首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genome-wide family-based linkage study of coeliac disease   总被引:2,自引:0,他引:2  
The susceptibility to develop coeliac disease (CD) has a strong genetic component, which is not entirely explained by HLA associations. Two previous genome wide linkage studies have been performed to identify additional loci outside this region. These studies both used a sib-pair design and produced conflicting results.
Our aim is to identify non-MHC genetic loci contributing to coeliac disease using a family based linkage study. We performed a genome wide search in 16 highly informative multiply affected pedigrees using 400 microsatellite markers with an average spacing of 10 cM. Linkage analysis was performed using lod score and model free methods.
We identified two new potential susceptibility loci with lod scores of 1.9, at 10q23.1, and 16q23.3. Significant, but lower lod scores were found for 6q14 (1.2), 11p11 (1.5), and 19q13.4 (0.9), areas implicated in a previous genome wide study. Lod scores of 0.9 were obtained for both D7S507, which lies 1 cM from the γT-cell receptor gene, and for D2S364, which lies 12 cM from the CTLA4 gene.  相似文献   

2.
Genomewide scans of bipolar disorder (BP) have not produced consistent linkage findings. Follow‐up studies using enlarged samples and enhanced marker density can bolster or refute claims of linkage and pave the way to gene discovery. We conducted linkage and association analyses, using a ~3‐cM density map of 10 candidate regions, in a large BP pedigree sample (865 individuals from 56 pedigrees). The candidate regions were identified in a previous 10‐cM genome‐wide scan using a subset of this sample (373 individuals from 40 pedigrees). The present sample consists of the expanded original pedigrees (“core” pedigrees) and 16 additional pedigrees. We obtained experiment‐wide significant linkage on chromosome 7q34 (LOD score 3.53, P < 0.001), substantially stronger than that observed in the genome‐wide scan. Support for linkage was sustained on chromosomes 2p13, 4q31, 8q13, 13q32, 14q21, and 17q11, though at a more modest level. Family‐based association analysis was consistent with the linkage results at all regions with linkage evidence, except 4q an 8q, but the results fell short of statistical significance. Three of the previously implicated regions—9q31, 10q21 and 10q24—showed substantial reduction in evidence of linkage. Our results strongly support 7q34 as a region harboring susceptibility locus for BP. Somewhat lesser, yet notable support was obtained for 2p13, 4q31, 8q13, 13q32, 14q21, and 17q11. These regions could be considered prime candidates for future gene finding efforts. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Susceptibility genes for Alzheimer's disease are proving to be highly challenging to detect and verify. Population heterogeneity may be a significant confounding factor contributing to this difficulty. To increase the power for disease susceptibility gene detection, we conducted a genome-wide genetic linkage screen using individuals from the relatively isolated, genetically homogeneous, Amish population. Our genome linkage analysis used a 407-microsatellite-marker map (average density 7 cM) to search for autosomal genes linked to dementia in five Amish families from four Midwestern U.S. counties. Our highest two-point lod score (3.01) was observed at marker D4S1548 on chromosome 4q31. Five other regions (10q22, 3q28, 11p13, 4q28, 19p13) also demonstrated suggestive linkage with markers having two-point lod scores >2.0. While two of these regions are novel (4q31 and 11p13), the other regions lie close to regions identified in previous genome scans in other populations. Our results identify regions of the genome that may harbor genes involved in a subset of dementia patients, in particular the North American Amish community.  相似文献   

4.
Objective: To undertake a full genome-wide screen for Parkinson's disease susceptibility loci.

Methods: A genome-wide linkage study was undertaken in 227 affected sibling pairs from 199 pedigrees with Parkinson's disease. The pedigree sample consisted of 188 pedigrees from five European countries, and 11 from the USA. Individuals were genotyped for 391 microsatellite markers at ~10 cM intervals throughout the genome. Multipoint model-free affected sibling pair linkage analyses were carried out using the MLS (maximum LOD score) test.

