首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background:

Molecules that are highly expressed in tumour endothelial cells (TECs) may be candidates for specifically targeting TECs. Using DNA microarray analysis, we found that the lysyl oxidase (LOX) gene was upregulated in TECs compared with its expression in normal endothelial cells (NECs). LOX is an enzyme that enhances invasion and metastasis of tumour cells. However, there are no reports on the function of LOX in isolated TECs.

Methods:

TECs and NECs were isolated to investigate LOX function in TECs. LOX inhibition of in vivo tumour growth was also assessed using β-aminopropionitrile (BAPN).

Results:

LOX expression was higher in TECs than in NECs. LOX knockdown inhibited cell migration and tube formation by TECs, which was associated with decreased phosphorylation of focal adhesion kinase (Tyr 397). Immunostaining showed high LOX expression in human tumour vessels in vivo. Tumour angiogenesis and micrometastasis were inhibited by BAPN in an in vivo tumour model.

Conclusion:

LOX may be a TEC marker and a possible therapeutic target for novel antiangiogenic therapy.  相似文献   

2.

Background:

We isolated tumour endothelial cells (TECs), demonstrated their abnormalities, compared gene expression profiles of TECs and normal endothelial cells (NECs) by microarray analysis and identified several genes upregulated in TECs. We focused on the gene encoding biglycan, a small leucine-rich repeat proteoglycan. No report is available on biglycan expression or function in TECs.

Methods:

The NEC and TEC were isolated. We investigated the biglycan expression and function in TECs. Western blotting analysis of biglycan was performed on sera from cancer patients.

Results:

Biglycan expression levels were higher in TECs than in NECs. Biglycan knockdown inhibited cell migration and caused morphological changes in TECs. Furthermore, immunostaining revealed strong biglycan expression in vivo in human tumour vessels, as in mouse TECs. Biglycan was detected in the sera of cancer patients but was hardly detected in those of healthy volunteers.

Conclusion:

These findings suggested that biglycan is a novel TEC marker and a target for anti-angiogenic therapy.  相似文献   

3.
Tumor blood vessels play important roles in tumor progression and metastasis. Thus, targeting tumor blood vessels is an important strategy for cancer therapy. Tumor endothelial cells (TECs) are the main targets of anti‐angiogenic therapy. Although tumor blood vessels generally sprout from pre‐existing vessels and have been thought to be genetically normal, they display a markedly abnormal phenotype, including morphological changes. The degree of angiogenesis is determined by the balance between the positive and negative regulating molecules that are released by tumor and host cells in the microenvironment. Reportedly, tumor blood vessels are heterogeneous with TECs differing from normal endothelial cells (in contrast to the conventional view). We recently compared characteristics of different TECs isolated from highly and low metastatic tumors. We found TECs from highly metastatic tumors had more proangiogenic phenotypes than those from low metastatic tumors. Elucidating the variety of TEC phenotypes and identifying TEC molecular signatures should lead to more complete understanding of the mechanisms of tumor progression, discovery of new therapeutic targets, and development of biomarkers. This review considers current studies on TEC heterogeneity and discusses the therapeutic implications of these findings.  相似文献   

4.
Previous studies have shown that increased levels of chemokine receptor CXCR7 are associated with the increased invasiveness of prostate cancer cells. We now show that CXCR7 expression is upregulated in VCaP and C4‐2B cells after enzalutamide (ENZ) treatment. ENZ treatment induced apoptosis (sub‐G1) in VCaP and C4‐2B cells, and this effect was further increased after combination treatment with ENZ and CCX771, a specific CXCR7 inhibitor. The levels of p‐EGFR (Y1068), p‐AKT (T308) and VEGFR2 were reduced after ENZ and CCX771 combination treatment compared to single agent treatment. In addition, significantly greater reductions in migration were shown after combination treatment compared to those of single agents or vehicle controls, and importantly, similar reductions in the levels of secreted VEGF were also demonstrated. Orthotopic VCaP xenograft growth and subcutaneous MDA133‐4 patient‐derived xenograft (PDX) tumor growth was reduced by single agent treatment, but significantly greater suppression was observed in the combination treatment group. Although overall microvessel densities in the tumor tissues were not different among the different treatment groups, a significant reduction in large blood vessels (>100 μm2) was observed in tumors following combination treatment. Apoptotic indices in tumor tissues were significantly increased following combination treatment compared with vehicle control‐treated tumor tissues. Our results demonstrate that significant tumor suppression mediated by ENZ and CXCR7 combination treatment may be due, in part, to reductions in proangiogenic signaling and in the formation of large blood vessels in prostate cancer tumors.  相似文献   

