首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malaria infection is initiated by sporozoite invasion of hepatocytes and asexual reproduction of liver stages, processes that are regarded to be "clinically and diagnostically silent." Merozoites, which egress from hepatocytes, infect erythrocytes in periodic cycles and induce disease. How the host innate immune system contributes to disease outcomes and to the induction of effector cells during malaria remains unclear. Likewise, how the initial liver stages may shape responses to blood-stage parasites is unknown. Here, using both sporozoite- and blood-stage-induced infections with the rodent malaria parasite Plasmodium berghei ANKA, we show that the MyD88 and Toll-like receptor 2/4 (TLR2/4) pathways play critical roles in the development of experimental cerebral malaria (ECM). Strikingly, an absolute dependence on MyD88 and TLR2/4 was observed when infections were initiated with sporozoites. In addition, we show that caspase-1 activation of interleukin-1β (IL-1β) and IL-18, which is associated with the inflammasome pathway, does not contribute to P. berghei ANKA-induced immunopathology. Consistent with these data, prophylactic cover with the IL-1β antagonist anakinra did not reduce the incidence of ECM. Therefore, we propose that protection against ECM due to loss of TLR signaling functions is caused by effector mechanisms other than IL-1β activation.  相似文献   

2.
Mammalian macrophage migration inhibitory factor (MIF) is a multifaceted cytokine involved in both extracellular and intracellular functions. Malaria parasites express a MIF homologue that might modulate host immune responses against blood-stage parasites, but the potential importance of MIF against other life cycle stages remains unstudied. In this study, we characterized the MIF homologue of Plasmodium yoelii throughout the life cycle, with emphasis on preerythrocytic stages. P. yoelii MIF (Py-MIF) was expressed in blood-stage parasites and detected at low levels in mosquito salivary gland sporozoites. MIF expression was strong throughout liver-stage development and localized to the cytoplasm of the parasite, with no evidence of release into the host hepatocyte. To examine the importance of Py-MIF for liver-stage development, we generated a Py-mif knockout parasite (P. yoelii Δmif). P. yoelii Δmif parasites grew normally as asexual erythrocytic-stage parasites and showed normal infection of mosquitoes. In contrast, the P. yoelii Δmif strain was attenuated during the liver stage. Mice infected with P. yoelii Δmif sporozoites either did not develop blood-stage parasitemia or exhibited a delay in the onset of blood-stage patency. Furthermore, P. yoelii Δmif parasites exhibited growth retardation in vivo. Combined, the data indicate that Plasmodium MIF is important for liver-stage development of P. yoelii, during which it is likely to play an intrinsic role in parasite development rather than modulating host immune responses to infection.  相似文献   

3.
After transmission by Anopheles mosquitoes, Plasmodium sporozoites travel to the liver, infect hepatocytes, and rapidly develop as intrahepatocytic liver stages (LS). Rodent models of malaria exhibit large differences in the magnitude of liver infection, both between parasite species and between strains of mice. This has been mainly attributed to differences in innate immune responses and parasite infectivity. Here, we report that BALB/cByJ mice are more susceptible to Plasmodium yoelii preerythrocytic infection than BALB/cJ mice. This difference occurs at the level of early hepatocyte infection, but expression levels of reported host factors that are involved in infection do not correlate with susceptibility. Interestingly, BALB/cByJ hepatocytes are more frequently polyploid; thus, their susceptibility converges on the previously observed preference of sporozoites to infect polyploid hepatocytes. Gene expression analysis demonstrates hepatocyte-specific differences in mRNA abundance for numerous genes between BALB/cByJ and BALB/cJ mice, some of which encode hepatocyte surface molecules. These data suggest that a yet-unknown receptor for sporozoite infection, present at elevated levels on BALB/cByJ hepatocytes and also polyploid hepatocytes, might facilitate Plasmodium liver infection.  相似文献   