Results: There were six chromosomal regions with maximum MLS peaks of 1 or greater (pointwise p<0.018). Four of these chromosomal regions appear to be newly identified regions, and the highest MLS values were obtained on chromosomes 11q (MLS = 1.60, at 91 cM, D11S4175) and 7p (MLS = 1.51, at 5 cM, D7S531). The remaining two MLS peaks, on 2p11–q12 and 5q23, are consistent with excess sharing in regions reported by other studies. The highest MLS peak was observed on chromosome 2p11–q12 (MLS = 2.04, between markers D2S2216 and D2S160), within a relatively short distance (~17 cM) from the PARK3 region. Although a stronger support of linkage to this region was observed in the late age of onset subgroup of families, these differences were not significant. The peak on 5q23 (MLS = 1.05, at 130 cM, D5S471) coincides with the region identified by three other genome scans. All peak locations fell within a 10 cM distance.

Conclusions: These stratified linkage analyses suggest linkage heterogeneity within the sample across the 2p11–q12 and 5q23 regions, with these two regions contributing independently to Parkinson's disease susceptibility.

  相似文献   

5.
Family and twin studies have suggested a genetic component in autism. We performed a genome-wide screen with 264 microsatellites markers in 51 multiplex families, using non-parametric linkage methods. Families were recruited by a collaborative group including clinicians from Sweden, France, Norway, the USA, Italy, Austria and Belgium. Using two-point and multipoint affected sib-pair analyses, 11 regions gave nominal P -values of 0.05 or lower. Four of these regions overlapped with regions on chromosomes 2q, 7q, 16p and 19p identified by the first genome-wide scan of autism performed by the International Molecular Genetic Study of Autism Consortium. Another of our potential susceptibility regions overlapped with the 15q11-q13 region identified in previous candidate gene studies. Our study revealed six additional regions on chromosomes 4q, 5p, 6q, 10q, 18q and Xp. We found that the most significant multipoint linkage was close to marker D6S283 (maximum lod score = 2.23, P = 0.0013).  相似文献   

6.
Four recent genome-wide screen studies in multiple sclerosis (MS) identified a number of candidate regions for susceptibility genes in addition to the HLA complex in 6p21. However, none of these regions provided formally significant evidence for genome-wide linkage. We have investigated such regions in 46 Swedish multiplex MS families, 28 singleton families, 190 sporadic MS patients and 148 normal controls by parametric and nonparametric linkage and association analysis. One microsatellite marker, in 12q23, provided evidence for association in addition to suggestive transmission distortion and slightly positive linkage. In addition, a marker in 7ptr-15 showed a significant transmission distortion as well as a highly significant score in affected pedigree member analysis, but not quite significant deviations in association analysis. One of three markers in 5p, a region implicated in all four previous studies, showed a weakly positive lod score, but no other evidence of importance. Markers in 2p23, 5q11-13, 6q25, 7q21-22, 11q21-23, 13q33-34, 16p13.2, 18p11.32-23, Xp21.3 provided little or no evidence of importance for MS. In summary, these data support the importance of genome-wide screens in the identification of new candidate loci in polygenic disorders.  相似文献   

7.
The role of genetic factors in determining susceptibility to multiple sclerosis is well established but, despite the global distribution of the disease, systematic efforts to locate susceptibility genes have concentrated exclusively on populations from the Northern Hemisphere. We performed a genome wide screen of linkage in the Australian population using a panel of 397 microsatellite markers in 54 affected sibling-pairs. Multipoint linkage analysis revealed four regions of suggestive linkage (on chromosomes 2p13, 4q26-28, 6q26 and Xp11) and 18 additional regions of potential linkage (at 1q43-44, 3q13-24, 4q24, 4q31-34, 5q11-13, 6q27, 7q33-35, 8p23-21, 9q21, 13q31-32, 16p13, 16p11, 16q23-24, 17p13, 18p11, 20p12-11, Xp21-11 and Xq23-28). Our results contribute to the available data adding new provisional regions of linkage as well as increasing support for areas previously implicated in genetic susceptibility to multiple sclerosis.  相似文献   