5.
Tumor angiogenesis is necessary for solid tumor progression and metastasis. Cyclooxygenase (COX)-2 is known to play an important role in cancer growth and invasion, and it activates the signaling pathways controlling cell proliferation, migration, apoptosis, and angiogenesis. COX-2 is reported to be expressed in many cancer cells. Several studies have reported successful treatment of cancer cells with COX-2 inhibitors (COX-2is). However, the effect of COX-2 inhibition on the tumor endothelium remains to be elucidated. Our study shows that COX-2 is expressed in the vasculature of surgically resected human tumors. To investigate the effects of COX-2 inhibition on the tumor endothelium in vitro, we isolated tumor endothelial cells (TECs) from human melanoma and oral carcinoma xenografts in mice, in which we confirmed that tumor growth was suppressed by inhibiting angiogenesis with the COX-2is NS398. COX-2 mRNA was upregulated in TECs compared to normal endothelial cells (NECs). Cell migration and proliferation were suppressed by NS398 in TECs but not in NECs. The effects of NS398 in vivo were consistent with the in vitro results. The number of CD133+ /vascular endothelial growth factor receptor-2+ cells in circulation was significantly suppressed by COX-2 inhibition. In addition, the number of progenitor marker-positive cells decreased in the tumor blood vessels after COX-2i treatment, which suggests that the homing of progenitor cells into the tumor was also blocked. We conclude that NS398 specifically targets both TECs and vascular progenitor cells without affecting NECs.  相似文献   

6.
Emerging evidence suggests that the chemokine CXCL12 and its receptor CXCR4, which are expressed by glioma stem cells (GSCs), play an important role in tumorigenesis. To provide evidence for establishing a new therapy targeting the CXCL12/CXCR4 pathway, we investigated whether CXCL12 secreted from GSCs contributed to their proliferation and promoted angiogenesis in murine GSCs. Angiogenetic functions and proliferation of GSCs with or without CXCL12 inhibitors were evaluated in an in vitro model using tube formation assays, RT-PCR, and proliferation, as well as in an in vivo syngenic model. In endothelial culture, the morphology and gene expression of GSCs changed from stem cell-like characteristics to endothelial cell-like features. CXCL12 expression increased in endothelial cell-like GSCs. CXCL12 blockage with siRNA or shRNA markedly inhibited cell proliferation in vitro. CXCL12 knockdown with shRNA also inhibited tumor growth in vivo. On the other hand, CXCL12/CXCR4 blockage affected neither tube formation in vitro nor angiogenesis in vivo. The CXCL12 secreted from GSCs (autocrine/paracrine CXCL12) regulates their proliferation, but probably not angiogenesis.  相似文献   

7.
Vascular endothelial growth factor (VEGF) A is a major promoter of tumor angiogenesis and a prime target of antiangiogenic cancer therapy. To examine whether endothelial cell signaling might provide histological biomarkers of angiogenesis and VEGF activity in vivo, normal mouse organs and multiple tumor models were studied immunohistochemically for endothelial expression of activated ERK, STAT3 and AKT. Phospho(p)-ERK and p-STAT3 expression was negligible in the endothelia of normal organs but was significantly elevated in tumor endothelium. p-AKT was present at significant and comparable levels in both tumor and normal endothelia. In K1735 tumors induced to express more VEGF, endothelial p-ERK, p-STAT3 and p-AKT increased accompanied by signs of accelerated angiogenesis. Treatment of K1735 and Colo-205 tumors with the VEGF inhibitor, VEGF Trap (aflibercept), decreased tumor endothelial p-ERK, p-STAT3 and p-AKT expression accompanied by signs of antiangiogenic effect. These results show that endothelial p-ERK and p-STAT3 (but not p-AKT) distinguish tumor from normal vessels and that the presence of these two signaling intermediates may be useful indicators of tumor angiogenic activity and angiogenesis inhibition by VEGF antagonists.Key words: VEGF, VEGF Trap, endothelial cells, signal transduction, angiogenesis, biomarker, p-ERK, p-STAT3, p-AKT  相似文献   

