首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TCL1 oncogene on human chromosome 14q32.1 is involved in chromosome translocations [t(14;14)(q11;q32.1) and t(7;14)(q35;q32.1)] and inversions [inv14(q11;q32.1)] with TCR alpha/beta loci in T-cell leukemias, such as T-prolymphocytic (T-PLL). It is also involved in T- acute and -chronic leukemias arising in cases of ataxia-telangiectasia (AT), an immunodeficiency syndrome. Similar chromosomal rearrangements occur also in the clonally expanded T cells in AT patients before the appearance of the overt leukemia. We have analyzed the expression of TCL1 mRNA and protein in peripheral blood lymphocytes (PBLs) from four AT cases and from healthy controls. We found that the TCL1 gene was overexpressed in the PBLs of an AT patient with a large clonal T-cell population exhibiting the t(14;14) translocation but not in the lymphocytes of the other cases. Fluorescence in situ hybridization of the TCL1 genomic locus to lymphocyte metaphases from the AT patient with the T-cell clonal expansion showed that the breakpoint of the t(14;14) translocation lies within the TCL1 locus and is accompanied by an inverted duplication of the distal part of chromosome 14. These data indicate that TCL1 is activated in preleukemic clonal cells as a consequence of chromosome translocation involving sequences from the TCR locus at 14q11. Deregulation of TCL1 is the first event in the initiation of malignancy in these types of leukemias and represents a potential tool for clinical evaluation.  相似文献   

2.
We have detected and cloned two rearrangements in the T-cell receptor alpha locus from a clone of somatic cell hybrids carrying a t(14;14)(q11;q32) chromosomal translocation derived from an ataxia telangiectasia patient with T-cell chronic lymphocytic leukemia. The T-cell clone carrying the t(14;14) chromosomal translocation was known to be present for greater than 10 years before the onset of overt leukemia. One molecular rearrangement of the T-cell receptor alpha locus corresponded to a functional variable-joining region (V-J) joining, whereas the other derived from the breakpoint of the t(14;14)(q11;q32) translocation. Chromosomal in situ hybridization of the probe derived from the t(14;14) breakpoint localized the breakpoint region to 14q32.1, apparently the same region that is involved in another ataxia telangiectasia characteristic chromosome translocation, t(7;14)(q35;q32). The 14q32.1 breakpoint is at least 10,000 kilobase pairs (kbp) centromeric to the immunoglobulin heavy chain locus. Sequence analysis of the breakpoint indicates the involvement of a J alpha sequence during the translocation. Comigration of high-molecular weight DNA fragments involved with t(7;14) and t(14;14) translocations suggests the presence of a cluster of breakpoints in the 14q32.1 region, the site of a putative oncogene, TCL1.  相似文献   

3.
Cytogenetic abnormalities involving chromosome 14 band q32 are consistently observed in human T-cell tumors. Patients with ataxia-telangiectasia (AT) are especially prone to development of these tumors, which frequently carry either inversion inv(14)(q11;q32) or translocation t(14;14) (q11;q32) chromosomes. We have previously shown that the cytogenetic breakpoints of one t(14;14)(q11;q32) chromosome and two inv(14)(q11;q32) chromosomes in T-cell tumors from AT and non-AT patients join the T-cell receptor alpha chain locus, at chromosome band 14q11, with a region(s) at 14q32 centromeric of the immunoglobulin heavy chain variable region (VH) gene IGHV. We now show that these two inv(14) breakpoints are linked by 2.1 kb of germ-line 14q32 DNA and that the three breakpoints define, by in situ hybridization analysis, a single locus at chromosome band 14q32.1 located about 15-20 million base pairs on the centromeric side of the IGH locus. Sequence analysis of the 14q32.1 breakpoint regions indicates that abnormal recombination does not universally result from mistaken V-D-J joining (D = diversity region; J = joining region). Therefore, we invoke a tumor selection model to describe the role of the 14q32.1 locus in tumor development.  相似文献   

4.
The TCL1 oncogene on human chromosome 14q32.1 is involved in the development of T cell leukemia in humans. Its expression in these leukemias is activated by chromosomal translocations and inversions at 14q32.1. Here we report the isolation and characterization of a new member of the TCL1 gene family, TCL1b, located approximately 16 kb centromeric of TCL1. The 1.2-kb TCL1b cDNA encodes a 14-kDa protein of 128 aa and shows 60% similarity to Tcl1. Expression profiles of TCL1 and TCL1b genes are very similar: both genes are expressed at very low levels in normal bone marrow and peripheral lymphocytes but are activated in T cell leukemia by rearrangements of the 14q32.1 region. Thus, translocations and inversions at 14q32. 1 in T cell malignancies involve two oncogenes.  相似文献   

