首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The curly tail (ct/ct) mouse mutant shows a high frequency of delay or failure of neural tube closure, and is a good model for human neural tube defects, particularly spina bifida. In a previous study we defined distinct domains of gene expression in the caudal region of non‐mutant embryos during posterior (caudal) neuropore closure (Gofflot et al. Developmental Dynamics 210 , 431–445, 1997). Here we use BrdU incorporation into S‐phase nuclei to investigate the relationship between cell proliferation and the previously described gene expression domains in ct/ct mutant embryos. The BrdU‐immunostained sections were also examined for abnormalities of tissue structure; immunohistochemical detection of perlecan (an extracellular heparan sulphate proteoglycan) was used as an indicator of neuroepithelial basement membrane structure and function. Quantitation of BrdU uptake revealed that at early stages of neurulation, cell proliferation was specifically reduced in the paraxial mesoderm of all ct/ct embryos compared with wild type controls, but at later stages (more cranial levels) it was increased. Those ct/ct embryos with enlarged posterior neuropore (indicating delay of closure) additionally showed an increased BrdU labelling index within the open neuroepithelium at all axial levels; however, this tissue was highly abnormal with respect to cell and nuclear morphology. It showed cell death and loss of cells from the apical surface, basement membrane defects including increased perlecan immunoreactivity, and increased separation from the underlying mesenchyme and notochord. These observations suggest that the mechanism of delay or failure of neuroepithelial curvature that leads to neural tube defects in curly tail embryos involves abnormalities of neuroepithelial‐mesenchymal interactions that may be initiated by abnormal cellular function within the neuroepithelium. Minor histological and proliferation abnormalities are present in all ct/ct embryos, regardless of phenotype.  相似文献   

2.
 Among a broad range of factors and mechanisms involved in the complex process of neurulation a relationship between the curvature of the craniocaudal body axis and rate of neural tube closure has been proposed, but more examples and models are needed to further substantiate the existence of this relationship. This is particularly true for mammals, where marked differences in embryonic body curvature between species exist. The rabbit embryo has virtually no curvature during the main phase of neurulation and is therefore a suitable model, but neurulation is hardly documented in this species. In the present study, therefore, neural tube closure in the rabbit embryo is presented in detail by morphological and morphometrical parameters, as well as from scanning electron microscopic investigations. At the stages of 6–8 somites, the flat neural plate transforms into a V-shaped neural groove, beginning at the rhombo-cervical level. Between the stages of 8 and 9 somites, multiple closure sites occur simultaneously at three levels: at the incipient pros-mesencephalic transition, at the incipient mes-rhombencephalic transition, and at the level of the first pairs of somites. This results in four transient neuropores. The anterior and rhombencephalic neuropores close between the stages of 9–11 somites. The mesencephalic neuropore is very briefly present. The posterior neuropore is the largest and remains longest. Its tapered (cranial) portion closes fast within somite stages 9–10. Subsequently its wide (caudal) portion closes up to a narrow slit, but further closure slows down till full closure is achieved at the 22-somite stage. In comparing rabbit neurulation with that of chick and mouse, the sequence of multiple site closure resembles that of the mouse embryo, but other important aspects of neurulation resemble those of the chick embryo. In contrast to mouse and chick, no time lag between closure at the three closure sites in the rabbit was seen. Accepted: 2 September 1997  相似文献   

3.
The aim of this study was to determine whether open lumbosacral spina bifida results from an abnormality of neural folding (primary neurulation) or medullary cord canalisation (secondary neurulation). Homozygous curly tail (ct) mouse embryos were studied as a model system for human neural tube defects. The rostral end of the spina bifida was found to lie at the level of somites 27 to 32 in over 90% of affected ct/ct embryos. Indian ink marking experiments using non-mutant embryos showed that the posterior neuropore closes, and primary neurulation is completed, at the level of somites 32 to 34. Since neurulation in mammals progresses in a craniocaudal sequence, without overlap between regions of primary and secondary neurulation, we conclude that spina bifida in ct/ct embryos arises initially as a defect of primary neurulation. The position of posterior neuropore closure in human embryos is estimated to lie at the level of the future second sacral segment indicating that in humans, as in the ct mouse, lumbosacral spina bifida usually arises as a defect of posterior neuropore closure. Cranial NTD affect females predominantly, whereas lower spinal NTD are more common in males, both in humans and ct mice. We offer an explanation for this phenomenon based on (a) differences in the effect of embryonic growth retardation on the likelihood that an embryo will develop either cranial or lower spinal NTD and (b) differences in the rate of growth and development of male and female embryos at the time of neurulation.  相似文献   