8.
Genome-wide scan for adult onset primary open angle glaucoma   总被引:5,自引:0,他引:5  
Adult onset primary open angle glaucoma is a leading cause of blindness throughout the world. The disease results in an apoptotic death of retinal ganglion cells that is usually associated with an elevation of intraocular pressure. Familial aggregation of the disorder provides evidence for strong genetic influences that are likely to be the result of multiple susceptibility genes. A two-stage genome scan to identify the genomic locations of glaucoma susceptibility genes was performed using an initial pedigree set of 113 affected sibpairs and a second pedigree set of 69 affected sibpairs. Linkage analysis was performed using both model-dependent (lod score) and model-independent affected relative pair and sibpair methods. Twenty-five regions identified by the initial scan were further investigated using the second pedigree set. In the combined data analysis, regions located on chromosomes 2, 6, 9, 11, 14, 17 and 19 continued to produce model-dependent lod scores and/or an MLS >1.0, while five regions (2, 14, 17p, 17q and 19) produced an MLS >2. 0. Multipoint analysis using ASPEX also showed significant results on chromosomes 2, 14, 17p, 17q and 19. These results are an important step towards the identification of genes responsible for the genetic susceptibility to this blinding condition.  相似文献   

9.
Several recent reports of possible susceptibility loci for bipolar affective disorder (BAD) have identified sites on a number of chromosomes. Specifically, two Danish studies have suggested the presence of a susceptibility locus for BAD on chromosome 16p13. As the first step of a whole genome scan, we screened 12 Australian families with markers at 16p13 and also a number of markers spanning the entirety of chromosome 16. Linkage analysis was undertaken using both the parametric lod score method (two- and multipoint) with different models and diagnostic thresholds, and the nonparametric affected pedigree member (APM) method. Results of lod score analysis convincingly excluded the 16p13 region from linkage to BAD in these families, while APM provided no support for linkage. Furthermore, using the broad definition of BAD, with individuals affected by bipolar I and II and recurrent unipolar disorders included, the entire chromosome was excluded from linkage to BAD with autosomal-dominant transmission at a maximum age-specific penetrance of 60%, and with autosomal-dominant and recessive modes of transmission at a maximum age-specific penetrance level of 90%. Diagnostic thresholds which did not include unipolar affected individuals were somewhat less informative. However, a majority (between 63–96%, depending upon the model) of the chromosome was clearly excluded using narrow diagnostic thresholds. Moreover, no positive lod scores were obtained at θ = 0.00 for any tested model or diagnostic threshold. Our results indicate that no linkage exists between BAD and chromosome 16 markers in this group of Australian families. Am. J. Med. Genet. 74:304–310, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Crohn's disease and ulcerative colitis (the inflammatory bowel diseases) have a strong genetic component. Although over 20 putative susceptibility loci have been identified by individual genome scans, the majority of these loci have not been replicated. Many individual studies are at the lower limit of acceptable power for complex disease linkage analysis. Genome scan meta-analysis (GSMA), by use of sample sizes an order of magnitude greater than individual linkage studies, has increased power to detect novel loci, may confirm or refute regions detected in smaller individual studies, and enables regions to be prioritized for further gene identification efforts. Genome scan data (markers, significance scores) were obtained from 10 separate studies and meta-analysis was performed using the GSMA method. These studies comprised 1952 inflammatory bowel disease, 1068 Crohn's disease and 457 ulcerative colitis affected relative pairs. Study results were divided into 34 cM chromosomal bins, ranked, weighted by study size, summed across studies and bin-by-bin significance obtained by simulation. A region on chromosome 6p (containing the HLA) met genome wide significance for inflammatory bowel disease. Loci meeting suggestive significance for inflammatory bowel disease were 2q, 3q, 5q, 7q and 16 (NOD2/CARD15 region); Crohn's disease, 2q, 3q, 6p, 16 (NOD2/CARD15 region), 17q, 19p; and ulcerative colitis, 2q. Clustering of adjacent bins was observed for chromosomes 6p, 16, 19p. The meta-analysis has identified novel loci and prioritized genomic regions for further gene identification studies.  相似文献   