4.
The gene encoding the 60-kDa heat shock protein of Plasmodium yoelii (PyHsp60) was cloned into the VR1012 and VR1020 mammalian expression vectors. Groups of 10 BALB/c mice were immunized intramuscularly at 0, 3, and 9 weeks with 100 microg of PyHsp60 DNA vaccine alone or in combination with 30 microg of pmurGMCSF. Sera from immunized mice but not from vector control groups recognized P. yoelii sporozoites, liver stages, and infected erythrocytes in an indirect fluorescent antibody test. Two weeks after the last immunization, mice were challenged with 50 P. yoelii sporozoites. In one experiment the vaccine pPyHsp60-VR1012 used in combination with pmurGMCSF gave 40% protection (Fisher's exact test; P = 0.03, vaccinated versus control groups). In a second experiment this vaccine did not protect any of the immunized mice but induced a delay in the onset of parasitemia. In neither experiment was there any evidence of a protective effect against the asexual erythrocytic stage of the life cycle. In a third experiment mice were primed with PyHsp60 DNA, were boosted 2 weeks later with 2 x 10(3) irradiated P. yoelii sporozoites, and were challenged several weeks later. The presence of PyHsp60 in the immunization regimen did not lead to reduced blood-stage infection or development of parasites in hepatocytes. PyHsp60 DNA vaccines were immunogenic in BALB/c mice but did not consistently, completely protect against sporozoite challenge. The observation that in some of the PyHsp60 DNA vaccine-immunized mice there was protection against infection or a delay in the onset of parasitemia after sporozoite challenge deserves further evaluation.  相似文献   

5.
Plasmodium sporozoites are inoculated into the skin of the mammalian host as infected mosquitoes probe for blood. A proportion of the inoculum enters the bloodstream and goes to the liver, where the sporozoites invade hepatocytes and develop into the next life cycle stage, the exoerythrocytic, or liver, stage. Here, we show that a small fraction of the inoculum remains in the skin and begins to develop into exoerythrocytic forms that can persist for days. Skin exoerythrocytic forms were observed for both Plasmodium berghei and Plasmodium yoelii, two different rodent malaria parasites, suggesting that development in the skin of the mammalian host may be a common property of plasmodia. Our studies demonstrate that skin exoerythrocytic stages are susceptible to destruction in immunized mice, suggesting that their aberrant location does not protect them from the host's adaptive immune response. However, in contrast to their hepatic counterparts, they are not susceptible to primaquine. We took advantage of their resistance to primaquine to test whether they could initiate a blood-stage infection directly from the inoculation site, and our data indicate that these stages are not able to initiate malaria infection.  相似文献   

6.
 The nature of immunity generated by Plasmodium berghei exoerythrocytic (EE) stages developing from irradiated sporozoites was studied using in vivo parameters of host protection on immunization with irradiated sporozoites and in vitro parameters of inhibition of sporozoite invasion and EE form development by serum antibodies from immunized mice. On in vivo challenge of immunized mice by sporozoites, protection was observed in an irradiation-dose-dependent manner. This finding stresses that protection is dependent on the irradiation dose of sporozoites that allows sporozoite penetration yet controls EE form development within the liver. Using the human hepatoma line Hep G2 as host cells in vitro, we observed that serum antibodies raised in mice immunized with irradiated sporozoites reacted with sporozoite- and hepatic-stage parasites in an immunofluorescent antibody test (IFAT). No reactivity was observed with blood-stage parasites. Serum antibodies from mice immunized with 6- to 18-krad-irradiated sporozoites inhibited sporozoite invasion and caused severe inhibition of EE form development in hepatoma cells, pointing to the antigenic content of EE forms developing from irradiated sporozoites (irra EE forms) as critical immunogens. Moreover, in an enzyme-linked immunosorbent assay (ELISA), serum antibodies raised to 12-krad-irradiated sporozoites showed reactivity to synthetic peptides representing the conserved Region II sequences of the P. falciparum circumsporozoite (CS) protein as well as the P. falciparum liver-stage-specific antigen (LSA-1)-based repeat sequences, thus implicating an important role for both the sporozoite and the hepatic stage in protection. Received: 21 June 1995 / Accepted: 27 Oktober 1995  相似文献   