4.
Neural tube defects, including spina bifida, develop in the curly tail mutant mouse as a result of delayed closure of the posterior neuropore at 10.5 days of gestation. Affected embryos are characterized by increased ventral curvature of the caudal region. To determine whether closure of the neuropore could be affected by this angle of curvature, we experimentally enhanced the curvature of non-mutant embryos. The amnion was opened in 9.5 day embryos; after 20 h of culture, a proportion of the embryos exhibited a tightly wrapped amnion with enhanced curvature of the caudal region compared with the control embryos in which the opened amnion remained inflated. Enhanced curvature correlated with a higher frequency of embryos with an open posterior neuropore, irrespective of developmental stage within the range, 27–32 somites. Thus, within this somite range, caudal curvature is a more accurate determinant for normal spinal neurulation than the exact somite stage. Enhanced ventral curvature of the curly tail embryo correlates with an abnormal growth difference between the neuroepithelium and ventral structures (the notochord and hindgut). We experimentally corrected this imbalance by culturing under conditions of mild hyperthermia and subsequently determined whether the angle of curvature would also be corrected. The mean angle of curvature and length of the posterior neuropore were both reduced in embryos cultured at 40.5°C by comparison with control embryos cultured at 38°C. We conclude that the sequence of morphogenetic events leading to spinal neural tube defects in curly tail embryos involves an imbalance of growth rates, which leads to enhanced ventral curvature that, in turn, leads to delayed closure of the posterior neuropore.  相似文献   

5.
6.
Secondary neurulation is the morphogenetic process whereby the caudal segments of the neural tube are derived from cells in the embryonic tail bud. Comparative studies have demonstrated similar characteristics in the mechanism of secondary neurulation among tailless species, which are thought to be due to the evolutionary reduction in tail length (Hughes and Freeman, 1974). In order to explore this hypothesis further, light and scanning electron microscopy was used to study early stages of neurulation in the tail buds of hamster embryos. The golden Syrian hamster is a relatively common laboratory rodent with a reduced tail. In this species, secondary neurulation first became apparent in embryos with approximately 17 pairs of somites. This was well before closure of the posterior neuropore which occurred at the 21-somite stage. The lumen of the neural tube appeared to extend into the tail bud in an even and progressive fashion accompanied by reorientation and rearrangement of tail-bud cells. The mechanism appeared to be similar to that reported in long-tailed rodents.  相似文献   

7.
8.
Summary Primary vasculogenesis in chick embryos at the early somite stage 11–14 somites) was investigated mainly by scanning electron microscopy (SEM), with special reference to the development of primitive blood vessels such as the arteria et vena vitellina (AV, VV), aorta dorsalis (AD) and vena cardinalis (VC). After glutaraldehyde fixation, the endoderm or ectoderm was removed from the embryos to expose either the ventral (AV, VV, AD) or the dorsal (VC), vascular system. The mode of vascular formation was found to be identical in all these blood vessels, arising first in loco as isolated solid masses or cords composed of so-called angioblasts. The angioblasts at this developmental phase could be distinguished from underlying mesenchymal cells, exhibiting a relatively flat surface. The VV was recognized first on both sides of the anterior intestinal portal at the 4-somite stage, whereas the forming AD was identified on the ventral surface of the paired forming AD was identified on the ventral surface of the paired somites at the 6-somite stage, appearing almost simultaneously from the cranial to caudal somite regions. After the 8-somite stage, the AV was formed by transformation of one of the caudal plexuses spreading to the area vasculosa. In the 9-somite stage, the angioblastic cords of the VC appeared on the dorsal side of the mesoderm in the same manner as for other ventral vessels. This finding differs from the statement of a previous author that the VC is formed by longitudinal anastomosis of intersegmental diverticula of the AD.Supported in part by a Grant-in-aid for special projects in cardiovascular research from the Ministry of Education of Japan  相似文献   