11.
The 11q21-22 region is of interest for schizophrenia because several candidate genes are located in this section of the genome. The 11q21-22 region, including DRD2, was surveyed by linkage analysis in a sample (N = 242) made of four large multigenerational pedigrees densely affected by schizophrenia (SZ) and eight others by bipolar disorder (BP). These pedigrees were ascertained in a large area of Eastern Quebec and Northern New Brunswick and are still being extended. Family members were administered a “consensus best-estimate diagnosis procedure” (DSM-III-R criteria) blind to probands and relatives' diagnosis and to pedigree assignment (SZ or BP). For linkage analysis, 11 microsatellite polymorphism (CA repeat) markers, located at 11q21-22, and comprising DRD2, were genotyped. Results show no evidence of a major gene for schizophrenia. However, a maximum lod score of 3.41 at the D11S35 locus was observed in an affected-only analysis of one large SZ family, pedigree 255. Whether or not the positive linkage trend in pedigree 255 reflects a true linkage for a small proportion of SZ needs to be confirmed through the extension of this kindred and through replication. © 1995 Wiley-Liss, Inc.  相似文献   

12.
We have completed a genome wide linkage scan using >5700 informative single-nucleotide polymorphism (SNP) markers (Illumina IV SNP linkage panel) in 642 Caucasian families containing affected sibling pairs with rheumatoid arthritis (RA), ascertained by the North American Rheumatoid Arthritis Consortium. The results show striking new evidence of linkage at chromosomes 2q33 and 11p12 with logarithm of odds (LOD) scores of 3.52 and 3.09, respectively. In addition to a strong and broad linkage interval surrounding the major histocompatibility complex (LOD>16), regions with LOD>2.5 were observed on chromosomes 5 and 10. Additional linkage evidence (LOD scores between 1.46 and 2.35) was also observed on chromosomes 4, 7, 12, 16 and 18. This new evidence for multiple regions of genetic linkage is partly explained by the significantly increased information content of the Illumina IV SNP linkage panel (75.6%) compared with a standard microsatellite linkage panel utilized previously (mean 52.6%). Stratified analyses according to whether or not the sibling pair members showed elevated anticyclic citrullinated peptide titers indicates significant variation in evidence for linkage among strata on chromosomes 4, 5, 6 and 7. Overall, these new linkage data should reinvigorate efforts to utilize positional information to identify susceptibility genes for RA.  相似文献   

13.
Systemic lupus erythematosus (SLE) is an autoimmune disease with complex genetics. We evaluated pedigrees multiplex for SLE that had an affected with antinucleolar antibodies to increase the homogeneity for genetic linkage analysis. We found a significant linkage effect on chromosome 11q14 at marker D11S2002 in African-American Pedigrees. This effect produced a maximum LOD score of 5.62 using a dominant inheritance model with 95% penetrance in males and 99% penetrance in females. The results were supported by multipoint linkage analysis. Fine mapping of the region with two additional markers within 6 cM of D11S2002 further provided evidence of linkage in this region. Linkage at D11S2002, named SLEH1, was previously found in some of these same African-American pedigrees multiplex for SLE, but who were stratified by hemolytic anemia (Kelly et al, submitted). In conclusion, an important SLE susceptibility gene, SLEH1 at 11q14, is identified in African-Americans when stratifying pedigrees by antinucleolar autoantibodies.  相似文献   