8.
9.
Ovarian carcinomas have a poor prognosis, often associated with multifocal i.p. dissemination accompanied by intense neovascularization. To examine tumor angiogenesis in the tumor microenvironment, we studied malignant ascites and tumors of patients with untreated ovarian carcinoma. We observed that malignant ascites fluid induced potent in vivo neovascularization in Matrigel assay. We detected a sizable amount of vascular endothelial cell growth factor (VEGF) in malignant ascites. However, pathologic concentration of VEGF is insufficient to induce in vivo angiogenesis. We show that ovarian tumors strongly express CXC chemokine stromal-derived factor (SDF-1/CXCL12). High concentration of CXCL12, but not the pathologic concentration of CXCL12 induces in vivo angiogenesis. Strikingly, pathologic concentrations of VEGF and CXCL12 efficiently and synergistically induce in vivo angiogenesis. Migration, expansion, and survival of vascular endothelial cells (VEC) form the essential functional network of angiogenesis. We further provide a mechanistic basis for explaining the interaction between CXCL12 and VEGF. We show that VEGF up-regulates the receptor for CXCL12, CXCR4 expression on VECs, and synergizes CXCL12-mediated VEC migration. CXCL12 synergizes VEGF-mediated VEC expansion and synergistically protects VECs from sera starvation-induced apoptosis with VEGF. Finally, we show that hypoxia synchronously induces tumor CXCL12 and VEGF production. Therefore, hypoxia triggered tumor CXCL12 and VEGF form a synergistic angiogenic axis in vivo. Hypoxia-induced signals would be the important factor for initiating and maintaining an active synergistic angiogeneic pathway mediated by CXCL12 and VEGF. Thus, interrupting this synergistic axis, rather than VEGF alone, will be a novel efficient antiangiogenesis strategy to treat cancer.  相似文献   

10.
Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer‐binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT‐PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.  相似文献   

11.
Vascular endothelial growth factor (VEGF) A is a major promoter of tumor angiogenesis and a prime target of antiangiogenic cancer therapy. To examine whether endothelial cell signaling might provide histological biomarkers of angiogenesis and VEGF activity in vivo, normal mouse organs and multiple tumor models were studied immunohistochemically for endothelial expression of activated ERK, STAT3, and AKT. Phospho(p)-ERK and p-STAT3 expression was negligible in the endothelia of normal organs but was significantly elevated in tumor endothelium. p-AKT was present at significant and comparable levels in both tumor and normal endothelia. In K1735 tumors induced to express more VEGF, endothelial p-ERK, p-STAT3 and p-AKT increased accompanied by signs of accelerated angiogenesis. Treatment of K1735 and Colo-205 tumors with the VEGF inhibitor, VEGF Trap (aflibercept), decreased tumor endothelial p-ERK, p-STAT3 and p-AKT expression accompanied by signs of antiangiogenic effect. These results show that endothelial p-ERK and p-STAT3 (but not p-AKT) distinguish tumor from normal vessels and that the presence of these two signaling intermediates may be useful indicators of tumor angiogenic activity and angiogenesis inhibition by VEGF antagonist.  相似文献   