9.
Neural tube defects, including spina bifida, develop in the curly tail mutant mouse as a result of delayed closure of the posterior neuropore at 10.5 days of gestation. Affected embryos are characterized by increased ventral curvature of the caudal region. To determine whether closure of the neuropore could be affected by this angle of curvature, we experimentally enhanced the curvature of non-mutant embryos. The amnion was opened in 9.5 day embryos; after 20 h of culture, a proportion of the embryos exhibited a tightly wrapped amnion with enhanced curvature of the caudal region compared with the control embryos in which the opened amnion remained inflated. Enhanced curvature correlated with a higher frequency of embryos with an open posterior neuropore, irrespective of developmental stage within the range, 27–32 somites. Thus, within this somite range, caudal curvature is a more accurate determinant for normal spinal neurulation than the exact somite stage. Enhanced ventral curvature of the curly tail embryo correlates with an abnormal growth difference between the neuroepithelium and ventral structures (the notochord and hindgut). We experimentally corrected this imbalance by culturing under conditions of mild hyperthermia and subsequently determined whether the angle of curvature would also be corrected. The mean angle of curvature and length of the posterior neuropore were both reduced in embryos cultured at 40.5°C by comparison with control embryos cultured at 38°C. We conclude that the sequence of morphogenetic events leading to spinal neural tube defects in curly tail embryos involves an imbalance of growth rates, which leads to enhanced ventral curvature that, in turn, leads to delayed closure of the posterior neuropore.  相似文献   

10.
The overall pattern of cephalic neurulation and the concomitant early development of the optic vesicles in mouse embryos were examined by scanning electron microscopy. Paraffin-sectioned specimens were also examined. The overall pattern of closure of the cephalic neural folds accords well with earlier observations of this process. The earliest indication of optic placode formation was seen in histological sections of embryos at the 4-ysomite stage, while optic pit formation was first observed at the 5- to 6-somite stage. The upper halves of the optic vesicles were formed in 10- to 15-hsomite embryos by the fusion of the neural folds at the junction between the mesencephalon and prosencephalon, while closure of the lower halves was associated with the closure of the rostral neuropore, and was usually completed by about the 20-somite stage. By the 25- to 30-somite stage, a rapid increase in the volume of the forebrain was observed, so that the optic vesicles were displaced laterally. An overall increase in the volume of the optic vesicles and decrease in the diameter of the optic stalks were also observed at this time. This account of cephalic neurulation and optic organogenesis provides useful baseline data relevant to the study of the normal early development of the mouse. A comparison is made between similar events in the rat, the hamster, and the human embryo.  相似文献   

11.
Summary Twenty-four embryos of stage 12 (26 days) were studied in detail and graphic reconstructions of five of them were prepared. The characteristic features of this stage are 21–29 pairs of somites, incipient or complete closure of the caudal neuropore, and the appearance of upper limb buds. The caudal neuropore closes during stage 12, generally when 25 somititc pairs are present. The site of final closure is at the level of future somite 31, which corresponds to the second sacral vertebral level. Non-closure of the neuropore may be important in the genesis of spina bifida aperta at low levels. The primitive streak probably persists until the caudal neuropore closes, when it is replaced by the caudal eminence or end-bud (Endwulst oder Rumpfknospe). The caudal eminence, which appears at stage 9, gives rise inter alia to hindgut, notochord, caudal somites, and the neural cord. The material for somites 30–34 (which appear in stage 13) is laid down during stage 12, and its absence would be expected to result in sacral agenesis. Aplasia of the caudal eminence results in cloacal deficiency and various degrees of symmelia.The junction of primary and secondary development (primäre und sekundäre Körperentwicklung) is probably at the site of final closure of the caudal neuropore. Secondary neurulation begins during stage 12. The cavity of the already formed spinal cord extends into the neural cord, and isolated spaces are not found within the neural cord. Primary and secondary neurulation are probably coextensive with primary and secondary development of the body, respectively. The telencephalon medium has enlarged two mesencephalic segments (M1 and M2) are distinguishable, and rhombomere 4 is reduced. The sulcus limitans is detectable in the spinal cord and hindbrain (RhD), and in the mesencephalon and diencephalon, where it extends as far rostrally as the optic sulcus in D1. A marginal layer is appearing in the rhombencephalon and mesencephalon. The first nerve fibres are differentiating, chiefly within the hindbrain (from the nucleus of the lateral longitudinal tract). Optic neural crest is at its maximum, and the otic vesicle is giving crest cells to ganglion 7/8. Neural crest continues to develop in the brain and contributes to cranial ganglia 5, 7/8, and 10/11. The spinal crest extends as far caudally as somites 18–19 but shows no subdivision into ganglia yet. Placodal contribution to the trigeminal ganglion is not certain at stage 12. Such a contribution to ganglion 7/8 is not unlikely. Involvement of neural crest in the formation of the derivatives of pharyngeal arches 1 and 2 is possible but has not yet been confirmed in the human embryo.Supported by research grant No. HD-16702, Institute of Child Health and Human Development, National Institutes of Health (USA)  相似文献   