5.
Human leukemic T cells carrying a t(10;14)(q24;q11) chromosome translocation were fused with mouse leukemic T cells, and the hybrids were examined for genetic markers of human chromosomes 10 and 14. Hybrids containing the human 10q+ chromosome had the human genes for terminal deoxynucleotidyltransferase that has been mapped at 10q23-q25 and for C alpha [the constant region of TCRA (the alpha-chain locus of the T-cell antigen receptor gene)], but not for V alpha (the variable region of TCRA). Hybrids containing the human 14q- chromosome retained the V alpha genes. Thus the 14q11 breakpoint in the t(10;14) chromosome translocation directly involves TCRA, splitting the locus in a region between the V alpha and the C alpha genes. These results suggest that the translocation of the C alpha locus to a putative cellular protooncogene located proximal to the breakpoint at 10q24, for which we propose the name TCL3, results in its deregulation, leading to T-cell leukemia. Since hybrids with the 10q+ chromosome also retained the human terminal deoxynucleotidyltransferase gene, it is further concluded that the terminal deoxynucleotidyltransferase locus is proximal to the TCL3 gene, at band 10q23-q24.  相似文献   

6.
7.
The translocation t(10;14)(q24;q11) is an acquired change seen in 4% to 7% of T-cell acute lymphoblastic leukemias (T-ALL). We previously demonstrated that the translocation juxtaposes the T-cell receptor (TCR) delta-chain gene in chromosome 14q11 with a novel region in chromosome 10q24 and is likely catalyzed by recombinases normally involved in the generation of immunoglobulin and TCR diversity. We now present the sequence of a gene on chromosome 10 that lies immediately telomeric of the breakpoints in nine new ALL patients with acquired rearrangements in 10q24. The gene is a novel human homeobox gene and is expressed in leukemic cells from ALL patients with rearrangements in a defined chromosome 10 breakpoint cluster region, but not in other adult tissues or cell lines. This new gene has been designated HOX11. Our results strongly support a role for homeobox genes in oncogenesis and may represent the first example of a human cancer in which deregulated expression of an unaltered homeobox gene is involved in tumorigenesis.  相似文献   

8.
9.
The T-cell receptor (TCR) alpha/delta chain locus on chromosome 14q11 is nonrandomly involved in translocations and inversions in human T-cell neoplasms. We have analyzed three acute T-lymphoblastic leukemia samples carrying a t(10;14)(q24;q11) chromosome translocation by means of somatic cell hybrids and molecular cloning. In all cases studied the translocation splits the TCR delta chain locus. Somatic cell hybrids containing the human 10q+ chromosome resulting from the translocation retain the human terminal deoxynucleotidyltransferase gene mapped at 10q23-q24 and the diversity and joining, D delta 2-J delta 1, regions of the TCR delta chain, but not the V alpha region (variable region of the TCR alpha chain), demonstrating that the split occurred within the V alpha-D delta 2 region. Molecular cloning of the breakpoint junctions revealed that the TCR delta chain sequences involved are made from the D delta 2 segment. The chromosome breakpoints are clustered within a region of approximately 263 base pairs of chromosome 10. The results suggest that the translocation of the TCR delta chain locus to a locus on 10q, which we have designated TCL3, results in deregulation of this putative oncogene, leading to acute T-cell leukemia.  相似文献   

10.
We report a case of T cell prolymphocytic leukemia (T-PLL) involving blast transformation. At the initial diagnosis, most peripheral blood cells demonstrated proliferation of indolent T cell small cell variants, i.e., small to medium prolymphocytes with inconspicuous nucleoli and a normal karyotype. These cells were positive for surface CD4, CD5, and CD7, and cytoplasmic CD3, but negative for surface CD3 and CD8 and cytoplasmic terminal deoxynucleotidyl transferase (TdT). The T cell receptor (TCR) Cβ1 gene was rearranged in the cells. Large prolymphocytes with prominent nucleoli, irregular nuclei, and cytoplasmic vacuoles that exhibited chromosome 8 trisomy were observed about 1.5 years later. The CD4+CD8− single positive effector memory T cells transformed into surface CD4+CD8+ double positive precursor T cells. The clonal TCR gene rearrangement patterns of these cells were identical throughout the clinical course, suggesting clonal blast transformation. The CD4+CD8+ cells demonstrated increased chromosome 8 trisomy combined with complex chromosome abnormalities with t(14;14)(q11.2;q32) containing a 14q32 chromosome after transformation. T cell leukemia 1a (TCL1a) (14q32.1) may be implicated in this case. The TCL1a oncoprotein is expressed in approximately 70% of T-PLL cases. The disease gradually developed resistance to chemotherapy, and the patient died of the disease. It is known that indolent T-PLL can become aggressive. Therefore, similar transformations may occur in other aggressive T-PLL cases, particularly those involving trisomy 8 and TCL1a.  相似文献   