12.
The chemokine receptor CXCR2 and its ligands CXCL1, CXCL2 and CXCL5 play an important role in homing of tumor‐associated neutrophils (TANs) into developing tumors. TANs are known to support the development of blood vessels in growing solid tumors, hence contributing to tumor growth. Here, we show that the migration of neutrophils is influenced by endogenous interferon‐beta (IFN‐β) via regulation of such chemokines and their receptor. We could demonstrate that CXCL1 and CXCL2 gradients are formed in tumor‐bearing mice, i.e., low chemokine level in bone marrow (BM) and high level in the tumor. This supports migration of neutrophils into the tumor. Moreover, expression of CXCR2 was highest on neutrophils from BM and lowest in TANs. Importantly, although IFN‐β appears to have only a minor influence on the expression of CXCR2, it strongly regulates the CXCR2 ligands. In the absence of endogenous IFN‐β, they were expressed significantly higher in tumor‐infiltrating neutrophils. Treatment of such neutrophils from tumor‐bearing Ifnb1?/? mice with recombinant IFN‐β downregulated CXCR2 ligand expression to wild‐type levels. This explains the reduced migration of neutrophils into tumors and the diminished tumor angiogenesis in IFN‐β‐sufficient mice. Our results add a novel functional aspect of the type I IFN system as effector molecules of natural cancer surveillance and open interesting possibilities for antineutrophil therapies against cancer.  相似文献   

13.
CXCR1 and CXCR2 together with cognate chemokines are significantly upregulated in a number of cancers, where they act as key regulators of tumor cell proliferation, metastasis, and angiogenesis. We have previously reported a mutant protein of CXCL8/Interleukin-8, CXCL8(3–72)K11R/G31P (G31P), which can act as a selective antagonist towards CXCR1/2 with therapeutic efficacy in both inflammatory diseases and malignancies. In this study, we investigated the effect of this ELR-CXC chemokine antagonist G31P on human non-small cell lung cancer cells and lung tumor progression in an orthotopic xenograft model. We report increased mRNA levels of CXCR1 and CXCR2 in human lung cancer tissues compared to normal counterparts. Expression levels of CXCR1/2 cognate ligands was determined by ELISA. CXCR1/2 receptor antagonism via G31P leads to decreased H460 and A549 cell proliferation and migration in a dose-dependent manner. G31P also enhanced apoptosis in lung cancer cells as determined by elevated levels of cleaved PARP, Caspase-8, and Bax, together with a reduced expression of the anti-apoptotic protein Bcl-2. In an in vivo orthotopic xenograft mouse model of human lung cancer, G31P treatment suppressed tumor growth, metastasis, and angiogenesis. At the molecular level, G31P treatment was correlated with decreased expression of VEGF and NFкB-p65, in addition to reduced phosphorylation of ERK1/2 and AKT. Our results suggest that G31P blockage of CXCR1 and CXCR2 can inhibit human lung cancer cell growth and metastasis, which offers potential therapeutic opportunities.  相似文献   

14.
Tumor blood vessels provide nutrition and oxygen to the tumor, resulting in tumor progression. They also act as gatekeepers, inducing tumor metastasis. Thus, targeting tumor blood vessels is an important strategy in cancer therapy. Tumor endothelial cells (TECs), which line the inner layer of blood vessels of the tumor stromal tissue, are the main targets of anti-angiogenic therapy. Because new tumor blood vessels generally sprout from pre-existing vasculature, they have been considered to be the same as normal blood vessels. However, tumor blood vessels demonstrate a markedly abnormal phenotype that includes several important morphological changes. The degree of angiogenesis is determined by the balance between the angiogenic stimulators and inhibitors released by the tumor and host cells. Recent studies have revealed that TECs also exhibit altered characteristics which depend on the tumor microenvironment. Here, we review recent studies on TEC abnormalities and heterogeneity with respect to tumor progression and consider their therapeutic implications.  相似文献   

15.
Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. We developed a novel VEGF blockade system using RNA interference. The small interfering RNA (siRNA) targeting human VEGF almost completely inhibited the secretion of VEGF in a human prostate cancer cell line, PC-3, whereas the control scramble siRNA showed no effects. The VEGF siRNA with atelocollagen dramatically suppressed tumor angiogenesis and tumor growth in a PC-3 s.c. xenograft model. Atelocollagen provided a beneficial delivering means by which stabilization and efficient transfection of the siRNA injected into the tumors were achieved.  相似文献   

16.