7.
8.
Malaria infection is initiated when the insect vector injects Plasmodium sporozoites into a susceptible vertebrate host. Sporozoites rapidly leave the circulatory system to invade hepatocytes, where further development generates the parasite form that invades and multiplies within erythrocytes. Previous experiments have shown that the thrombospondin-related adhesive protein (TRAP) plays an important role in sporozoite infectivity for hepatocytes. TRAP, a typical type-1 transmembrane protein, has a long extracellular region, which contains two adhesive domains, an A-domain and a thrombospondin repeat. We have generated recombinant proteins of the TRAP adhesive domains. These TRAP fragments show direct interaction with hepatocytes and inhibit sporozoite invasion in vitro. When the recombinant TRAP A-domain was used for immunoprecipitation against hepatocyte membrane fractions, it bound to alpha2-Heremans-Schmid glycoprotein/fetuin-A, a hepatocyte-specific protein associated with the extracellular matrix. When the soluble sporozoite protein fraction was immunoprecipitated on a fetuin-A-adsorbed protein A column, TRAP bound this ligand. Importantly, anti-fetuin-A antibodies inhibited invasion of hepatocytes by sporozoites. Further, onset of malaria infection was delayed in fetuin-A-deficient mice compared to that in wild-type C57BL/6 mice when they were challenged with Plasmodium berghei sporozoites. These data demonstrate that the extracellular region of TRAP interacts with fetuin-A on hepatocyte membranes and that this interaction enhances the parasite's ability to invade hepatocytes.  相似文献   

9.
The malaria parasite sporozoite stage develops in the mosquito vector and is transmitted to the mammalian host by bite. Sporozoites engage in multiple interactions with vector and host tissue on the journey from their oocyst origin to their final destination inside hepatocytes. Several malaria proteins have been identified that mediate sporozoite interactions with target tissues such as secreted and surface-associated ligands CSP and TRAP, which contain a thrombospondin type 1 repeat (TSR). Recently, we identified thrombospondin-related sporozoite protein (TRSP) in Plasmodium sporozoites, which exhibits a single TSR in its putative extracellular N-terminal region and is highly conserved among Plasmodium species. Here, we show using targeted gene disruption in the rodent malaria model Plasmodium berghei, that lack of TRSP has no effect on the asexual blood stage cycle, parasite transmission to the mosquito, sporozoite development and infection of mosquito salivary glands. However, analysis of TRSP knockout sporozoites in vitro and in vivo indicates that this protein has a significant role in hepatocyte entry and therefore liver infection. Thus, TRSP is an additional TSR-containing malaria parasite protein that is mainly involved in initial infection of the mammalian host.  相似文献   

10.
Infection by malaria parasites begins with the inoculation of sporozoites into the skin of the host. The early events following sporozoite deposition in the dermis are critical for both the establishment of malaria infection and for the induction of protective immune responses. The initial sporozoite inoculum is generally low, and only a small percentage of these sporozoites successfully reach the liver and grow to the next life cycle stage, making this a significant bottleneck for the parasite. Recent studies highlight the importance of sporozoite motility and host cell traversal in dermal exit. Importantly, protective immune responses against sporozoites and liver stages of Plasmodium are induced by dendritic cells in the lymph node draining the skin inoculation site. The cellular, molecular, and immunological events that occur in the skin and associated lymph nodes are the topic of this review.  相似文献   

11.
Invasive stages of Plasmodium parasites possess distinct integral and peripheral membrane proteins that mediate host cell attachment and invasion. P113 is an abundant protein in detergent-resistant high molecular weight complexes in Plasmodium schizonts, but is unusual since expression extends to gametocytes and sporozoites. In this study, we tested whether P113 performs important functions for parasite propagation in Plasmodium berghei. We show that pre-erythrocytic expression of P113 displays key signatures of upregulated in infectious sporozoites (UIS) genes, including control by the liver stage master regulator SLARP. Targeted gene deletion resulted in viable blood stage parasites that displayed no signs of blood stage growth defects. p113(−) parasites propagated normally through the life cycle until mature sporozoites, but displayed defects during natural sporozoite transmission, leading to a delay to patency in infected animals. By comparative in vitro and in vivo analysis of pre-erythrocytic development and using a xeno-diagnostic test we show that ablation of P113 results in lower sporozoite to liver stage conversion and, as a consequence, reduced merozoite output in vivo, without delaying liver stage development. We conclude that p113 is dispensable for Plasmodium life cycle progression and plays auxiliary roles during pre-erythrocytic development.  相似文献   