12.
Summary Head-fold stage rat embryos (9.5 days of gestation) were cultured for 48 h in rat serum with or without 0.8 M 5-azacytidine. Incomplete closure of the cephalic neural tube was observed in 5-azacytidine-treated embryos cultured for 48 h (25-somite stage). Control embryos showed complete fusion of cephalic neural folds at 33 h (16-somite stage) in culture. Drug administration or removal experiments revealed that embryos were sensitive to 5-azacytidine during 6–12 h of culture (three to five somite stages). Electron microscopical studies indicated that the arrangement and fine structure of cephalic neuroepithelial cells were almost the same in control and treated embryos. There was no significant difference in DNA and protein contents between control and treated embryos cultured for 36 h. Immunocytochemical observations using 5-methylcytosine-specific antibody revealed that the staining of neuroepithelial cells in the median part of the transversely sectioned cephalic neural plate, and of mesenchymal cells near the apices of the plate, was suppressed by 5-azacytidine. These results suggest that DNA methylation of these cells plays an important role in closure of the cephalic neural tube.  相似文献   

13.
14.
Summary The embryonic development during the period from 1 to 12 pairs of somites was observed in an insectivore species, the house shrew (Suncus murinus), which has been bred within a closed colony. Embryos were staged by the number of somite pairs. Each stage was punctuated at every addition of three pairs of somites and numbered after the Carnegie system. The first somite became apparent between 8 and 9.0 days after fertilization, and the 12th somite appeared between 9.5 and 10.0 days. The rate of somite formation was one pair in every 3–4 h on average. The embryonic events during this period were as follows: 1. From the beginning of stage 9, the embryonic body consistently displayed a kyphosis, and as development progressed, the caudal portion of the embryo spiralled clockwise. 2. The first and second pharyngeal arches formed; their development was precocious among mammalian embryos in relation to somitic count. 3. The segmental pattern of the neural fold was similar to that of laboratory rodents and primates. The first fusion of the cranial neural folds took place in the occipital somite region, the second fusion in the diencephalic region, and the third at the end of the neural plate, thus leaving two neuropores in the cephalic region. 4. The timing of appearance of the optic sulcus was similar to that of human embryos but was delayed in comparison with that of laboratory rodents. 5. The heart always showed a more advanced state than that of other mammalian embryos. From the beginning of stage 9, an unpaired endocardial tube was seen in the bulbo-ventricular region, and deflection from a symmetrical appearance soon took place. 6. The differentiation of foregut was also precocious, and the thyroid and respiratory primordia appeared earlier than in other mammals. The present study emphasizes that there are considerable variations in timing and manner of morphogenesis among early mammalian embryos.  相似文献   

