首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Lu  Fengmei  Wang  Mengyun  Xu  Shiyang  Chen  Heng  Yuan  Zhen  Luo  Lizhu  Wang  Xiuli  Zhang  Jiang  Dai  Jing  Wang  Xiaoping  Chen  Huafu  Zhou  Jiansong 《Brain imaging and behavior》2021,15(3):1201-1210
Brain Imaging and Behavior - Conduct disorder (CD) is a common psychiatric disorder defined by a repetitive and persistent pattern of aggressive and antisocial behaviors. Although numerous...  相似文献   

2.
It is known that patients with Attention Deficit and Hyperactivity disorder (ADHD) and Conduct disorder (CD) commonly shows greater symptom severity than those with ADHD alone and worse outcomes. This study researches whether Default mode network (DMN) is altered in adolescents with ADHD + CD, relative to ADHD alone and controls or not. Ten medication-naïve boys with ADHD + CD, ten medication-naïve boys with ADHD and 10-age-matched typically developing (TD) controls underwent functional magnetic resonance imaging (fMRI) scans in the resting state and neuropsychological tasks such as the Wisconsin Card Sorting Test (WCST), Stroop Test TBAG Form (STP), Auditory Verbal learning Test (AVLT), Visual Auditory Digit Span B (VADS B) were applied to all the subjects included. fMRI scans can be used only nine patients in each groups. The findings revealed group differences between cingulate cortex and primary mortor cortex; cingulate cortex and somatosensory association cortex; angular gyrus (AG) and dorsal posterior cingulate cortex, in these networks increased activity was observed in participants with ADHD + CD compared with the ADHD. We found that lower resting state (rs)-activity was observed between left AG and dorsal posterior cingulate cortex, whereas higher rs-activity connectivity were detected between right AG and somatosensory association cortex in ADHD relative to the ones with ADHD + CD. In neuropsyhcological tasks, ADHD + CD group showed poor performance in WISC-R, WCST, Stroop, AVLT tasks compared to TDs. The ADHD + CD group displayed rs-functional abnormalities in DMN. Our results suggest that abnormalities in the intrinsic activity of resting state networks may contribute to the etiology of CD and poor prognosis of ADHD + CD.  相似文献   

3.
Attention‐deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain‐network interactions. The default mode network (DMN), implicated in ADHD‐linked behaviors including mind‐wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within‐network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age‐, IQ‐, and sex‐matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole‐brain between‐group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between‐group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of cerebro‐cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. Hum Brain Mapp 36:3373–3386, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
目的:结合静息态功能连接方法,探讨"临床治愈"抑郁症(remitted major depressive disorder,r MDD)患者默认网络(default mode network,DMN)功能连接的变化。方法:对22例经过住院治疗达到r MDD标准的患者(患者组)和22名相匹配正常对照组进行静息态功能磁共振扫描,以DMN公认的内侧前额叶(medial prefrontal cortex,m PFC)和后扣带回(posterior cingulate cortex,PCC)为种子点,通过种子点与全脑的功能连接分析,使用双样本t检验比较两组的功能连接差异。结果:与正常对照组比较,患者组m PFC与右侧角回(t=3.96,P0.01)、右侧旁扣带回(t=4.57,P0.01)、右侧额下回(t=4.25,P0.01)功能连接增加,与左侧前扣带回(t=-3.50,P0.01)、右侧PCC(t=-3.57,P0.01)功能连接降低;PCC与左侧枕中回(t=3.47,P0.01)、右侧枕中回(t=4.18,P0.01)功能连接增加。结论:r MDD患者DMN功能连接仍存在异常,可能与反刍症状及注意等认知偏向未完全改善有关。  相似文献   

