首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Deep brain stimulation (DBS) is an emerging treatment for severe obsessive-compulsive disorder (OCD). We compared the efficacy of ventral capsule/ventral striatal (VC/VS) and anteromedial subthalamic nucleus (amSTN) DBS in the same patients and tested for mechanistic differences on mood and cognitive flexibility and associated neural circuitry. The possible synergistic benefit of DBS at both sites and cognitive behavioral therapy was explored.

Methods

Six patients with treatment-refractory OCD (5 men; Yale-Brown Obsessive Compulsive Scale score >32) entered double-blind counterbalanced phases of 12-week amSTN or VC/VS DBS, followed by 12-week open phases when amSTN and VC/VS were stimulated together, in which optimal stimulation parameters were achieved and adjunctive inpatient cognitive behavioral therapy was delivered. OCD and mood were assessed with standardized scales and cognitive flexibility with the Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set-Shift task. Diffusion-weighted and intraoperative magnetic resonance imaging scans were performed for tractography from optimally activated electrode contacts.

Results

DBS at each site significantly and equivalently reduced OCD symptoms with little additional gain following combined stimulation. amSTN but not VC/VS DBS significantly improved cognitive flexibility, whereas VC/VS DBS had a greater effect on mood. The VC/VS effective site was within the VC. VC DBS connected primarily to the medial orbitofrontal cortex, and amSTN DBS to the lateral orbitofrontal cortex, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex. No further improvement followed cognitive behavioral therapy, reflecting a floor effect of DBS on OCD.

Conclusions

Both the VC/VS and amSTN are effective targets for severe treatment-refractory OCD. Differential improvements in mood and cognitive flexibility and their associated connectivity suggest that DBS at these sites modulates distinct brain networks.  相似文献   

2.
Aims: Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is a promising alternative to ablative surgery in treatment of refractory obsessive–compulsive disorder (OCD). A pilot study was conducted to assess 15‐month outcomes of DBS in patients with refractory OCD in Taiwan. Methods: Four adult patients with a 3‐year or more history of refractory OCD (Yale–Brown Obsessive–Compulsive Scale [Y‐BOCS] score of at least 28) met the criteria for DBS surgery. DBS electrodes were implanted bilaterally in the VC/VS. Stimulation was adjusted for therapeutic benefit and absence of adverse effects. Psychiatric evaluation was conducted preoperatively, postoperatively, and at follow up at every 3 months for 15 months. Primary outcome measure was Y‐BOCS. Secondary outcomes included the Hamilton Depression Rating Scale (HAM‐D), and the Global Assessment of Function Scale. Results: Mean severity of OCD was a Y‐BOCS score of 36.3 ± 2.1. At the end of 15 months' follow up, there was a 33.06% decrease in OCD severity (P = 0.001). Similar findings were seen for HAM‐D (32.51% reduction, P = 0.005), and Global Assessment of Function Scale (31.03% increase, P = 0.026). In terms of adverse effects, two patients suffered from hypomania episodes after several weeks of DBS stimulation, and one had transient hypomania‐like syndrome during DBS initial programming. One patient (Case 1) had an allergic reaction to implantation of the pulse generator in the chest, and another patient (Case 3) exhibited vertigo. Conclusions: We confirm that DBS of the VC/VS appears to be beneficial for improvements in function and mood among patients with treatment‐resistant OCD. Compared to previous studies examining the therapeutic effects of DBS, no serious adverse effects were observed.  相似文献   

3.
Psychiatric neurosurgery teams in the United States and Europe have studied deep brain stimulation (DBS) of the ventral anterior limb of the internal capsule and adjacent ventral striatum (VC/VS) for severe and highly treatment-resistant obsessive-compulsive disorder. Four groups have collaborated most closely, in small-scale studies, over the past 8 years. First to begin was Leuven/Antwerp, followed by Butler Hospital/Brown Medical School, the Cleveland Clinic and most recently the University of Florida. These centers used comparable patient selection criteria and surgical targeting. Targeting, but not selection, evolved during this period. Here, we present combined long-term results of those studies, which reveal clinically significant symptom reductions and functional improvement in about two-thirds of patients. DBS was well tolerated overall and adverse effects were overwhelmingly transient. Results generally improved for patients implanted more recently, suggesting a 'learning curve' both within and across centers. This is well known from the development of DBS for movement disorders. The main factor accounting for these gains appears to be the refinement of the implantation site. Initially, an anterior-posterior location based on anterior capsulotomy lesions was used. In an attempt to improve results, more posterior sites were investigated resulting in the current target, at the junction of the anterior capsule, anterior commissure and posterior ventral striatum. Clinical results suggest that neural networks relevant to therapeutic improvement might be modulated more effectively at a more posterior target. Taken together, these data show that the procedure can be successfully implemented by dedicated interdisciplinary teams, and support its therapeutic promise.  相似文献   

