首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.  相似文献   

2.
The bone marrow micro-environment produces a number of different survival factors that are important for the malignant growth and drug resistance of multiple myeloma (MM) cells. One of the main factors reported to be essential for survival and growth of MM cells in some experimental systems is IL-6. Therefore, the development and testing of substances that interfere with IL-6 or IL-6 receptor (IL-6R) function might have therapeutic value for the treatment of MM. We analyzed the effect of the IL-6R antagonist SANT-7 on growth and survival of the IL-6--dependent MM cell lines INA-6 and XG-1 as well as primary MM cells from 7 patients co-cultured with bone marrow stromal cells (BMSCs). In particular, we were interested in whether SANT-7 enhances the growth-inhibitory effects of dexamethasone (Dex) and all-trans-retinoic acid (ATRA). None of the drugs when tested as a single substance, including SANT-7, induced major growth inhibition if MM cells were co-cultured with primary human BMSCs. However, when Dex and ATRA were given in combination with SANT-7, strong growth inhibition was achieved in cell lines and primary MM cells. This effect was due to cell-cycle arrest and induction of apoptosis.  相似文献   

3.
An acidic domain (AD) of gp130 was previously found to interact with the Src family kinase (SFK) Hck. Here, the influence of myristoylated peptides derived from this AD was assessed in the mouse myeloma cell line, 7TD1. The IL-6-dependent growth of 7TD1 cells was reduced by approximately 75%, if 100 microM of myristoylated 18mer peptide (18AD) was included in the growth medium, but was unaffected by a control peptide with scrambled sequence (18sc). A similar differential inhibition by peptides 18AD and 18sc was observed for the erythropoietin-dependent growth of BaF-EH cells expressing chimeric erythropoietin receptor-gp130 and human Hck and for the human myeloma cell line INA-6. While the peptide 18AD concentration inhibiting 50% was approximately 30 microM in 7TD1 and BaF-EH cells, peptide 18AD did not significantly inhibit growth of IL-6-independent MM1.S myeloma and OKT1 hybridoma cells or of BaF-EH cells supplied with IL-3. Treatment with 100 microM peptide 18AD caused the same degree or 60% of apoptosis induction as IL-6 deprivation in 7TD1 or INA-6 cells, respectively. Co-immunoprecipitation experiments revealed that peptide 18AD interfered with the association of Hck and gp130 in 7TD1 lysates in a concentration-dependent manner. IL-6-treatment of INA-6 cells induced the kinase activities of Fyn, Lyn and Hck, but not Src, and the IL-6-induced SFK activities were inhibited by peptide 18AD. Expression in 7TD1 cells of a kinase-inactive Hck mutant (K269R) elicited a dominant-negative effect on cell number increases providing further evidence that SFKs are required for gp130 signalling in myeloma cells.  相似文献   

4.
Interleukin-6 (IL-6) plays a central role in the pathogenesis of multiple myeloma, acting both as a growth and a survival factor for myeloma cells. IL-6 has been recently shown to possess three topologically distinct receptor binding sites: site 1 for binding to the subunit specific chain IL-6R alpha and sites 2 and 3 for the interaction with two separate subunits of the signalling chain gp130. We have generated a set of IL-6 receptor antagonists carrying substitutions that abolish interaction with gp130 at either site 2 alone (site 2 antagonist) or at both sites 2 and 3 (site 2+3 antagonist). In addition, substitutions were introduced at site 1 that increased affinity for IL-6R alpha. When tested as growth inhibitors on a representative set of IL-6-dependent human myeloma cell lines (XG-1, XG-2, XG-4 and XG-6), although site 2 antagonists were effective on 3 out of 4 of the cell lines, only the site 2+3 antagonist Sant7 showed full antagonism on the entire spectrum of cells tested. Moreover, IL-6 receptor antagonists were also pro-apoptotic factors for myeloma cells. Their capacity to induce cell death was directly related to the impairment of binding to gp130 and to their ability to fully block intracellular signalling. In fact, the most potent inducer of apoptosis was again Sant7, which also counteracted the protective autocrine effect excercised by the endogenously produced IL-6. On the basis of these results we propose the super-antagonist Sant7 as a possible candidate for the immunotherapy of multiple myeloma.  相似文献   

