHN and MCKD2 are allelic, result from uromodulin (UMOD) mutations and the term uromodulin-associated kidney disease (UAKD) has been proposed for them. Linkage studies also reveal families that do not show linkage to any of the identified loci. To identify additional UAKD loci, we analyzed one of these families, with features suggestive of FJHN. METHODS: Clinical, biochemical, and immunohistochemical investigations were used for phenotype characterization. Genotyping, linkage and haplotype analyses were employed to identify the candidate disease region. Bioinformatics and sequencing were used for candidate gene selection and analyses. RESULTS: We identified a new candidate UAKD locus on chromosome 1q41, bounded by markers D1S3470 and D1S1644. We analyzed and found no linkage to this region in eight additional families, who did not map to the previously established loci. We noted that affected individuals showed, in addition to the characteristic urate hypoexcretion, significant reductions in urinary excretion of calcium and UMOD. Immunohistochemical analysis showed that low UMOD excretion resulted from its reduced expression, which is a different mechanism to intracellular UMOD accumulation observed in cases with UMOD mutations. CONCLUSION: We have mapped a new candidate UAKD locus and shown that UAKD may be a consequence of various defects affecting uromodulin biology.  相似文献   

5.
Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder heralded by hyperuricemia during childhood; it is characterized by chronic interstitial nephritis, with marked thickening of tubular basement membranes, and leads to progressive renal failure during adulthood. A gene for FJHN in two Czech families was recently mapped to chromosome 16p11.2, close to the MCKD2 locus, which is responsible for a variant of autosomal dominant medullary cystic kidney disease observed in an Italian family. In a large Belgian family with FJHN, a tight linkage between the disorder and the marker D16S3060, located within the MCKD2 locus on chromosome 16p12 (maximal two-point logarithmic odds score of 3.74 at a recombination fraction of theta = 0), was observed in this study. The candidate region was further narrowed to a 1.3-Mb interval between D16S501 and D16S3036. Together with the striking clinical and pathologic resemblance between previously reported medullary cystic kidney disease type 2 and FJHN occurring in the Belgian family (including the presence of medullary cysts), this study suggests that these two disorders are facets of the same disease.  相似文献   

6.
BACKGROUND: Nephrolithiasis is a complex, multifactorial disease resulting from genetic and environmental interaction. The pathogenesis of nephrolithiasis is far from being understood. So far, no gene locus for autosomal dominant nephrolithiasis only has been described. We here identified a new suggestive gene locus for autosomal dominant nephrolithiasis by a genome-wide search for linkage in a Spanish kindred with nephrolithiasis. METHODS: Clinical data, blood and urine samples of 18 individuals from a Spanish kindred with nephrolithiasis were collected. We performed a genome-wide search for linkage using 380 polymorphic microsatellite markers. RESULTS: Nephrolithiasis segregated in this Spanish kindred in a pattern compatible with autosomal dominant inheritance. The total genome search yielded the highest two-point LOD score of Z(max) = 1.99 (theta = 0) for marker D9S159 on chromosome 9q33.2-q34.2. Multipoint analysis of 24 polymorphic markers used for further fine mapping resulted in a LOD score of Z(max) = 2.7 (theta = 0) for markers D9S1881-D9S164, thereby identifying a new gene locus for autosomal dominant nephrolithiasis (NPL1). Two recombination events define D9S1850 as the centromeric flanking marker and D9S1818 as the telomeric flanking marker, restricting the NPL1 locus to a 14 Mb interval. CONCLUSION: We here identified a new suggestive gene locus (NPL1) for autosomal dominant nephrolithiasis. It is localized on chromosome 9q33.2-q34.2. The identification of the responsible gene will provide new insights into the molecular basis of nephrolithiasis.  相似文献   