4.
5.
The introduction of deep brain stimulation (DBS) was a historical step forward for the treatment of advanced and medically intractable movement disorders that include Parkinson's disease, dystonias, essential tremor, and Holmes' tremor. DBS is able to modulate the target region electrically in a reversible and adjustable fashion in contrast to an irreversible and destructive lesioning procedure. In the treatment of movement disorders, the potential targets are the thalamic ventral intermediate nucleus (Vim), globus pallidus internus (GPi), subthalamic nucleus (STN), pedunculopontine nucleus (PPN), and thalamic Vo-complex nucleus. With the development of DBS technology and stereotactic neurosurgical techniques, its therapeutic efficacy has been increased while reducing surgical complications. DBS has become an established therapy for disabling movement disorders and is currently being used to treat neuropsychiatric disorders.  相似文献   

6.
We report a case of thalamic deep brain stimulation (DBS) for treatment of posttraumatic tremor. An 18-year-old right-handed man developed a disabling and medically refractory action tremor in the right upper extremity 9 months after sustaining diffuse axonal injury in a motor vehicle collision. DBS of the left ventral intermediate nucleus of the thalamus (Vim) suppressed the tremor without complication and should be considered as an option for the management of intractable posttraumatic tremor.  相似文献   

7.
We report on the effects of bilateral neurostimulation of the ventral intermediate thalamic nucleus (VIM) in a patient with medically intractable and progressing inherited myoclonus dystonia syndrome (IMDS). Postoperatively, the patient improved by approximately 80% on the modified version of a myoclonus score without any significant change in the dystonic symptoms. This suggests that neurostimulation of the VIM may be an effective treatment for myoclonus in pharmacologically intractable IMDS.  相似文献   

8.
Motor and emotion processing depend on different fronto-basal ganglia circuits. Distinct sub-regions of the subthalamic nucleus (STN) may modulate these circuits. We evaluated whether stimulation targeted at separate territories in the STN region would differentially affect motor and emotion function. In a double-blind design, we studied twenty Parkinson's disease patients who had deep brain stimulation (DBS) electrodes implanted bilaterally in the STN. We stimulated either dorsal or ventral contacts of the STN electrodes on separate days in each patient and acquired behavioral measures. Dorsal contact stimulation improved motor function by reducing scores on the Unified Parkinson's Disease Rating Scale and by reducing both reaction time and reaction time variability compared to ventral contact stimulation. By contrast, ventral contact stimulation led to an increase in positive emotion compared to dorsal contact stimulation. These results support the hypothesis that different territories within the STN region implement motor and emotion functions.  相似文献   

9.
Deep brain stimulation (DBS) is now well established in the treatment of intractable movement disorders. Over the past decade the clinical applications have expanded into the realm of psychosurgery, including depression and obsessive compulsive disorder (OCD). The optimal targets for electrode placement in psychosurgery remain unclear, with numerous anatomical targets reported for the treatment of OCD. We present four patients with Tourette’s syndrome and prominent features of OCD who underwent DBS of the anteromedial globus pallidus internus (GPi) to treat their movement disorder. Their pre-operative and post-operative OCD symptoms were compared, and responded dramatically to surgery. On the basis of these results, we propose the anteromedial (limbic) GPi as a potential surgical target for the treatment of OCD, and furnish data supporting its further investigation as a DBS target for the treatment of psychiatric conditions.  相似文献   

