首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Objectives: This study aims to analyze mechanisms for facilitating the uptake of new medical devices in the German system of hospital reimbursement, focusing on the example of coronary stents, including (1) trends in their coding, (2) associated diagnosis‐related group (DRG) payments, (3) their integration in the German DRG (G‐DRG) system, and (4) their diffusion within the inpatient sector. Methods: Published and gray literature provide the basis for analyzing the system of hospital reimbursement. Data on coronary stents were obtained from various regulatory and government bodies and examined in a longitudinal fashion. Results: Although German Procedure Classification (Operationen‐ und Prozedurenschlüssel; OPS) codes were created for a range of stent technologies between 2004 and 2009, the regular system of G‐DRG reimbursement does not distinguish between different stents by means of unique DRGs. Instead, supplementary payments or extrabudgetary payments are used to ensure that newer technologies are reimbursed adequately. The limitations of extrabudgetary payments restrict the use of some devices to a small proportion of patients. Data on the diffusion of different stents show that factors other than the reimbursement regime likely also play a role in the frequency with which certain technologies are used. Bare metal stents currently account for most stent implantation procedures in Germany, followed by drug‐eluting stents. Conclusion: The current system of G‐DRG reimbursement and of extrabudgetary payments ensures that even the most recently developed technologies can be used in the German inpatient sector. Nevertheless, certain technologies may not be reaching the broad patient population. (J Interven Cardiol 2010;23:546–553)  相似文献   

4.
Valvular heart disease is associated with significant morbidity and mortality and often the result of congenital malformations. However, the prevalence is increasing in adults not only because of the growing aging population, but also because of improvements in the medical and surgical care of children with congenital heart valve defects. The success of the Human Genome Project and major advances in genetic technologies, in combination with our increased understanding of heart valve development, has led to the discovery of numerous genetic contributors to heart valve disease. These have been uncovered using a variety of approaches including the examination of familial valve disease and genome-wide association studies to investigate sporadic cases. This review will discuss these findings and their implications in the treatment of valvular heart disease.  相似文献   

5.
6.
The development of new technology is often anticipated with great enthusiasm by physicians involved in the evaluation of new therapies. There is a countervailing view that rapid diffusion of new technology into practice is a significant contributing factor to the rapid rate of rise of health care spending in the United States. The central argument is not that technology should not be developed; rather, that technology should be developed and evaluated according to carefully derived scientific criteria and that payment policy should not create an unintended discrimination in access to new therapies. It is essential that physicians who are involved in the development of new technologies understand the reasons for concern about technology, the requirements for evaluation of new devices, and the payment policies related to the use of new technology. (J Interven Cardiol 1996;9:179–183)  相似文献   

7.
8.
New medical devices with anti-inflammatory properties are critical to prevent inflammatory processes and infections in medical/surgical procedures. In this work, we present a novel functionalization of silicone for medical use with a polymeric prodrug and a thermosensitive polymer, by graft polymerization (gamma rays), for the localized release of salicylic acid, an analgesic, and anti-inflammatory drug. Silicone rubber (SR) films were functionalized in two stages using graft polymerization from ionizing radiation (60Co). The first stage was grafting poly(N-vinylcaprolactam) (PNVCL), a thermo-sensitive polymer, onto SR to obtain SR-g-PNVCL. In the second stage, poly(2-methacryloyloxy-benzoic acid) (P2MBA), a polymeric prodrug, was grafted to obtain (SR-g-PNVCL)-g-P2MBA. The degree of functionalization depended on the concentrations of monomers and the irradiation dose. The films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM–EDX), thermogravimetric analysis (TGA), and contact angle. An upper critical solution temperature (UCST) of the films was demonstrated by the swelling degree as a temperature function. (SR-g-PNVCL)-g-P2MBA films demonstrated hydrolysis-mediated drug release from the polymeric prodrug, pH, and temperature sensitivity. GC–MS confirmed the presence of the drug (salicylic acid), after polymer hydrolysis. The concentration of the drug in the release media was quantified by HPLC. Cytocompatibility and thermo-/pH sensitivity of functionalized medical silicone were demonstrated in cancer and non-cancer cells.  相似文献   

9.
Under the Biologics Price Competition and Innovation Act (BPCI Act), a biological product may be demonstrated to be “biosimilar” if data show that, among other things, the product is “highly similar” to an already-approved biological product. Biosimilar insulins have the potential to reduce ever growing costs associated with insulin treatment by allowing competition. In this article, we describe the current drug development and regulatory paths for biosimilar insulins. Most likely basis of market approval for biosimilar insulins by the US Food and Drug Administration (FDA) and guidance for developing insulin biosimilars by European Medicines Agency (EMA) are discussed in detail. Currently, no product specific biosimilar FDA guidance for insulin biosimilarity assessment exists. We propose efficient and cost-effective drug development and potential regulatory paths based on scientific justification. In addition, novel trial designs for demonstrating interchangeability between the biosimilar and the reference insulin products are presented.  相似文献   