11.
The SKW-3 cell line, which was established from the malignant cells of a patient with T-cell chronic lymphocytic leukemia, is characterized by a translocation involving chromosome 8 (band q24) and chromosome 14 (band q11) [t(8;14)(q24;q11)]. To determine the position of the gene encoding the alpha chain of the T-cell receptor and of the human protooncogene myc (c-myc) in relation to the breakpoint junctions and to evaluate their possible role in the pathogenesis of T-cell neoplasia, we applied the techniques of in situ chromosomal hybridization and Southern blot analysis to SKW-3 cells. Our results indicate that the breakpoint on chromosome 14 at band q11 occurs close to a joining sequence of the gene encoding the alpha chain of the T-cell receptor. Additional rearrangements within the alpha-chain locus appear to split the variable region cluster. As a result of the rearrangements, the constant region of this gene, as well as some variable region segments, are translocated to chromosome 8, to the 3' side of the c-myc-coding exons. The identification of a breakpoint to the 3' side of c-myc suggests that this translocation is analogous to the variant (2;8) and t(8;22) translocations observed in the B-cell malignancies.  相似文献   

12.
The t(11;14)(q13;q32) translocation is associated with human B- lymphocytic malignancy. This translocation divides the IgH locus on chromosome 14q32 and may activate a postulated proto-oncogene, bcl-1, located on chromosome 11q13. Two samples of chronic lymphocytic leukemia with the t(11;14)(q32;q13) translocation were studied. The break in one sample was shown to join Jh sequences with the previously described bcl-1 major translocation cluster. DNA blots of the second sample suggested that Jh sequences were joined to a different breakpoint region on chromosome 11. This translocation was cloned and found to link the human Jh3 region and a new breakpoint region 63 kb telomeric of the major translocation cluster. This translocation occurred in part as the result of an aberrant D-J recombination. Recurrent translocations human B-lymphocytic malignancy. The definition of a new breakpoint region may aid the identification of the postulated bcl-1 gene.  相似文献   

13.
Chromosomal rearrangements in malignant T-cell disease frequently involve the chromosome bands containing the T-cell receptor genes. The RPMI 8402 cell line, which was established from the leukemia cells of a patient with T-cell acute lymphoblastic leukemia, is characterized by a translocation involving chromosome 14 (band q11) and chromosome 11 (band p15) [t(11;14)(p15;q11)]. By using in situ chromosomal hybridization and Southern blot analysis to examine RPMI 8402 cells, we determined that the break at 14q11 occurs within the variable region sequences of the T-cell receptor alpha-chain gene (TCRA); the break at 11p15 occurs between the HRAS1 gene and the genes for insulin and the insulin-like growth factor 2. These results suggest that the TCRA sequences activate a cellular gene located at 11p15 in malignant T-cell disorders.  相似文献   

14.
The translocation (11;14)(p13;q11) was observed in karyotypes of leukemic cells from a 3-year-old boy with T-cell acute lymphocytic leukemia (T-ALL). Since this translocation is a recurrent marker of T-ALL, we undertook to investigate its mode of formation and role in leukemogenesis. The cytogenetic breakpoint on chromosome 14 occurs in 14q11, the same band wherein lies the T-cell receptor alpha/delta chain gene; and Southern hybridization analysis of peripheral blood and bone marrow DNA uncovered a tumor-specific rearrangement in the D delta-J delta region of this locus. DNA encompassing the rearrangement was isolated by molecular cloning, and further analysis revealed it to be the t(11;14)(p13;q11) junction. Nucleotide sequence determination of the junction indicates that the 14q11 breakpoint occurs immediately adjacent to the D delta 2 gene segment. Hence, the translocation arose as an aberrant rearrangement between the downstream recombination signal of D delta 2 and a pseudo recombination signal adjacent to the chromosome 11 breakpoint. Finally, comparison of the breakpoint in band 11p13 with those of other translocations (11;14)(p13;q11) identified a breakpoint cluster region of approximately 1.2 kilobase-pairs (kb), alterations of which may promote the development of T-ALL.  相似文献   