12.
Plasmodium sporozoites develop within oocysts in the mosquito midgut wall and then migrate to the salivary glands. After transmission, they embark on a complex journey to the mammalian liver, where they infect hepatocytes. Proteins on the sporozoite surface likely mediate multiple steps of this journey, yet only a few sporozoite surface proteins have been described. Here, we characterize a novel, conserved sporozoite surface protein (SSP3) in the rodent malaria parasite Plasmodium yoelii. SSP3 is a putative type I transmembrane protein unique to Plasmodium. By using epitope tagging and SSP3-specific antibodies in conjunction with immunofluorescence microscopy, we showed that SSP3 is expressed in mosquito midgut oocyst sporozoites, exhibiting an intracellular localization. In sporozoites derived from the mosquito salivary glands, however, SSP3 localized predominantly to the sporozoite surface as determined by immunoelectron microscopy. However, the ectodomain of SSP3 appeared to be inaccessible to antibodies in nonpermeabilized salivary gland sporozoites. Antibody-induced shedding of the major surface protein circumsporozoite protein (CSP) exposed the SSP3 ectodomain to antibodies in some sporozoites. Targeted deletion of SSP3 adversely affected in vitro sporozoite gliding motility, which, surprisingly, impacted neither their cell traversal capacity, host cell invasion in vitro, nor infectivity in vivo. Together, these data reveal a previously unappreciated complexity of the Plasmodium sporozoite surface proteome and the roles of surface proteins in distinct biological activities of sporozoites.  相似文献   

13.
Carbohydrates are implicated in many of the invasive and adhesive interactions that occur between Plasmodium falciparum malaria parasites and human host cells, including invasion of sporozoites into hepatocytes, entry of merozoites into new host erythrocytes during asexual blood-stage replication, adhesion of infected erythrocytes to uninfected erythrocytes (rosetting) and to a number of host endothelial receptors including ICAM-1, CD36 and chondroitin-4-sulphate. In addition to increasing our understanding of host–parasite interactions, the investigation of carbohydrates with differing levels and patterns of sulphation as inhibitors may contribute to the development of novel therapeutics targeting malaria. Here we show that three polysaccharides derived from seaweed (carrageenans) with differing sulphation levels and patterns can inhibit the in vitro erythrocytic invasion and growth of both drug sensitive and drug resistant P. falciparum lines and the adhesion of parasitized erythrocytes to the human glycoprotein CD36.  相似文献   

14.
It has been reported previously that immunization with recombinant protein containing the two epidermal growth factor (EGF)-like modules from merozoite surface protein 1 (MSP-1) of Plasmodium yoelii (strain YM) protects mice against a lethal blood-stage challenge with the same parasite strain. Since MSP-1 is expressed in both liver- and blood-stage schizonts and on the surface of merozoites, we evaluated the effectiveness of immunization with recombinant proteins containing either the individual or the two combined EGF-like modules in producing a protective response against a sporozoite challenge. The recombinant protein expressing the combined EGF-like modules of the YM strain protected mice against a homologous sporozoite challenge, and sterile protection, as defined by the absence of detectable blood-stage parasites, was observed in the majority of the mice. In contrast, mice immunized with recombinant P. yoelii YM MSP-1 were not protected against a heterologous challenge with sporozoites from strain 265 BY of P. yoelii. The lack of protection may be explained by differences identified in the amino acid sequences of MSP-1 for the two strains. A recombinant protein containing the two EGF-like modules of MSP-1 from P. yoelii 265 BY was produced and used to immunize mice. These mice were protected against a homologous challenge with sporozoites of P. yoelii 265 BY. The results suggest that a recombinant MSP-1 has potential as a vaccine against malaria, but its efficacy may be limited by sequence polymorphism and selection of variants.  相似文献   