7.
Medullary cystic kidney disease (MCKD) belongs with nephronophthisis (NPH) in a group of inherited tubulo-interstitial nephritis, which has been referred to as the NPH-MCKD complex. Although MCKD and NPH share morphological features, they differ in several respects. The most common variant is recessive juvenile NPH, with onset in childhood and leading to end-stage renal disease (ESRD) within the 2nd decade of life; the most frequent extrarenal involvement is tapeto-retinal degeneration. MCKD is a dominant condition recognized in later life and leading to ESRD at the age of 50 years; hyperuricemia and gout can be associated features. The first sign of MCKD is polyuria; later, the clinical findings relate to renal insufficiency. Originally, NPH and MCKD were considered separate entities. Subsequently, it has been suggested that the two diseases were a single disorder due to the clinico-pathological identity. This unifying conception was later refuted due to the identification of MCKD dominant families. Recently, considerable insight has been gained into the genetics of the NPH-MCKD complex. The majority of juvenile NPH cases are due to deletion of the NPHP1 gene on chromosome 2q13. Genes for infantile and adolescent NPH have been localized respectively to chromosome 9q22-q31 and 3q22. A new locus, NPHP4, has been recently identified on chromosome 1p36. Two genes predisposing to dominant MCKD, MCKD1 and MCKD2, have been localized to chromosome 1q21 and 16p12. Independent confirmation of the locations of MCKD1 and MCKD2 in other MCKD families, with or without hyperuricemia and gout, has been reported. The gene for familial juvenile hyperuricemic nephropathy (FJHN), a phenotype that is very similar to MCKD, was recently mapped to 16p12, in a region overlapping with the MCKD2 locus, raising the question as to whether MCKD2 and FJHN are allelic variants of the same disease entity. The ultimate proof of the allelism between MCKD2 and FJHN will be provided by the identification of the responsible gene(s). Identification and characterization of the MCKD and FJHN genes will help to clarify the pathogenesis and classification of hereditary tubulo-interstitial nephritides.  相似文献   

8.
BACKGROUND: Autosomal-dominant medullary cystic kidney disease (ADMCKD), a hereditary chronic interstitial nephropathy, recently attracted attention because of the cloning or mapping of certain gene loci, namely NPHP1, NPHP2 and NPHP3 for familial juvenile nephronophthisis (NPH) and MCKD1 and MCKD2 for the adult form of medullary cystic kidney disease. Our aim was to present and discuss the clinical, biochemical, sonographic and histopathological findings in six large Cypriot families in whom molecular analysis has confirmed linkage to the MCKD1 locus on chromosome 1q21. METHODS: The clinical, biochemical, sonographic and histopathological findings in 186 members of six large Cypriot families with ADMCKD-1 are presented. Creatinine clearance was calculated according to the Cockroft-Gault formula and was corrected to a body surface area (BSA) of 1.73 m2. DNA linkage analysis was performed with previously identified flanking polymorphic markers. RESULTS: This disease is characterized by the absence of urinary findings in the vast majority of patients, leading to end-stage renal failure (ESRF) at a mean age of 53.7 years. Hypertension and hyperuricemia are common, especially in males, the former encountered more frequently in advanced chronic renal failure (CRF). Gout has been noted in a small percentage of male patients. Loss of urinary concentrating ability was not a prominent early feature of the disease, while severe natriuresis was observed in a few males toward ESRF. Renal cysts are mainly corticomedullary or medullary, and they are present in about 40.3% of patients and appear more frequently near ESRF. CONCLUSION: ADMCKD type 1 is a common cause of ESRF among our dialysis population. The disease is difficult to diagnose clinically, particularly in the early stage when renal cysts are not usually present, making them a weak diagnostic finding. A dominant pattern of inheritance and DNA linkage analysis are helpful in the diagnosis of this disease.  相似文献   