5.
Uncontrolled growth of neoplastic cells and unregulated production of immunoglobulin are major components of the morbidity and mortality of multiple myeloma. Suramin, a polysulfonated napthylurea, has antitumor activity in a number of malignancies, but also significant dose-related toxicity. Suramin has been reported to have major antiproliferative effects in a variety of lymphoid cell lines. Glucocorticoids have long been recognized to have activity in lymphoid malignancies and multiple myeloma while IL-6 has been reported to be an autocrine growth factor for multiple myeloma. This study examines growth inhibition and inhibition of IL-6-mediated secretion of immunoglobulin in human lymphoid and myeloma cell lines by dexamethasone and suramin. Dexamethasone and suramin show synergistic inhibition of cell proliferation at their IC|0 concentrations. IL-6-mediated immunoglobulin secretion is also inhibited by both dexamethasone and suramin in an additive fashion. Both dexamethasone and suramin induce apoptosis of lymphoid cell lines, and suramin inhibits the binding of IL-6 to its receptor in a multiple myeloma cell line. These findings suggest that the synergistic growth inhibitory activities of dexamethasone and suramin may be related to induction of apoptosis by both agents and inhibition of IL-6-mediated autocrine growth stimulation and immunoglobulin production. These results indicate that the combination of low-dose suramin (in concentrations not associated with significant clinical toxicity) and dexamethasone merit further study in the treatment of myeloma or lymphoid malignancies.  相似文献   

6.
PURPOSE: The purpose of this study is to delineate the biological significance of IkappaB kinase (IKK) beta inhibition in multiple myeloma cells in the context of bone marrow stromal cells (BMSC) using a novel IKKbeta inhibitor MLN120B. EXPERIMENTAL DESIGN: Growth-inhibitory effect of MLN120B in multiple myeloma cells in the presence of cytokines [interleukin-6 (IL-6) and insulin-like growth factor-I (IGF-1)], conventional agents (dexamethasone, melphalan, and doxorubicin), or BMSC was assessed in vitro. In vivo anti-multiple myeloma activity of MLN120B was evaluated in severe combined immunodeficient (SCID)-hu model. RESULTS: MLN120B inhibits both baseline and tumor necrosis factor-alpha-induced nuclear factor-kappaB activation, associated with down-regulation of IkappaBalpha and p65 nuclear factor-kappaB phosphorylation. MLN120B triggers 25% to 90% growth inhibition in a dose-dependent fashion in multiple myeloma cell lines and significantly augments tumor necrosis factor-alpha-induced cytotoxicity in MM.1S cells. MLN120B augments growth inhibition triggered by doxorubicin and melphalan in both RPMI 8226 and IL-6-dependent INA6 cell lines. Neither IL-6 nor IGF-1 overcomes the growth-inhibitory effect of MLN120B. MLN120B inhibits constitutive IL-6 secretion by BMSCs by 70% to 80% without affecting viability. Importantly, MLN120B almost completely blocks stimulation of MM.1S, U266, and INA6 cell growth, as well as IL-6 secretion from BMSCs, induced by multiple myeloma cell adherence to BMSCs. MLN120B overcomes the protective effect of BMSCs against conventional (dexamethasone) therapy. CONCLUSIONS: Our data show that the novel IKKbeta inhibitor MLN120B induces growth inhibition of multiple myeloma cells in SCID-hu mouse model. These studies provide the framework for clinical evaluation of MLN120B, alone and in combined therapies, trials of these novel agents to improve patient outcome in multiple myeloma.  相似文献   

7.
Retinoic acid and dexamethasone, in combination, inhibit the growth of human myeloma cell lines in a synergistic manner. Previously, we observed that all-trans retinoic acid (ATRA) caused G1 arrest and inhibited clonogenic growth of the OPM-2 human myeloma cell line. This was associated with downregulation of the IL-6 receptor (IL-6R) gp80 protein, while autocrine IL-6 production and gp130 were not affected. Growth inhibition was not reversed by the addition of exogenous IL-6 or forced, constitutive expression of the IL-6 receptor gp80 protein, suggesting that the mechanism of action of ATRA may be due to effects on the post-receptor pathway. Therefore, in this study we have investigated whether growth arrest was associated with changes in the level of phosphorylation of the RB protein. ATRA decreased the level of phosphorylation of the RB protein at doses > 5 x 10(-9) M and also induced a five fold increase in p21WAF1, while levels of p27KIP1 and CDK2 were unchanged. The ATRA-mediated increase in p21 preceded the change in RB phosphorylation and G1 arrest and was not reversed by the addition of exogenous IL-6. The levels of CDK2 activity were inhibited approximately 60% in ATRA-treated cells, suggesting that the increased p21 levels were sufficient to inhibit CDK activity and cause RB hypophosphorylation. Increased levels of p21 have recently been observed in human myeloma cells exposed to dexamethasone, and we suggest that the common ability of these two agents to inhibit myeloma cell growth depends on their induction of p21.  相似文献   