Introduction  

CXCL12-CXCR4 signaling has been shown to play a role in breast cancer progression by enhancing tumor growth, angiogenesis, triggering cancer cell invasion in vitro, and guiding cancer cells to their sites of metastasis. However, CXCR7 also binds to CXCL12 and has been recently found to enhance lung and breast primary tumor growth, as well as metastasis formation. Our goal was to dissect the contributions of CXCR4 and CXCR7 to the different steps of metastasis - in vivo invasion, intravasation and metastasis formation.  相似文献   

17.
CXCR1 and CXCR2 are receptors for CXCL‐8 and are differentially expressed on melanoma and endothelial cells. In this study, we determined the functional role of these receptors in melanoma progression. We stably knock‐down the expression of CXCR1 and/or CXCR2 in A375‐SM (SM; high metastatic) human melanoma cells by short‐hairpin RNA transfection. Cell proliferation, migration, invasion, ERK phosphorlyation and cytoskeletal rearrangements were carried out in vitro. In vivo growth was evaluated using murine subcutaneous xenograft model. Our data demonstrate that knock‐down of CXCR1 and/or CXCR2 expression, inhibited melanoma cell proliferation, survival, migration and invasive potential in vitro. Moreover, we also observed inhibition of ERK phosphorylation and cytoskeltal rearrangement in SM‐shCXCR1, SM‐shCXCR2 and SM‐shCXCR1/2 cells. Furthermore, when SM‐shCXCR1 or SM‐shCXCR2 cells implanted in nude mice, tumor growth, proliferation and microvessel density was significantly inhibited as compared to SM‐control cells. In addition, we observed a significant increase in melanoma cell apoptosis in SM‐shCXCR1 and SM‐shCXCR2 tumors compared to SM‐control tumors. Together, these data demonstrate that CXCR1 and CXCR2 expression play a critical role in human melanoma tumor progression and, functional blockade of CXCR1 and CXCR2 could be potentially used for future therapeutic intervention in malignant melanoma.  相似文献   

18.
Norcantharidin (NCTD), the demethylated form of Cantharidin, a reagent isolated from blister beetles, has been shown to be an anti‐tumor agent capable of inhibiting proliferation as well as inducing apoptosis in many cancer cell lines. However, little is known about the effect of NCTD in tumor angiogenesis. In this study, we demonstrated that NCTD inhibited vascular endothelial growth factor (VEGF)‐induced cell proliferation, migration, invasion, and capillary tube formation of primary human umbilical vein endothelial cells (HUVECs) in a dose‐dependent manner. Furthermore, we showed NCTD inhibited tumor growth and angiogenesis of colon cancer cells (LOVO) in vivo. We then mechanistically described that NCTD specifically abrogated the phosphorylation/activation of vascular endothelial growth factor receptor‐2 (VEGFR2)/MEK/ERK pathway kinases, with little effect on the phosphorylation of p38 MAPK and Akt, and on Cox‐2 expression. In summary, our results indicate that NCTD is a potential inhibitor of tumor angiogenesis by blocking VEGFR2/MEK/ERK signaling.  相似文献   

19.
Platelet factor-4 (CXCL4/PF-4) is the first chemokine identified to have several biological functions. Notably, CXCL4/PF-4 inhibits endothelial cell proliferation and migration, leading to suppression of angiogenesis. Since angiogenesis is essential for the growth of most primary tumors and their subsequent metastases, it is a target for cancer therapy; due to its multiple functions, CXCL4/PF-4 is a potential clinical anti-tumor agent. This report reviews the mechanisms of CXCL4/PF-4 angiostatic activity, including interference with angiogenic growth factors bFGF-2 and VEGF165, activation of CXCR3B, interactions with integrins, interference with cell cycle, interactions with factors such as VEGF121 and CXCL8/IL-8, and derived molecules of CXCL4/PF-4 with angiostatic and anti-tumoral activities in different models in vivo or in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号