9.
BACKGROUND: Autosomal-dominant medullary cystic kidney disease type 2 (MCKD2) is a tubulointerstitial nephropathy that causes renal salt wasting, hyperuricemia, gout, and end-stage renal failure in the fifth decade of life. The chromosomal locus for MCKD2 was localized on chromosome 16p12. Within this chromosomal region, Uromodulin (UMOD) was located as a candidate gene. UMOD encodes the Tamm-Horsfall protein. By sequence analysis, one group formerly excluded UMOD as the disease-causing gene. In contrast, recently, another group described mutations in the UMOD gene as responsible for MCKD2 and familial juvenile hyperuricemic nephropathy (FJHN). METHODS: Haplotype analysis for linkage to MCKD2 was performed in 25 MCKD families. In the kindreds showing linkage to the MCKD2 locus on chromosome 16p12, mutational analysis of the UMOD gene was performed by exon polymerase chain reaction (PCR) and direct sequencing. RESULTS: In 19 families, haplotype analysis was compatible with linkage to the MCKD2 locus. All these kindreds were examined for mutations in the UMOD gene. In three different families, three novel heterozygous mutations in the UMOD gene were found and segregated with the phenotype in affected individuals. Mutations were found only in exon 4. CONCLUSION: We confirm the UMOD gene as the disease-causing gene for MCKD2. All three novel mutations were found in the fourth exon of UMOD, in which all mutations except one (this is located in the neighboring exon 5) published so far are located. These data point to a specific role of exon 4 encoded sequence of UMOD in the generation of the MCKD2 renal phenotype.  相似文献   

10.
Autosomal dominant medullary cystic kidney disease (ADMCKD; synonym: medullary cystic disease, MCD) is an autosomal dominant kidney disorder, sharing morphological and clinical features with recessive juvenile nephronophthisis (NPH), such as reduced urinary concentration ability and multiple renal cysts at the corticomedullary junction. While in NPH end-stage renal disease (ESRD) occurs in adolescence, ADMCKD leads to ESRD in adulthood. Recently a gene locus for ADMCKD has been localized to chromosome 1q21 in two large Cypriot families. This prompted us to examine linkage in three ADMCKD-families, using the same set of polymorphic microsatellite markers spanning the critical region on chromosome 1q21. Haplotype analysis revealed that none of the three families showed linkage to this locus, thus demonstrating evidence for genetic locus heterogeneity. Additional linkage analysis studies need to be performed in order to identify further gene loci cosegregating with this autosomal dominant kidney disorder.  相似文献   

11.
In a large Venezuelan kindred, a new type of nephronophthisis was recently identified: Adolescent nephronophthisis (NPH3) is a late-onset recessive renal cystic disorder of the nephronophthisis/medullary cystic group of diseases causing end-stage renal disease at a median age of 19 yr. With the use of a homozygosity mapping strategy, the gene (NPHP3) was previously localized to chromosome 3q22 within a critical interval of 2.4 cM. In the current study, the NPHP3 genetic region was cloned and seven genes, eight expressed sequence-tagged sites, and seven microsatellites were physically localized within the critical disease interval. By human-mouse synteny analysis based on expressed genes, synteny between the human NPHP3 locus on chromosome 3q and the pcy locus on mouse chromosome 9 was clearly demonstrated, thus providing the first evidence of synteny between a human and a spontaneous murine renal cystic disease. By fluorescence in situ hybridization the chromosomal assignment of NPHP3 to chromosome 3q21-q22 was refined. Renal pathology in NPH3 was found to consist of tubular basement membranes changes, tubular atrophy and dilation, and sclerosing tubulointerstitial nephropathy. This pathology clearly resembled findings observed in the recessive pcy mouse model of late-onset polycystic kidney disease. In analogy to pcy, renal cyst development at the corticomedullary junction was found to be an early sign of the disease. Through cloning of the NPH3 critical region and mapping of expressed genes, synteny between human NPH3 and murine pcy was established, thus generating the hypothesis that both diseases are caused by recessive mutations of homologous genes.  相似文献   