10.
Deep brain stimulation (DBS) for psychiatric disorders refractory to conventional treatments are currently been performed based on the knowledge obtained in the motor disorder surgery and mainly in Parkinson's disease. Depression, obsessive-compulsive disorder (OCD) and Tourette syndrome, all of them are cortico-striato-thalamo-cortical pathological process involved in the limbic loop of the basal ganglia. This review describes the different targets in these pathological neuro-psychiatric disorders. For OCD there are currently two targets, ventral striatum (VS) Accumbens nucleus (Nacc) and the subthalamic nucleus (STN). In refractory depression the subgenual area (25 Brodmann area) and VS/Nacc. For Tourette syndrome the ventralis oralis internus and centromedianum/parafascicularis of the thalamus (Voi and CM/Pf) and the internal part of the globus pallidus (GPi). Currently there are no specific surgical target for each pathological disorder because clinical results reported are very similar after stimulation surgery. In other point, a selected surgical target also may improve different pathologies.  相似文献   

11.
It is widely accepted that abnormalities in the frontal area of the brain underpin the pathophysiology of obsessive‐compulsive disorder (OCD). Fundamental to this investigation is the delineation of frontal white matter tracts including dorsal and ventral frontal projections of interhemispheric connections. While previous investigations of OCD have examined the dorsal and ventral frontal regions, the corresponding callosal connections have not been investigated, despite their importance. We recruited twenty patients with OCD (15 drug‐naïve and 5 currently unmedicated) and demographically similar healthy controls, and conducted fiber tractography and post hoc quantitative analysis using diffusion tensor imaging. We extracted fractional anisotropy (FA) of the fronto‐callosal fibers along the entire length of the tract. Function‐specific [by the Brodmann area region‐of‐interest (ROI) approach] and region‐specific (by the length‐parameterization approach) tracts were defined. In addition, we devised a new index of dorsal‐ventral imbalance (DVII) of fiber integrity. Significant FA decreases were observed in orbitofrontal and dorsolateral prefrontal projections of the corpus callosum (P < 0.05, false discovery rate‐corrected) with higher function/region sensitivity than voxel‐based or ROI‐based approaches. Importantly, OCD patients also exhibited significantly higher ventral‐greater‐than‐dorsal asymmetry of FA values than normal controls (P < 0.05, FDR‐corrected). This study is the first to investigate fiber integrity in the dorsal/ventral frontal parts of the callosal tractography in unmedicated OCD patients. Using a more quantitative method in terms of functional and regional specificity than previous studies, we report abnormalities in interhemispheric connectivity of both dorsal and ventral networks in the pathophysiology of OCD. Hum Brain Mapp 33:2441–2452, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder that affects 2% of the general population. Despite optimal cognitive-behavioral and pharmacologic therapy, approximately 10% of patients remain treatment resistant. Currently, deep brain stimulation (DBS) is being investigated as an experimental therapy for treatment-refractory OCD. This review focuses on the efficacy and adverse events of all published DBS targets for OCD: anterior limb of the internal capsule, ventral striatum/ventral capsule, nucleus accumbens, nucleus subthalamicus, and inferior thalamic peduncle. Small studies with various designs indicate an overall average Yale-Brown Obsessive Compulsive Scale score decrease ranging from 6.8 to 31 points. The average overall responder rate is ±50%. The frequency of adverse events seems to be limited. Larger prospective studies including neuroimaging are needed to estimate adequately the true potential of DBS in treatment of OCD and to elucidate its underlying mechanism of action and optimal brain target. We conclude that DBS may be a promising and safe therapy for treatment-resistant OCD.  相似文献   

13.
Abstract

Objective: To descirbe smiling and euphoria induced by deep brain stimulation (DBS). Background and Significance: The brain systems inducing emotional experiences and displays are not entirely known, but the ventral striatum including the nucleus accumbens have been posited to play a critical role in mediating emotions with positive valence. DBS has been successfully employed for the treatment of movement disorders, and most recently obsessive compulsive disorder (OCD). The purpose of this report is to describe the emotional changes associated with stimulation of the ventral striatum. Methods: A single patient with intractable OCD had electrode arrays placed in the right and left anterior limbs of the internal capsule and region of the nucleus accumbens. Changes in facial movement during stimulation were quantified by video recording. Ten video segments, time locked to the onset of stimulation, were digitized and changes in pixel intensity that occurred over both sides of the lower face, on a frame by frame basis, following stimulation onset were computed. These summed changes in pixel intensity represented the dependent variable of “entropy” and directly corresponded to changes in light reflectance that occur during facial movement. Results: During stimulation on both the right and left side, the patient consistently developed a half smile on the side of the face contralateral to the stimulating electrode, and also became euphoric. The effect ceased when DBS was discontinued. Conclusions: DBS in the region of the nucleus accumbens produced smile and euphoria suggesting that alterations in the ventral striatum may result in emotional experience and displays. We hypothesize the existence of a limbic-motor network responsible for such changes. This observation suggests that DBS may be useful as a therapy for mood disorders.  相似文献   