5.
6.
《Clinical neurophysiology》2020,131(5):1021-1029
ObjectiveThe functional connectivity of the brain in chronic pancreatitis (CP) remains unknown. This study aimed to investigate functional connectivity in CP patients using resting state functional magnetic resonance imaging (fMRI) and explore the associations to clinical parameters and altered cerebral metabolites.MethodsSeed-based and ROI-to-ROI analyses were performed to assess connectivity within and between the default mode network (DMN) and salience network (SN). Additionally, functional connectivity in these networks were investigated in relation to clinical parameters (CP etiology, pain, medication, etc.) and cerebral glutamate/creatine level in the anterior cingulate cortex.ResultsThirty CP patients and 23 healthy controls were analyzed. CP patients showed hyper-connectivity in DMN and SN as compared to healthy controls. Furthermore, CP patients had reduced anti-correlated functional connectivity between DMN and SN (all P ≤ 0.009). The altered DMN connectivity correlated to glutamate/creatine level (r = 0.503, P = 0.020) in patients with pain, but not to the clinical parameters.ConclusionsCP patients had altered functional connectivity within and between brain networks. Altered DMN functional connectivity had an association to cerebral metabolic changes.SignificanceAltered functional connectivity in CP share similarities with other chronic pain conditions, and support our understanding of altered brain circuitry associated with the CP disease.  相似文献   

7.
8.
IntroductionPrevious studies of herpes zoster (HZ) have focused on acute patient manifestations and the most common sequela, postherpetic neuralgia (PHN), both serving to disrupt brain dynamics. Although the majority of such patients gradually recover, without lingering severe pain, little is known about life situations of those who recuperate or the brain dynamics. Our goal was to determine whether default mode network (DMN) dynamics of the recuperative population normalize to the level of healthy individuals.MethodsFor this purpose, we conducted resting‐state functional magnetic resonance imaging (fMRI) studies in 30 patients recuperating from HZ (RHZ group) and 30 healthy controls (HC group). Independent component analysis (ICA) was initially undertaken in both groups to extract DMN components. DMN spatial maps and within‐DMN functional connectivity were then compared by group and then correlated with clinical variables.ResultsRelative to controls, DMN spatial maps of recuperating patients showed higher connectivity in middle frontal gyrus (MFG), right/left medial temporal regions of cortex (RMTC/LMTC), right parietal lobe, and parahippocampal gyrus. The RHZ (vs HC) group also demonstrated significant augmentation of within‐DMN connectivity, including that of LMTC‐MFG and LMTC‐posterior cingulate cortex (PCC). Furthermore, the intensity of LMTC‐MFG connectivity correlated significantly with scoring of pain‐induced emotions and life quality.ConclusionFindings of this preliminary study indicate that a disrupted dissociative pattern of DMN persists in patients recuperating from HZ, relative to healthy controls. We have thus provisionally established the brain mechanisms accounting for major outcomes of HZ, offering heuristic cues for future research on HZ transition states.  相似文献   

9.
Resting‐state functional connectivity (rsFC) approaches provide informative estimates of the functional architecture of the brain, and recently‐proposed cofluctuation analysis temporally unwraps FC at every moment in time, providing refined information for quantifying brain dynamics. As a brain network disorder, autism spectrum disorder (ASD) was characterized by substantial alteration in FC, but the contribution of moment‐to‐moment‐activity cofluctuations to the overall dysfunctional connectivity pattern in ASD remains poorly understood. Here, we used the cofluctuation approach to explore the underlying dynamic properties of FC in ASD, using a large multisite resting‐state functional magnetic resonance imaging (rs‐fMRI) dataset (ASD = 354, typically developing controls [TD] = 446). Our results verified that the networks estimated using high‐amplitude frames were highly correlated with the traditional rsFC. Moreover, these frames showed higher average amplitudes in participants with ASD than those in the TD group. Principal component analysis was performed on the activity patterns in these frames and aggregated over all subjects. The first principal component (PC1) corresponds to the default mode network (DMN), and the PC1 coefficients were greater in participants with ASD than those in the TD group. Additionally, increased ASD symptom severity was associated with the increased coefficients, which may result in excessive internally oriented cognition and social cognition deficits in individuals with ASD. Our finding highlights the utility of cofluctuation approaches in prevalent neurodevelopmental disorders and verifies that the aberrant contribution of DMN to rsFC may underline the symptomatology in adolescents and youths with ASD.