12.
BACKGROUND: A new type of nephronophthisis (NPH) has been recently identified in a large Venezuelan kindred: adolescent nephronophthisis (NPH3) causes end-stage renal disease (ESRD) at a median age of 19 years. The responsible gene (NPHP3) maps to 3q21-q22. NPH3 shares with juvenile nephronophthisis (NPH1) the same disease manifestations such as polyuria, polydipsia, and secondary enuresis. Histopathological findings consist of tubular basement membrane changes, cysts at the corticomedullary junction, and a chronic sclerosing tubulointerstitial nephropathy. The only difference is a younger age at ESRD in NPH1 (median age of 13 years) when compared with NPH3. METHODS: In order to evaluate whether there might be a fourth locus of isolated nephronophthisis, we studied eight NPH families without extrarenal disease manifestations and without linkage to the NPH1 locus (NPHP1) on chromosome 2q12-q13. ESRD was reached at ages ranging from 7 to 33 years. Individuals were haplotyped with microsatellites covering the genetic locus of NPHP3. Infantile NPH (NPH2) was excluded in all families by the clinical history and histological findings. RESULTS: In four of the examined families haplotype analysis was compatible with linkage to the NPHP3 locus. In one of these families identity by descent was observed. In contrast, in another four families linkage was excluded for NPHP3. CONCLUSION: Four NPH-families were neither linked to NPHP1 nor to NPHP3, indicating further genetic heterogeneity within the group of nephronophthisis. The finding of further genetic heterogeneity in NPH has important implications for genetic counselling.  相似文献   

13.
BACKGROUND: Nephronophthisis (NPH) is an autosomal recessively transmitted kidney disease, characterized by cyst formation at the cortico-medullary junction, and a sclerosing tubulointerstitial nephropathy. Juvenile nephronophthisis (NPH1) is the most common genetic cause of renal failure in children and maps to chromosome 2q12-q13. The responsible gene NPHP1 has been identified and encodes for nephrocystin. Not all families with NPH demonstrate linkage to that locus. METHODS: We studied six families with NPH without linkage to the NPH1 locus. In order to attempt identification of a new causative gene, the candidate genes ACE (angiotensin converting enzyme) and Bcl-2 (B cell leukaemia/lymphoma 2 gene) originating from mouse models, were examined. For the six families highly polymorphic microsatellites covering the whole candidate gene regions were haplotyped and linkage analysis was performed. RESULTS: Haplotype analyses of all families examined were incompatible with linkage of the disease status to ACE or Bcl-2. Linkage analysis excluded both candidate gene regions with a LOD-score of < -2. CONCLUSIONS: This study excluded the candidate genes ACE and Bcl-2 for NPH. Additional linkage studies need to be performed in order to identify further genes responsible for nephronophthisis.  相似文献   

14.
Senior-L?ken syndrome is an autosomal recessive disease with the main features of nephronophthisis (NPH) and Leber congenital amaurosis. The gene for adolescent nephronophthisis (NPHP3) was recently localized to chromosome 3q21-q22. The hypothesis was tested that Senior-L?ken syndrome (SLS) might localize to the same region by studying a kindred of German ancestry with extended consanguinity and typical findings of SLS. Twenty highly polymorphic markers located in the vicinity of the NPHP3 genetic region were tested. Haplotype analysis revealed homozygosity by descent in affected individuals, and linkage analysis yielded a parametric maximum multipoint logarithm of likelihood of odds (LOD) score of 3.14, thus identifying the first locus for SLS. The SLS1 locus is flanked by D3S1587 and D3S621 and contains a 14-cM interval that contains the whole critical NPHP3 region. Three additional families with SLS were studied, and evidence for genetic heterogeneity in one of them was found. Localization of a SLS locus to the region of NPHP3 opens the possibilities of both diseases arising by mutations within the same pleiotropic gene or two adjacent genes.  相似文献   