14.
The subcallosal cingulate (SCC) area is a putative hub in the brain network underlying depression. Deep brain stimulation (DBS) targeting a particular subregion of SCC, identified as the intersection of forceps minor (FM), uncinate fasciculus (UCF), cingulum and fronto‐striatal fiber bundles, may be critical to a therapeutic response in patients with severe, treatment‐resistant forms of major depressive disorder (MDD). The pattern and variability of the white matter anatomy and organization within SCC has not been extensively characterized across individuals. The goal of this study is to investigate the variability of white matter bundles within the SCC that structurally connect this region with critical nodes in the depression network. Structural and diffusion data from 100 healthy subjects from the Human Connectome Project database were analyzed. Anatomically defined SCC regions were used as seeds to perform probabilistic tractography and to estimate the connectivity from the SCC to subject‐specific target areas believed to be involved in the pathology of MDD including ventral striatum (VS), UCF, anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC). Four distinct areas of connectivity were identified within SCC across subjects: (a) postero‐lateral SCC connectivity to medial temporal regions via UCF, (b) postero‐medial connectivity to VS, (c) superior‐medial connectivity to ACC via cingulum bundle, and (d) antero‐lateral connectivity to mPFC regions via forceps minor. Assuming white matter connectivity is critical to therapeutic response, the improved anatomic understanding of SCC as well as an appreciation of the intersubject variability are critical to developing optimized therapeutic targeting for SCC DBS.  相似文献   

15.
Individual differences in traits such as impulsivity involve high reward sensitivity and are associated with risk for substance use disorders. The ventral striatum (VS) has been widely implicated in reward processing, and individual differences in its function are linked to these disorders. Dopamine (DA) plays a critical role in reward processing and is a potent neuromodulator of VS reactivity. Moreover, altered DA signaling has been associated with normal and pathological reward-related behaviors. Functional polymorphisms in DA-related genes represent an important source of variability in DA function that may subsequently impact VS reactivity and associated reward-related behaviors. Using an imaging genetics approach, we examined the modulatory effects of common, putatively functional DA-related polymorphisms on reward-related VS reactivity associated with self-reported impulsivity. Genetic variants associated with relatively increased striatal DA release (DRD2 -141C deletion) and availability (DAT1 9-repeat), as well as diminished inhibitory postsynaptic DA effects (DRD2 -141C deletion and DRD4 7-repeat), predicted 9-12% of the interindividual variability in reward-related VS reactivity. In contrast, genetic variation directly affecting DA signaling only in the prefrontal cortex (COMT Val158Met) was not associated with variability in VS reactivity. Our results highlight an important role for genetic polymorphisms affecting striatal DA neurotransmission in mediating interindividual differences in reward-related VS reactivity. They further suggest that altered VS reactivity may represent a key neurobiological pathway through which these polymorphisms contribute to variability in behavioral impulsivity and related risk for substance use disorders.  相似文献   

16.
Dual-probe microdialysis (with HPLC and electrochemical detection) in freely moving rats and single-unit recording in anesthetized rats were used to study the extent to which impulse flow through the ventral tegmental area (VTA) contributes to elevations in nucleus accumbens (NAS) dopamine (DA) evoked by stimulation of the ventral subiculum (VS). During perfusion of artificial extracellular fluid into the VTA, injections of 0.74 microgram of the excitatory amino acid NMDA into the VS elevated accumbens DA to >150% of basal values. During intra-VTA perfusion of either 1 microM tetrodotoxin (which blocks impulse flow) or 1 mM kynurenic acid (which blocks excitatory glutamate receptors), injections of NMDA into the VS failed to elevate accumbens DA. Thus, increased impulse flow through VTA DA neurons, mediated by excitatory glutamate inputs to this region, appears critical for VS stimulation to elevate NAS DA. Increased impulse flow through VTA DA neurons was confirmed using single-unit recording in anesthetized rats. Intra-VS NMDA injections increased the firing rates of 45% (14 of 31), decreased the firing rates of 13% (4 of 31), and had no effect on 42% (13 of 31) of VTA DA neurons. Increases in firing rates were evident within 15 min of NMDA injections, a time at which VS NMDA injections elevate accumbens DA in awake animals. The results of the present experiments identify the VTA as a critical site through which outputs from the VS modulate NAS dopaminergic neurotransmission.  相似文献   