10.
11.
12.
13.
14.
Chitosan (Chi) and 77KS, a lysine-derived surfactant, form polyelectrolyte complexes that reverse their charge from positive to negative at higher 77KS concentrations, forming aggregates that have been embedded with amoxicillin (AMOX). Dispersion of this complex was used to coat polydimethylsiloxane (PDMS) films, with an additional layer of anionic and hydrophilic hyaluronic acid (HA) as an outer adsorbate layer to enhance protein repulsion in addition to antimicrobial activity by forming a highly hydrated layer in combination with steric hindrance. The formed polysaccharide-based bilayer on PDMS was analyzed by water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and surface zeta (ζ)-potential. All measurements show the existence and adhesion of the two layers on the PDMS surface. Part of this study was devoted to understanding the underlying protein adsorption phenomena and identifying the mechanisms associated with biofouling. Thus, the adsorption of a mixed-protein solution (bovine serum albumin, fibrinogen, γ-globulin) on PDMS surfaces was studied to test the antifouling properties. The adsorption experiments were performed using a quartz crystal microbalance with dissipation monitoring (QCM-D) and showed improved antifouling properties by these polysaccharide-based bilayer coatings compared to a reference or for only one layer, i.e., the complex. This proves the benefit of a second hyaluronic acid layer. Microbiological and biocompatibility tests were also performed on real samples, i.e., silicone discs, showing the perspective of the prepared bilayer coating for medical devices such as prostheses, catheters (balloon angioplasty, intravascular), delivery systems (sheaths, implants), and stents.  相似文献   

15.
Invasive device-based therapies for drug-resistant hypertension are undergoing active clinical investigation. The two approaches are 1) permanent implantation of a carotid baroreceptor pacemaker and 2) radiofrequency catheter ablation of the renal nerves. Both are designed to reduce the sympathetic nervous system component of drug-resistant hypertension. Several excellent comprehensive articles have reviewed each of these devices separately. In contrast, this brief article aims to provide a conceptual framework for evaluating the premise, promise, and potential limitations of both invasive antihypertensive therapies.  相似文献   

16.
The increase in longevity worldwide has intensified the use of different types of prostheses for the human body, such as those used in dental work as well as in hip and knee replacements. Currently, Ti-6Al-4V is widely used as a joint implant due to its good mechanical properties and durability. However, studies have revealed that this alloy can release metal ions or particles harmful to human health. The mechanisms are not well understood yet and may involve wear and/or corrosion. Therefore, in this work, commercial pure titanium and a Ti-6Al-4V alloy were investigated before and after being exposed to a simulated biological fluid through tribological tests, surface analysis, and ionic dissolution characterization by ICP-AES. Before exposure, X-ray diffraction and optical microscopy revealed equiaxed α-Ti in both materials and β-Ti in Ti-6Al-4V. Scratch tests exhibited a lower coefficient of friction for Ti-6Al-4V alloy than commercially pure titanium. After exposure, X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy results showed an oxide film formed by TiO2, both in commercially pure titanium and in Ti-6Al-4V, and by TiO and Al2O3 associated with the presence of the alloys. Furthermore, inductively coupled plasma atomic emission spectroscopy revealed that aluminum was the main ion released for Ti-6Al-4V, giving negligible values for the other metal ions.  相似文献   

17.
Titanium alloys are used in medical devices due to their mechanical properties, but also for their corrosion resistance. The natural passivation of titanium-based biomaterials, on the surface of which a dense and coherent film of nanometric thickness is formed, composed mainly of TiO2, determines an apparent bioactivity of them. In this paper, the method of obtaining new Ti20MoxSi alloys (x = 0.0, 0.5, 0.75, and 1.0) is presented, their microstructure is analyzed, and their electrochemical responses in Ringer´s solution were systematically investigated by linear polarization, cyclic potential dynamic polarization, and electrochemical impedance spectroscopy (EIS). The alloys corrosion resistance is high, and no evidence of localized breakdown of the passive layer was observed. There is no regularity determined by the composition of the alloys, in terms of corrosion resistance, but it seems that the most resistant is Ti20Mo1.0Si.  相似文献   

18.
Mosquitoes are commonly viewed as pests and deadly predators by humans. Despite this perception, investigations of their survival-based behaviors, select anatomical features, and biological composition have led to the creation of several beneficial technologies for medical applications. In this review, we briefly explore these mosquito-based innovations by discussing how unique characteristics and behaviors of mosquitoes drive the development of select biomaterials and medical devices. Mosquito-inspired microneedles have been fabricated from a variety of materials, including biocompatible metals and polymers, to mimic of the mouthparts that some mosquitoes use to bite a host with minimal injury during blood collection. The salivary components that these mosquitoes use to reduce the clotting of blood extracted during the biting process provide a rich source of anticoagulants that could potentially be integrated into blood-contacting biomaterials or administered in therapeutics to reduce the risk of thrombosis. Mosquito movement, vision, and olfaction are other behaviors that also have the potential for inspiring the development of medically relevant technologies. For instance, viscoelastic proteins that facilitate mosquito movement are being investigated for use in tissue engineering and drug delivery applications. Even the non-wetting nanostructure of a mosquito eye has inspired the creation of a robust superhydrophobic surface coating that shows promise for biomaterial and drug delivery applications. Additionally, biosensors incorporating mosquito olfactory receptors have been built to detect disease-specific volatile organic compounds. Advanced technologies derived from mosquitoes, and insects in general, form a research area that is ripe for exploration and can uncover potential in further dissecting mosquito features for the continued development of novel medical innovations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号