15.
A chloroplast-like organelle is present in many species of the Apicomplexa phylum. We have previously demonstrated that the plastid organelle of Plasmodium faciparum is essential to the survival of the blood-stage malaria parasite in culture. One known function of the plastid organelle in another Apicomplexan, Toxoplasma gondii, involves the formation of the parasitophorous vacuole. The effects of interruption of plastid function on sporozoites and sexual-stage parasites have not been investigated. In our previous studies of the effects of thiostrepton, a polypeptide antibiotic from streptococcus spp., on erythrocytic schizongony of the human malaria P. falciparium, we found that this antibiotic appears to interact with the guanosine triphosphatase (GTPase) binding domain of the organellar large subunit ribosomal RNA, as it does in bacteria. We investigate here the effects of this drug on life-cycle stages of the malaria parasite in vivo. Preincubation of mature infective sporozoites with thiostrepton has no observable effect on their infectivity. Sporozoite infection both by mosquito bite and sporozoite injection was prevented by pretreatment of mice with thiostrepton. Thiostrepton eliminates infection with erythrocytic forms of Plasmodium berghei in mice. Clearance of infected red blood cells follows the delayed kinetics associated with drugs that interact with the apicoplast. Thiostrepton treatment of infected mice reduces transmission of parasites by more than ten-fold, indicating that the plastid has a role in sexual development of the parasite. These results indicate that the plastid function is accessible to drug action in vivo and important to the development of both sexual and asexual forms of the parasite.  相似文献   

16.
Pore-forming proteins are employed by many pathogens to achieve successful host colonization. Intracellular pathogens use pore-forming proteins to invade host cells, survive within and productively interact with host cells, and finally egress from host cells to infect new ones. The malaria-causing parasites of the genus Plasmodium evolved a number of life cycle stages that enter and replicate in distinct cell types within the mosquito vector and vertebrate host. Despite the fact that interaction with host-cell membranes is a central theme in the Plasmodium life cycle, little is known about parasite proteins that mediate such interactions. We identified a family of five related genes in the genome of the rodent malaria parasite Plasmodium yoelii encoding secreted proteins all bearing a single membrane-attack complex/perforin (MACPF)-like domain. Each protein is highly conserved among Plasmodium species. Gene expression analysis in P. yoelii and the human malaria parasite Plasmodium falciparum indicated that the family is not expressed in the parasites blood stages. However, one of the genes was significantly expressed in P. yoelii sporozoites, the stage transmitted by mosquito bite. The protein localized to the micronemes of sporozoites, organelles of the secretory invasion apparatus intimately involved in host-cell infection. MACPF-like proteins may play important roles in parasite interactions with the mosquito vector and transmission to the vertebrate host.  相似文献   

17.
BALB/c interleukin-4 (IL-4(-/-)) or IL-4 receptor-alpha (IL-4ralpha(-/-)) knockout (KO) mice were used to assess the roles of the IL-4 and IL-13 pathways during infections with the blood or liver stages of plasmodium in murine malaria. Intraperitoneal infection with the blood-stage erythrocytes of Plasmodium berghei (ANKA) resulted in 100% mortality within 24 days in BALB/c mice, as well as in the mutant mouse strains. However, when infected intravenously with the sporozoite liver stage, 60 to 80% of IL-4(-/-) and IL-4ralpha(-/-) mice survived, whereas all BALB/c mice succumbed with high parasitemia. Compared to infected BALB/c controls, the surviving KO mice showed increased NK cell numbers and expression of inducible nitric oxide synthase (iNOS) in the liver and were able to eliminate parasites early during infection. In vivo blockade of NO resulted in 100% mortality of sporozoite-infected KO mice. In vivo depletion of NK cells also resulted in 80 to 100% mortality, with a significant reduction in gamma interferon (IFN-gamma) production in the liver. These results suggest that IFN-gamma-producing NK cells are critical in host resistance against the sporozoite liver stage by inducing NO production, an effective killing effector molecule against Plasmodium. The absence of IL-4-mediated functions increases the protective innate immune mechanism identified above, which results in immunity against P. berghei infection in these mice, with no major role for IL-13.  相似文献   