14.
Genetic linkage of schizophrenia to markers at 5q11.2–13.3 had been reported previously in five Icelandic and two British families, but attempts at replication in independent samples have been unsuccessful. We report here an update on the diagnoses and results of linkage analyses using newer highly polymorphic microsatellite markers at or near the loci D5S76 and D5S39 in the original sample of pedigrees and in two new family samples from Iceland and from Britain. The new results show a reduction in evidence for linkage in the original sample and evidence against linkage in the two new family samples. Although it is possible that a rare locus is present, perhaps in the region 5p14.1–13.1 rather than 5q11.2–13.3, it appears most likely that the original positive lod scores represent an exaggeration of the 'true' lod scores due to random effects and that the small lod scores we now obtain could have arisen by chance.  相似文献   

15.
Parkinson disease (PD) is the second most common neurodegenerative disorder. Despite the identification of five causative genes, the majority of PD etiology is still unknown. A region on chromosome 5q is one of the few regions of the genome found linked in multiple studies of familial PD. Analyses were performed using genotypic data from two independent research studies to evaluate rigorously the evidence of linkage on chromosome 5. The combined sample consisting of 1238 affected individuals from 569 multiplex PD families were genotyped for a common set of 20 microsatellite markers spanning an 80 cM region on chromosome 5q. Two disease models were employed and model-free linkage analyses were performed to detect linkage to a PD susceptibility gene and also to detect linkage to a quantitative phenotype, age of onset of PD. There was little evidence of linkage using either a narrower or broader disease definition (lod <0.5). Analyses employing age of onset of PD as the phenotype produced a lod score of 1.8. These results in a very large sample of familial PD suggest that it is unlikely that a PD susceptibility gene is located on chromosome 5q. Evidence for a locus contributing to the age of onset of PD is modest at best (empirical P-value=0.07).  相似文献   

16.
Several studies provide suggestive evidence of a susceptibility locus for bipolar disorder at chromosome 21q22-23. In an attempt to replicate these findings, we have analyzed linkage to 11 polymorphic markers from this region in 18 Bulgarian pedigrees with affective disorder. Two-point linkage analysis under assumption of homogeneity and a dominant model with reduced penetrance produced modest positive values for some of the markers tested under a 'narrow' phenotype definition, including bipolar I and II, and schizoaffective disorder. The maximum two-point score (lod=1.76, theta=0.00) was at marker D21S1919. Non-parametric linkage analysis under the same phenotype model, yielded positive NPLall values (P<0.05) over the region between markers D21S211 and D21S416, with a peak at D21S1252 (NPL Zall=2.32, P=0.0003). The multipoint lod score (GENEHUNTER) reached a suggestive value for linkage (lod=2.10) also at marker D21S1252. The results under a recessive model were completely negative. These data add to the evidence for the existence of a susceptibility locus for bipolar affective disorder on chromosome 21q22.  相似文献   

17.
It is well established that gene interactions influence common human diseases, but to date linkage studies have been constrained to searching for single genes across the genome. We applied a novel approach to uncover significant gene-gene interactions in a systematic two-dimensional (2D) genome-scan of essential hypertension. The study cohort comprised 2076 affected sib-pairs and 66 affected half-sib-pairs of the British Genetics of HyperTension study. Extensive simulations were used to establish significance thresholds in the context of 2D genome-scans. Our analyses found significant and suggestive evidence for loci on chromosomes 5, 9, 11, 15, 16 and 19, which influence hypertension when gene-gene interactions are taken into account (5q13.1 and 11q22.1, two-locus lod score=5.72; 5q13.1 and 19q12, two-locus lod score=5.35; 9q22.3 and 15q12, two-locus lod score=4.80; 16p12.3 and 16q23.1, two-locus lod score=4.50). For each significant and suggestive pairwise interaction, the two-locus genetic model that best fitted the data was determined. Regions that were not detected using single-locus linkage analysis were identified in the 2D scan as contributing significant epistatic effects. This approach has discovered novel loci for hypertension and offers a unique potential to use existing data to uncover novel regions involved in complex human diseases.  相似文献   