15.
In a chromosome study in childhood T-cell leukemia/lymphoma, we found t(7;11)(q35;p13) in 2 patients, t(7;14) (q35;q11) in one patient, and t(7;14)(p15;q32) in 1 patient. Southern blotting and in situ chromosomal hybridization studies in one patient with the t(7;11) demonstrated that both alleles of the T-cell antigen receptor beta- subunit gene (TCRB) were rearranged, and that one TCRB allele had relocated from 7q35 to the fusion point in band p13 of the involved chromosome 11 (11p-). These findings suggest that juxtaposition of TCRB with the putative oncogene tcl-2 located in band 11p13 may be a critical step toward development of this T-cell leukemia/lymphoma. In the other two translocations, all breakpoints were sites for lymphocyte function genes, ie, 7q35 for TCRB, 14q11 for T-cell antigen receptor alpha-subunit gene (TCRA), 7p15 for T-cell antigen receptor alpha- subunit gene (TCRG), and 14q32 for immunoglobulin heavy-chain gene (IGH). Thus, the findings in these cases allow us to expand the above hypothesis and propose that the juxtaposition of TCRB or TCRG with tcl- 2, TCRA, or IGH through chromosomal translocation may activate a mechanism for the genesis of T-cell leukemia/lymphoma with these chromosome translocations.  相似文献   

16.
The MOLT-16 cell line, which was established from the malignant cells of a patient with T-cell acute lymphoblastic leukemia, is characterized by a translocation involving chromosome 8 (band q24) and chromosome 14 (band q11) [t(8;14)(q24;q11)]. To determine the position of the gene encoding the alpha chain of the T-cell receptor and of the protooncogene MYC (formerly c-myc) in relation to the breakpoint junction and to evaluate their possible role in the pathogenesis of T-cell neoplasia, we applied the techniques of in situ chromosomal hybridization, Southern blot analysis, and molecular cloning to MOLT-16 cells. Our results indicate that the breakpoint on chromosome 14 at band q11 occurs close to a joining sequence of the gene encoding the alpha chain of the T-cell receptor. The constant region and part of the joining region of this gene are translocated to the 3' side of the MYC exons. The breakpoints on chromosomes 8 and 14 are close to, but distinct from, those found in SKW-3, another T-cell leukemia cell line, which has a t(8;14). The identification of a breakpoint to the 3' side of MYC suggests that this recurring translocation is analogous to the variant t(2;8) and t(8;22) translocations observed in the B-cell malignancies.  相似文献   

17.
18.
We hybridized neoplastic cells from a patient with chromic lymphocytic leukemia of the B-cell type, which carried a reciprocal chromosomal translocation between chromosomes 11 (q13) and 14 (q32) with mouse plasmacytoma cells. The hybrid cells were studied for the presence, rearrangement, and expression of the human immunoglobulin mu chain locus. The results indicate that the expressed mu chain gene is located on the normal chromosome 14, whereas the 14q+ translocation chromosome carries the excluded immunoglobulin constant (C) region mu chain allele (C mu) but does not contain variable (V) region heavy chain genes (VH). Since we found that the heavy chain joining region DNA (JH) of the excluded mu chain gene is on the 14q+ chromosome, we can conclude that the chromosomal break observed in the leukemic cells occurred in a chromosomal region within or 5' of the JH region. With these results, it is logical to postulate that a gene, for which we suggest the name bcl-1, is located on band q13 of chromosome 11 and is activated by its translocation into close proximity with the rearranged heavy chain locus on chromosome 14q+, contributing to the neoplastic transformation of the B cells with the t(11;14) chromosomal translocation.  相似文献   

19.
The BCL11 gene family: involvement of BCL11A in lymphoid malignancies.   总被引:14,自引:4,他引:10       下载免费PDF全文
Many malignancies of mature B cells are characterized by chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus on chromosome 14q32.3 and result in deregulated expression of the translocated oncogene. t(2;14)(p13;q32.3) is a rare event in B-cell malignancies. In contrast, gains and amplifications of the same region of chromosome 2p13 have been reported in 20% of extranodal B-cell non-Hodgkin lymphomas (B-NHL), in follicular and mediastinal B-NHL, and in Hodgkin disease (HD). It has been suggested that REL, an NF-kappaB gene family member, mapping within the amplified region, is the pathologic target. However, by molecular cloning of t(2;14)(p13;q32.3) from 3 cases of aggressive B-cell chronic lymphocytic leukemia (CLL)/immunocytoma, this study has shown clustered breakpoints on chromosome 2p13 immediately upstream of a CpG island located about 300 kb telomeric of REL. This CpG island was associated with a Krüppel zinc finger gene (BCL11A), which is normally expressed at high levels only in fetal brain and in germinal center B-cells. There were 3 major RNA isoforms of BCL11A, differing in the number of carboxy-terminal zinc fingers. All 3 RNA isoforms were deregulated as a consequence of t(2;14)(p13;q32.3). BCL11A was highly conserved, being 95% identical to mouse, chicken, and Xenopus homologues. BCL11A was also highly homologous to another gene (BCL11B) on chromosome 14q32.1. BCL11A coamplified with REL in B-NHL cases and HD lymphoma cell lines with gains and amplifications of 2p13, suggesting that BCL11A may be involved in lymphoid malignancies through either chromosomal translocation or amplification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号