18.
Live-attenuated Plasmodium liver stages remain the only experimental model that confers complete sterile protection against malaria. Irradiation-attenuated Plasmodium parasites mediate protection primarily by CD8 T cells. In contrast, it is unknown how genetically attenuated liver stage parasites provide protection. Here, we show that immunization with uis3(-) sporozoites does not cause breakthrough infection in T and B-cell-deficient rag1(-/-) and IFN-gamma(-/-) mice. However, protection was abolished in these animals, suggesting a crucial role for adaptive immune responses and interferon-gamma. Although uis3(-) immunization induced Plasmodium-specific antibodies, B- cell-deficient mice immunized with uis3(-) sporozoites were completely protected against wild-type sporozoite challenge infection. T-cell depletion experiments before parasite challenge showed that protection is primarily mediated by CD8 T cells. In good agreement, adoptive transfer of total spleen cells and enriched CD8 T cells from immunized animals conferred sterile protection against malaria transmission to recipient mice, whereas adoptive transfer of CD4 T cells was less protective. Importantly, primaquine treatment completely abolished the uis3(-)-mediated protection, indicating that persistence of uis3(-)-attenuated liver stages is crucial for their protective action. These findings establish the basic immune mechanisms underlying protection induced by genetically attenuated Plasmodium parasites and substantiate their use as vaccines against malaria.  相似文献   

19.
Following Anopheles mosquito-mediated introduction into a human host, Plasmodium parasites infect hepatocytes and undergo intensive replication. Accumulating evidence indicates that CD8+ T cells induced by immunization with attenuated Plasmodium sporozoites can confer sterile immunity at the liver stage of infection; however, the mechanisms underlying this protection are not clearly understood. To address this, we generated recombinant Plasmodium berghei ANKA expressing a fusion protein of an ovalbumin epitope and green fluorescent protein in the cytoplasm of the parasite. We have shown that the ovalbumin epitope is presented by infected liver cells in a manner dependent on a transporter associated with antigen processing and becomes a target of specific CD8+ T cells from the T cell receptor transgenic mouse line OT-I, leading to protection at the liver stage of Plasmodium infection. We visualized the interaction between OT-I cells and infected hepatocytes by intravital imaging using two-photon microscopy. OT-I cells formed clusters around infected hepatocytes, leading to the elimination of the intrahepatic parasites and subsequent formation of large clusters of OT-I cells in the liver. Gamma interferon expressed in CD8+ T cells was dispensable for this protective response. Additionally, we found that polyclonal ovalbumin-specific memory CD8+ T cells induced by de novo immunization were able to confer sterile protection, although the threshold frequency of the protection was relatively high. These studies revealed a novel mechanism of specific CD8+ T cell-mediated protective immunity and demonstrated that proteins expressed in the cytoplasm of Plasmodium parasites can become targets of specific CD8+ T cells during liver-stage infection.  相似文献   

20.
Toxoplasma gondii sporozoites form two parasitophorous vacuoles during development within host cells, the first (PV1) during host cell invasion and the second (PV2) 18 to 24 h postinoculation. PV1 is structurally distinctive due to its large size, yet it lacks a tubulovesicular network (C. A. Speer, M. Tilley, M. Temple, J. A. Blixt, J. P. Dubey, and M. W. White, Mol. Biochem. Parasitol. 75:75-86, 1995). Confirming the finding that sporozoites have a different electron-dense-granule composition, we have now found that sporozoites within oocysts lack the mRNAs encoding the 5' nucleoside triphosphate hydrolases (NTPase). NTPase first appears 12 h postinfection. Other tachyzoite dense-granule proteins, GRA1, GRA2, GRA4, GRA5, and GRA6, were detected in oocyst extracts, and antibodies against these proteins stained granules in the sporozoite cytoplasm. In contrast to tachyzoite invasion of host cells, however, sporozoites did not exocytose the dense-granule proteins GRA1, GRA2, or GRA4 during PV1 formation. Even after NTPase induction, these proteins were retained within cytoplasmic granules rather than being secreted into PV1. Only GRA5 was secreted by the sporozoite during host cell invasion, becoming associated with the membrane surrounding PV1. Microinjection of sporozoite-infected cells with fluorescent dyes showed that PV1 is impermeable to fluorescent dyes with molecular masses as small as 330 Da, indicating that PV1 lacks channels through which molecules can pass from the host cytoplasm into the vacuole. By contrast, lucifer yellow rapidly diffused into PV2, demonstrating the presence of molecular channels. These studies indicate that PV1 and PV2 are morphologically, immunologically, and functionally distinct, and that PV2 appears to be identical to the tachyzoite vacuole. The inaccessibility of PV1 to host cell nutrients may explain why parasite replication does not occur in this vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号