18.
Hereditary multiple exostoses (EXT) is an autosomal dominantdisorder of enchondral bone formation characterized by multiplebony outgrowths (exostoses), with progression to osteosarcomain a minority of cases. The exclusive involvement of skeletalabnormalities distinguishes EXT from the clinically more complexLanger – Giedion syndrome (LGS), which is associated withdeletions at chromosome 8q24. Previously, linkage analysis hasrevealed a locus for EXT in the LGS region on chromosome 8q24.However, locus heterogeneity was apparent with 30% of the familiesbeing unlinked to 8q24. We report on two large pedigrees segregatingEXT in which linkage to the LGS region was excluded. To localizethe EXT gene(s) in these families we performed a genome searchincluding 254 microsatellite markers dispersed over all autosomesand the X chromosome. In both families evidence was obtainedfor linkage to markers from the proximal short and long armsof chromosome 11. Two-point analysis gave the highest lod scorefor D11S554 (Zmax = 7.148 at theta = 0.03). Multipoint analysisindicated a map position for the EXT gene between D11S905 andD11S916, with a peak multipoint lod score of 8. 10 at 6 cM fromD11S935. The assignment of a second locus for EXT to the pericentromericregion of chromosome 11 implicates an area that is particularlyrich in genes responsible for developmental abnormalities andneoplasia.  相似文献   

19.
We are conducting a genome search for a predisposing locus to bipolar (manicdepressive) illness by genotyping 21 moderate-sized pedigrees. We report linkage data derived from screening marker loci on chromosomes 2, 3, 4, 7, 9, 10p, 11p, 22, and the pseudoautosomal region at Xpter. To analyze for linkage, two-point marker to illness lod scores were calculated under a dominant model with either 85% or 50% maximum penetrance and a recessive model with 85% maximum penetrance, and two affection status models. Under the dominant high penetrance model the cumulative lod scores in the pedigree series were less than ?2 at Θ = 0.01 in 134 of 142 loci examined, indicating that if the disease is genetically homogeneous linkage could be excluded in these marker regions. Similar results were obtained using the other genetic models. Heterogeneity analysis was conducted when indicated, but no evidence for linkage was found. In the course of mapping we found a positive total lod score greater than +3 at the D7S78 locus at Θ = 0.01 under a dominant, 50% penetrance model. The lod scores for additional markers within the D7S78 region failed to support the initial finding, implying that this was a spurious positive. Analysis with affected pedigree member method for COL1A2 and D7S78 showed no significance for linkage but for PLANH1, at the weighting functions f(p) = 1 and f(p) = 1/sqrt(p) borderline P values of 0.036 and 0.047 were obtained. We also detected new polymorphisms at the mineralocorticoid receptor (MLR) and calmodulin II (CALMII) genes. These genes were genetically mapped and under affection status model 2 and a dominant, high penetrance mode of transmission the lod scores of < ?2 at Θ = 0.01 were found. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Family-based linkage disequilibrium (LD) mapping has been suggested as a powerful and practical alternative to linkage analysis. We have performed a genome-wide LD survey of susceptibility loci for schizophrenia in a Japanese population. We first typed 119 schizophrenic pedigrees (357 individuals) using 444 microsatellite markers, and analyzed the data using the pedigree disequilibrium test. This analysis revealed 14 markers demonstrating significant transmission distortion. To corroborate these findings, the statistical methods were changed to the extended transmission disequilibrium test (ETDT), using 80 independent complete trios (schizophrenic proband and both parents), with 68 derived from initial pedigrees and 12 newly recruited trios. ETDT supported two markers for continued association, D11S987 on 11q13.3 (P = 0.00009) and D16S423 on 16p13.3 (P = 0.002). We scrutinized the most significant genomic locus on 11q11-13 by adding 26 new markers for analysis. Results of three-marker haplotype analysis in the region showed evidence of association with schizophrenia (most significant haplotype P = 0.0005, global P = 0.022). Although the present study may have missed other potential genomic intervals because of the sparse mapping density, we hope that it has identified promising anchor points for further studies to identify risk-conferring genes for schizophrenia in the Japanese population. In addition, we provide useful information on genomic LD structures in Japanese populations, which can be used for LD mapping of complex diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号