The present study used cofluctuation method to decompose the functional connections into their exact frame‐wise contributions and observed the aberrant DMN pattern and overly stable dynamic properties in adolescents and youths with ASD. Our finding highlights the utility of cofluctuation approaches in prevalent neurodevelopmental disorders and verifies that the aberrant characteristics of DMN may underline the symptomatology in participants with ASD.  相似文献   

10.
BackgroundAnticorrelated resting state connectivity between task-positive and task-negative networks in adults supports flexible shifting between externally focused attention and internal thought. Findings suggest that children show positive correlations between task-positive (frontoparietal; FP) and task-negative (default mode; DMN) networks. FP-DMN connectivity also associates with intellectual functioning across the lifespan. We investigated whether FP-DMN connectivity in healthy children varied with age and intelligence quotient (IQ).MethodsWe utilized network-based statistics (NBS) to examine resting state functional connectivity between FP and DMN seeds in N = 133 7−25-year-olds (Mage = 15.80). Linear regression evaluated FP-DMN associations with IQ.ResultsWe detected NBS subnetworks containing both within- and between-network connections that were inversely associated with age. Four FP-DMN connections showed more negative connectivity between FP (inferior frontal gyrus and precentral gyrus) and DMN regions (frontal medial cortex, precuneus, and frontal pole) among older participants. Frontal pole-precentral gyrus connectivity inversely associated with IQ.ConclusionsFP-DMN connectivity was more anticorrelated at older ages, potentially indicating dynamic network segregation of these circuits from childhood to early adulthood. Youth with more mature (i.e., anticorrelated) FP-DMN connectivity demonstrated higher IQ. Our findings add to the growing body of literature examining neural network development and its association with IQ.  相似文献   

11.
Initially identified during no‐task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large‐scale brain networks. Nevertheless, its contribution to whole‐brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI‐based n‐back paradigm with parametric increases in difficulty. Using a voxel‐wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n‐back task load. Subsequent seed‐based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large‐scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n‐back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41–52, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Subthreshold depression (StD) is a highly prevalent condition associated with increased service utilization and social morbidity. Nevertheless, due to limitations in current diagnostic systems that set the boundary for major depressive disorder (MDD), very few brain imaging studies on the neurobiology of StD have been carried out, and its underlying neurobiological mechanism remains unclear. In recent years, accumulating evidence suggests that the disruption of the default mode network (DMN), a network involved in self-referential processing, affective cognition, and emotion regulation, is involved in major depressive disorder. Using independent component analysis, we investigated resting-state default mode network (DMN) functional connectivity (FC) changes in two cohorts of StD patients with different age ranges (young and middle-aged, n = 57) as well as matched controls (n = 79). We found significant FC increase between the DMN and ventral striatum (key region in the reward network), in both cohorts of StD patients in comparison with controls. In addition, we also found the FC between the DMN and ventral striatum was positively and significantly associated with scores on the Center for Epidemiologic Studies Depression Scale (CES-D), a measurement of depressive symptomatology. We speculate that this enhanced FC between the DMN and the ventral striatum may reflect a self-compensation to ameliorate the lowered reward function.  相似文献   

13.
强迫症是一种常见的精神类疾病,主要表现为强迫思维和(或)强迫行为,严重影响患者的 社会功能及日常生活。近年来,关于强迫症的默认网络研究逐渐成为热点话题,现就国内外关于强迫 症默认网络的最新研究结果进行综述。  相似文献   

14.
Alexithymia is a trait characterized by a diminished capacity to describe and distinguish emotions and to fantasize; it is associated with reduced introspection and problems in emotion processing. The default mode network (DMN) is a network of brain areas that is normally active during rest and involved in emotion processing and self-referential mental activity, including introspection. We hypothesized that connectivity of the DMN might be altered in alexithymia. Twenty alexithymic and 18 non-alexithymic healthy volunteers underwent a resting state fMRI scan. Independent component analysis was used to identify the DMN. Differences in connectivity strength were compared between groups. Within the DMN, alexithymic participants showed lower connectivity within areas of the DMN (medial frontal and temporal areas) as compared to non-alexithymic participants. In contrast, connectivity in the high-alexithymic participants was higher for the sensorimotor cortex, occipital areas and right lateral frontal cortex than in the low-alexithymic participants. These results suggest a diminished connectivity within the DMN of alexithymic participants, in brain areas that may also be involved in emotional awareness and self-referential processing. On the other hand, alexithymia was associated with stronger functional connections of the DMN with brain areas involved in sensory input and control of emotion.  相似文献   