15.
The lateral musculature in the midbody region of the teleost, Brachydanio rerio, was examined by light and electron microscopy in the adult and six developmental stages. Two main divisions of the adult lateral musculature are described: (1) a superficial portion composed of small, dark fibers with high fat content and succinic dehydrogenase (SDH) activity; and (2) a deep portion composed principally of larger, pale, “deep fibers” showing little SDH activity and containing little fat. Some “intermediate fibers” are also present in the deep portion near the horizontal septum. Myofibrils of all cell types appear ultrastructurally similar. A general outline of myotomal differentiation has been established for the midbody somites. Myogenesis begins at the medial surface of the somite between the 20- and 25-somite stages and progresses laterally. Shortly before hatching, the myotome contains two structurally dissimilar types of young muscle cells. The appearance of these two muscle cell populations in larvae and fry supports the hypothesis that they develop into the superficial and deep portions of the adult lateral musculature. The intermediate fiber population is present by 2 1/2 months. The most lateral cells of the somite form a layer of flattened cells covering the lateral myotomal surface in the 33-somite embryo, and are considered to form the dermatome in this species.  相似文献   

16.
17.
Neurulation in the mouse: manner and timing of neural tube closure   总被引:2,自引:0,他引:2  
The manner and timing of neural fold fusion in primary neurulation were studied in 1,575 normal ICR mouse embryos by using binocular dissecting, light, and scanning electron microscopy. The initial fusion of apposing neural folds occurred at the level of the intermediate point between the third and fourth somites (i.e., in the caudal myelencephalon) and proceeded both rostrally and caudally. A second fusion occurred at what was originally the rostral end of the neural plate and proceeded rostrodorsally. A third fusion occurred in the caudal diencephalon and proceeded both rostrally and caudally. This was followed by complete closure of the telencephalic neuropore at the midpoint of the telencephalic roof and then complete closure of the metencephalic neuropore at the rostral part of the metencephalic roof. A fourth fusion occurred at what was originally the caudal end of the neural plate and proceeded rostrally. Finally, the caudal neuropore completely closed at the level of the caudal end of the future 33rd somite.  相似文献   

18.
Controversy has surrounded the process of resegmentation of cervico-occipital somites. We have reinvestigated this topic by grafting single somites of quail embryos homotopically into chick embryos. Somites one to five contribute to the skull. Somites one and two contribute to the parasphenoid, which develops by direct ossification in a non-segmental fashion. All cartilaginous derivatives of the somites are segmental. Somite two forms a stripe of cells in the basioccipital, exoccipital and supraoccipital. Somites three to five give rise to the subsequent caudal parts of the basioccipital and exoccipital. Somite five forms the first motion segment including the occipital condyle, the cranial part of the atlas and the tip of the dens axis. Therefore, the border between head and neck is in the centre of somite five, and corresponds to the expression boundary of Choxb-3. Somite six forms the caudal part of the atlas and the cranial part of the axis. Somites two to eight all contribute to the cranio-cervical muscles with the exception of the Mm. rectus capitis dorsalis and ventralis and the M. biventer cervicis, which do not receive contributions from somite two. In contrast, the M. cucullaris capitis is exclusively formed by myogenic cells from somite two, which parallels its exclusive innervation by the accessory nerve. Our data confirm the segmental nature of the occiput, and show that resegmentation is a very regular process involving all except the four cranialmost somites. Except for somites one and two, all of the somites contribute to the muscles located at the appropriate levels. Accepted: 5 July 2000  相似文献   

19.
The susceptibility of females to anencephaly is well established and has been suggested to result from a slower rate of growth and development of female embryos during cranial neurulation. We have tested this hypothesis by measuring the rates of growth and development, both in utero and in vitro, of male and female embryos of the curly tail (ct) mutant mouse strain, in which cranial neural tube defects occur primarily in females. Embryonic growth was assessed by increase in protein content, while development progression was judged from increase in somite number and morphological score. Embryos were sexed by use of the polymerase chain reaction to amplify a DNA sequence specific to the Y chromosome, and by sex chromatin analysis. We find that, during neurulation (between 8.5 and 10.5 days of gestation), males are advanced in growth and development relative to their female litter mates, but that the rates of growth and development do not differ between the sexes during this period. We conclude that rate of embryonic growth and development is unlikely to determine susceptibility to cranial neural tube defects. It seems more likely that male and female embryos differ in some specific aspect(s) of the neurulation process that increases the susceptibility of females to development of anencephaly.  相似文献   

20.
Cell‐type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild‐type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity. Developmental Dynamics 239:548–558, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号