17.
Orthostatic tremor (OT) is a disabling movement disorder associated with postural and gait impairment in the elderly. Medical therapy often yields insufficient benefit. We report the clinical and electrophysiological data on two patients with medication‐refractory OT treated with deep brain stimulation of the ventral intermediate thalamic nucleus (Vim DBS). Patient 1 underwent bilateral deep brain stimulation (DBS) and Patient 2 unilateral Vim DBS following 28 and 30 years of disease duration, respectively. Both patients showed increased latency to symptom onset after rising from a seated position, improved tolerance for prolonged standing, and slower crescendo of tremor severity when remaining upright. Postoperative evaluation demonstrated decreased amplitude of electromyographic activity with persistence of well‐defined oscillatory behavior showing strong coherence at 15 Hz between all muscles tested in the upper and lower limbs. Postural sway was unchanged. Clinical benefits have been sustained for over 18 months in Patient 1, and receded after 3 months in Patient 2. These findings support the consideration of bilateral Vim DBS implantation as a therapeutic option in patients with medically refractory OT. Further efficacy studies on chronic stimulation to disrupt the abnormal oscillatory activity in this disorder are warranted. © 2008 Movement Disorder Society  相似文献   

18.
Obsessive compulsive disorder (OCD) is an anxiety disorder characterized by repeated, unwanted thoughts and behaviors. Individuals with this condition often experience significant emotional distress secondary to their symptoms. Additionally, impairments in attention/concentration, processing speed, and executive functions are typically observed. The exact pathology of OCD remains unknown; consequently, it can be difficult to treat patients with severe symptomatology. Deep brain stimulation (DBS) may be a viable treatment option for individuals who do not respond to medication and/or cognitive behavioral therapy. The following case discusses DBS of the anterior limb of the internal capsule for a patient with severe, therapy-refractory OCD, including pre- to postoperative neurocognitive and psychiatric changes.  相似文献   

19.
We report two male patients with medically intractable epilepsy and obsessive-compulsive disorder (OCD) symptoms. Both patients experienced remission of obsessive-compulsive symptoms after surgical treatment of epilepsy. Although the surgeries targeted different brain regions, the two patients had in common unilateral anterior cingulate cortex ablation. On the basis of these observations, we discuss the pathophysiology of OCD symptoms, emphasizing the role of corticosubcortical pathways in their genesis. Our data suggest that surgeries that affect neural loops associated with obsessive-compulsive symptoms can lead to an improvement of OCD; however, the structures responsible for this effect cannot be conclusively determined.  相似文献   

20.

Objective:

The underlying hypothesis of our work is that specific clinical neuropsychiatric benefits can be achieved by selective activation of specific axonal pathways during deep brain stimulation (DBS). As such, the goal of this study was to develop a method for identifying axonal pathways whose activation is most likely necessary for achieving therapeutic benefits during DBS.

Experimental design:

Our approach combined clinical data, diffusion tensor tractography, and computer models of patient‐specific neurostimulation to identify particular axonal pathways activated by DBS and determine their correlations with individual clinical outcome measures. We used this method to evaluate a cohort of seven treatment‐resistant depression patients treated with DBS of the ventral anterior internal capsule and ventral striatum (VC/VS).

Principal observations:

Clinical responders exhibited five axonal pathways that were consistently activated by DBS. All five pathways coursed lateral and medial to the VS or dorsal and lateral to the nucleus accumbens; however, details of their specific trajectories differed. Similarly, one common pathway was identified across nonresponders.

Conclusions:

Our method and preliminary results provide important background for studies aiming to expand scientific characterization of neural circuitry associated with specific psychiatric outcomes from DBS. Furthermore, identification of pathways linked to therapeutic benefit provides opportunities to improve clinical selection of surgical targets and stimulation settings for DBS devices. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号