15.
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and an important cause of ESRD. Familial clustering of cases suggests genetic predisposition to this disease. Two recent genome-wide studies in IgAN have identified a major susceptibility locus on chromosome 6q22 (IGAN1) and two additional loci with suggestive linkage signals on chromosomes 4q26-31 and 17q12-22. A large four-generation family with 14 affected individuals has been clinically ascertained and excluded from linkage to these loci. A genome-wide linkage scan was performed on this family with GeneChip Mapping 10K 2.0 Arrays using an "affected-only" strategy. By nonparametric analysis, two regions of suggestive linkage (multipoint logarithm of odds [LOD] scores >2) were identified on chromosomes 2q36 and 13p12.3. By parametric analysis (assuming an autosomal dominant inheritance, a disease allele frequency of 0.001, phenocopy rate of 0.01, and penetrance of 75%), a significant linkage to chromosome 2q36 (maximum multipoint LOD score 3.47) was found. Nine simple sequence repeat markers then were genotyped in 21 members (included all of the affected individuals), and significant linkage to chromosome 2q36 over a region of 12.2 cM (maximum multipoint LOD score 3.46) was confirmed. Recombination events in two affected individuals, as detected by haplotype analysis, delineated a critical interval of approximately 9 cM (equivalent to approximately 7 Mb) between D2S1323 and D2S362. Taken together, these data provide strong evidence for a novel disease susceptibility locus for familial IgAN.  相似文献   

16.
BACKGROUND: Autosomal-dominant medullary cystic kidney disease type 2 (MCKD2) and familial juvenile hyperuricemic nephropathy (FJHN) are heritable renal diseases with autosomal-dominant transmission and shared features, including polyuria, progressive renal failure, and abnormal urate handling, which leads to hyperuricemia and gout. Mutations of the UMOD gene, disrupting the tertiary structure of uromodulin, cause MCKD2 and FJHN. METHODS: Haplotype analysis of a large Spanish family with MCKD was carried out to determinate genetic linkage to MCKD2 locus. Mutation detection was performed by direct sequencing of the UMOD gene. The level of Tamm-Horsfall protein in the urine was measured by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. RESULTS: Linkage to MCKD2 locus was demonstrated (LOD score: 4.13), and a known pathogenic uromodulin mutation was found in exon 4, corresponding to Cys255Tyr, disrupting the light chain binding domain of the protein. In this consanguineous family there were three patients homozygous for the C255Y mutation, and multiple heterozygous cases, allowing the MCKD phenotypes associated with one or two mutant alleles to be compared. The homozygous individuals survived to adulthood, although presenting an earlier onset of hyperuricemia and faster progression to end-stage renal disease than heterozygous individuals. Western analysis revealed lower levels of urine THP in one heterozygous patient compared with a normal control patient, both with normal renal function. CONCLUSION: The study shows that individuals with two UMOD mutations are viable, but they do have more severe disease on average than heterozygotes. This family sheds light on the possible disease mechanism in this disorder.  相似文献   

17.
BACKGROUND: Familial aggregation of IgA nephropathy (IgAN) suggests that genetic factors contribute to the development of this trait. Because clinical manifestations in IgAN families are often limited to episodic haematuria, large kindreds tractable to linkage analysis have been difficult to identify. METHODS: We identified a large Lebanese-Druze kindred ascertained via an index case with biopsy-documented IgAN. We performed systematic screening of 38 family members and tested linkage to reported IgAN loci. RESULTS: Screening of this family identified 16 affected individuals, including 2 individuals with biopsy-documented IgAN and 14 with chronic renal failure or abnormal urinalyses on at least three separate occasions. This kindred spanned five generations and contained five consanguineous unions. Multigenerational inheritance suggested that autosomal dominant inheritance was most likely. Phenotypic manifestations among affected individuals varied from isolated haematuria to advanced renal failure necessitating transplantation; one instance of IgAN recurrence after transplantation was also documented. Older age was associated with greater severity of disease and higher incidence of renal failure. Parametric and non-parametric analyses with 33 microsatellite markers did not reveal any evidence of linkage to reported IgAN loci on chromosomes 6q22-23, 2q36 and 4q22-31. CONCLUSIONS: We describe one of the largest multigenerational IgAN kindreds reported to date. The high incidence of renal failure among older generations suggests a significant risk of progression to renal failure. We found no evidence of linkage to known loci, suggesting that familial IgAN encompasses multiple subtypes that will require distinction based on genetic or biomarker data.  相似文献   