15.
Time‐invariant resting‐state functional connectivity studies have illuminated the crucial role of the right anterior insula (rAI) in prominent social impairments of autism spectrum disorder (ASD). However, a recent dynamic connectivity study demonstrated that rather than being stationary, functional connectivity patterns of the rAI vary significantly across time. The present study aimed to explore the differences in functional connectivity in dynamic states of the rAI between individuals with ASD and typically developing controls (TD). Resting‐state functional magnetic resonance imaging data obtained from a publicly available database were analyzed in 209 individuals with ASD and 298 demographically matched controls. A k‐means clustering algorithm was utilized to obtain five dynamic states of functional connectivity of the rAI. The temporal properties, frequency properties, and meta‐analytic decoding were first identified in TD group to obtain the characteristics of each rAI dynamic state. Multivariate analysis of variance was then performed to compare the functional connectivity patterns of the rAI between ASD and TD groups in obtained states. Significantly impaired connectivity was observed in ASD in the ventral medial prefrontal cortex and posterior cingulate cortex, which are two critical hubs of the default mode network (DMN). States in which ASD showed decreased connectivity between the rAI and these regions were those more relevant to socio‐cognitive processing. From a dynamic perspective, these findings demonstrate partially impaired resting‐state functional connectivity patterns between the rAI and DMN across states in ASD, and provide novel insights into the neural mechanisms underlying social impairments in individuals with ASD.  相似文献   

16.
17.
Brain Imaging and Behavior - Chemotherapy may impair cognition and contribute to accelerated aging. The purpose of this study was to assess the effects of chemotherapy on the connectivity of the...  相似文献   

18.

Studies of resting-state functional connectivity MRI in Alzheimer’s disease suggest that disease stage plays a role in functional changes of the default mode network. Individuals with the genetic disorder Down syndrome show an increased incidence of early-onset Alzheimer’s-type dementia, along with early and nearly universal neuropathologic changes of Alzheimer’s disease. The present study examined high-resolution functional connectivity of the default mode network in 11 young adults with Down syndrome that showed no measurable symptoms of dementia and 11 age- and sex-matched neurotypical controls. We focused on within-network connectivity of the default mode network, measured from both anterior and posterior aspects of the cingulate cortex. Sixty-eight percent of connections to the posterior cingulate and 26% to the anterior cingulate showed reduced strength in the group with Down syndrome (p < 0.01). The Down syndrome group showed increased connectivity strength from the anterior cingulate to the bilateral inferior frontal gyri and right putamen (p < 0.005). In an exploratory analysis, connectivity in the group with Down syndrome showed regional relationships to plasma measures of inflammatory markers and t-tau. In non-demented adults with Down syndrome, functional connectivity within the default mode network may be analogous to changes reported in preclinical Alzheimer’s disease, and warrants further investigation as a measure of dementia risk.

  相似文献   

19.
20.

Background

The “default network” consists of a number of brain regions that exhibit correlated low-frequency activity at rest and that have been suggested to be involved in the processing of self-relevant stimuli. Activity in many of these areas has also been shown to be altered in individuals with posttraumatic stress disorder (PTSD). We hypothesized that the posterior cingulate cortex (PCC)/precuneus, part of the default network, would exhibit altered connectivity at rest with other areas of the default network and regions associated with PTSD.

Methods

Seventeen medicated and unmedicated female patients with chronic posttraumatic stress disorder (PTSD) related to early-life trauma and 15 healthy female controls underwent a 5.5-minute functional magnetic resonance imaging scan with their eyes closed. We assessed areas of the brain whose activity positively and negatively correlated with that of the PCC/precuneus in both groups.

Results

At rest, spontaneous low-frequency activity in the PCC/precuneus was more strongly correlated with activity in other areas of the default network in healthy controls than in patients with PTSD. Direct comparison of the 2 groups showed that PCC/ precuneus connectivity was also greater in healthy controls than in patients with PTSD in a number of areas previously associated with PTSD, including the right amygdala and the hippocampus/parahippocampal gyrus.

Limitations

Because our PTSD sample comprised only women with chronic early-life trauma exposure, our results may not be generalizeable to male patients, to a population with single trauma exposure or to those who were adults when the trauma occurred. In addition, our sample included patients taking medication and it is not yet clear how altered connectivity is affected by medication.

Conclusion

Spontaneous activity in the default network during rest, as measured using PCC correlations, is altered in patients with PTSD. The potential effects of psychotropic medications on default network connectivity in the present sample remain unknown. In this patient population, the observed alterations may be associated with the disturbances in self-referential processing often observed in patients with chronic PTSD related to early-life trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号