18.
Gibson F  Froguel P 《Diabetes》2004,53(11):2977-2983
We have carried out a detailed reexamination of the genetics of the APM1 locus and its contribution to the genetic basis of type 2 diabetes susceptibility in the French Caucasian population. The G allele of single nucleotide polymorphism -11426 in the APM1 promoter showed modest association with type 2 diabetes (odds ratio 1.44 [95% CI 1.04-1.98]; P = 0.03), providing corroborative evidence that single nucleotide polymorphisms in the APM1 promoter region contribute to the genetic risk of type 2 diabetes. A "sliding window" analysis identified haplotypes 1-1-1, 1-1-1-1, and 1-1-1-1-1 as being strongly protective against type 2 diabetes (P 相似文献   

19.
Vesicoureteral reflux (VUR) (OMIM %193000), a common cause of childhood renal failure, is strongly influenced by hereditary factors. Familial VUR most closely conforms to autosomal-dominant inheritance, but because of variable penetrance and expressivity, large multigenerational pedigrees tractable to linkage analysis have been difficult to ascertain. A single genome-wide study of familial VUR has demonstrated linkage to chromosome 1p13, with 78% locus heterogeneity. Previous studies in humans have also suggested loci on chromosomes 6p21, 10q26, and 19q13, whereas mutations in ROBO2 were recently reported in some patients with VUR. Replication of these studies was attempted in seven previously undescribed families from Italy and the United States. Simulation studies, assuming 50% locus heterogeneity, showed that these kindreds had 85% power to replicate linkage and 53% power to achieve genome-wide significance at candidate intervals. Thirty-five markers on chromosomes 1p13, 3p12, 6p21, 10q26, and 19q13 were genotyped and analysis of linkage under a variety of models was performed. Parametric analysis excluded linkage to all candidate loci under genetic homogeneity; moreover, the data did not support statistically significant linkage under models of locus heterogeneity. Similarly, nonparametric, allele-sharing analysis did not reveal any evidence of linkage at any of the loci tested. Thus, despite sufficient power, linkage of familial VUR to previously reported candidate intervals could not be replicated. These data demonstrate substantial genetic heterogeneity of VUR and suggest that mapping strategies relying on a large number of kindreds or single "loaded" pedigrees will be most effective to achieve replication or detection of linkage.  相似文献   

20.
Focal segmental glomerulosclerosis (FSGS) and Alport syndrome (AS) are two major causes of end-stage renal disease (ESRD). A few families with autosomal dominant FSGS have been reported with linkage to chromosome 19q13 or 11q22, while AS is usually linked to mutations in type IV collagen (COL4) subunit genes. A phenotype resembling AS may also be seen with myosin heavy chain-9 (MYH9) gene mutations. This study ascertained a multigeneration family (CHP-177) with clinical aspects of both FSGS and AS where we identified a new locus for the trait. A genome-wide scan was performed with 400 markers, and fine mapping was performed for chromosome 11 markers. Data were analyzed by GENEHUNTER and VITESSE under various models. CHP-177 is a 39-member kindred residing near New Delhi, India, with seven affecteds and showed male-to-male transmission. Two members had ESRD. Renal biopsies showed both FSGS lesions and thin glomerular basement membranes. Five of the affecteds also had sensorineural deafness, which involved both low and high frequency in some members. The AS loci, i.e., COL4A3/COL4A4 and MYH9 (LOD scores: -6.1 and -4.3, respectively) and FSGS loci, on 19q13 and 11q22, were excluded from linkage. A significant evidence of linkage was observed for 11q24 region, with a multipoint LOD (z-score) of 3.2 for marker D11S4464 at theta = 0. The z-1 confidence interval for the linked region spans a genetic distance of 7 cM. This study thus reports an autosomal dominant nephropathy with features of both FSGS and AS in which linkage to currently known loci for such phenotypes was excluded and a new locus on 11q24 was identified. The findings suggest further locus heterogeneity for the autosomal dominant nephropathy phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号