8.
Hsu JH  Shi Y  Hu L  Fisher M  Franke TF  Lichtenstein A 《Oncogene》2002,21(9):1391-1400
IL-6 is an established growth factor for multiple myeloma tumor cells, stimulating proliferative and survival responses. Recent work indicates that IL-6 can activate the AKT kinase in myeloma cells. Thus, to test a potential role for AKT in IL-6-induced cellular responses, we transfected myeloma cell lines with an active 'E40K' or dominant negative'PH AKT construct using an adenoviral vector. Transfection of the E40K into myeloma cells resulted in enhanced tumor cell growth and expression of the PH dominant negative AKT resulted in both inhibition of the IL-6-dependent proliferative response and a decrease in S phase distribution. While transfection of E40K protected myeloma cells from dexamethasone-induced apoptosis, the dominant negative PH had no effect on the ability of IL-6 to protect these cells from dexamethasone. These results clearly demonstrate that AKT activation is critical for the IL-6 proliferative response. In addition, although the level of AKT activation can regulate sensitivity to dexamethasone-induced apoptosis, additional cytokine-induced AKT-independent pathways can mediate IL-6 protection against dexamethasone. DOI: 10.1038/sj/onc/1205194  相似文献   

9.
The aim of the study was the evaluation of anti-angiogenic activity of the combination of intermediate doses of thalidomide and dexamethasone in patients with refractory/relapsed myeloma. Twenty-five patients were included in the study. Microvessel density (MVD) was evaluated in marrow biopsies before and after treatment. Serum levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), tumor necrosis factor-alpha (TNF-alpha), which have angiogenic potential and interleukin-6 (IL-6), IL-1beta, soluble IL-6 receptor (sIL-6R), and transforming growth factor-beta (TGF-beta) which are involved in the disease biology, were measured before treatment and then every 2 weeks for 8 weeks. Pretreatment levels of MVD, VEGF, b-FGF, IL-6, sIL-6R were increased in the patients compared to controls. The overall response rate to therapy was 72%. The administration of the combined regimen produced a significant reduction in MVD in responders. However, an increase in serum levels of VEGF, b-FGF, IL-6, sIL-6R was observed post-treatment in responders. In contrast, serum levels of TNF-alpha, TGF-beta, IL-1beta did not differ between patients and controls and remained unchanged during the study. These results suggest that the combination of thalidomide plus dexamethasone is an effective treatment for myeloma reducing MVD marrow levels but not serum levels of angiogenic cytokines or cytokines implicated in myeloma biology.  相似文献   

10.
11.
We have previously reported obtaining two monoclonal antibodies (mAb) against the human gp130 interleukin-6 (IL-6) transducer which made possible the dimerization of gp130 and the activation of several IL-6-driven functions when used together. We report here that these mAb induce gp130-mediated signaling in human myeloma cells and support the survival and the long-term growth of five IL-6-dependent human myeloma cell lines. Their agonist activity is not affected by neutralizing antibodies to IL-6 or IL-6R. These mAb induce a transient proliferation of primary myeloma cells from most patients with multiple myeloma. Again, IL-6 inhibitors do not affect this agonist activity. By using highly purified primary myeloma cells, we found that these anti-gp130 mAb supported the long-term survival of primary myeloma cells from five patients with primary plasma cell leukemia but failed to induce their long-term growth. For patients with fulminant disease and secondary extramedullary proliferation, the antibodies supported a long-term survival and growth, and anti-gp130 mAb-dependent cell lines were obtained. For patients with medullary involvement only, a co-stimulatory signal is necessary, together with gp130 activation, to trigger cell survival and cycling. Leukemia (2000) 14, 188-197.  相似文献   

12.
The cytokine IL-6 has been proposed as an autocrine growth factor in multiple myeloma, and is also required for stimulation of immunoglobulin production and secretion in normal plasma cells and myeloma cells. In this study, we show that secreted IL-6 is detectable by Western blot analysis in a panel of lymphoid and myeloma cell lines. Previous studies in our laboratory have shown that dexamethasone and suramin inhibit cell proliferation and IL-6-mediated immunoglobulin secretion in various lymphoblastoid and myeloma cell lines. In the present study, we present data to examine mechanisms by which dexamethasone and suramin inhibit IL-6-mediated immunoglobulin secretion in the lymphoid cell line SKW 6.4. Cells treated with rIL-6 or the IC10 concentration of dexamethasone respectively undergo a doubling of intracellular IgM. Moreover, rIL-6 and dexamethasone additively stimulate cells to accumulate intracellular IgM. In contrast, cells treated with the IC10 concentration of suramin undergo no significant alteration of total cellular IgM, and do not respond to IL-6 with an increase in intracellular IgM. Northern blot analysis demonstrates that cells treated with exogenous rIL-6 and/or dexamethasone respectively undergo a coordinate one to three fold increase of k and μ chain mRNA expression, while there is a 30-40% decrease of k and μ chain mRNA when cells are treated with suramin or suramin plus rIL-6. Western blot analysis shows that levels of intracellular IL-6 modestly increase when cells are treated with exogenous rIL-6, whereas treatment with dexamethasone plus rIL-6 causes a 70% decrease of immunoreactive IL-6 protein in comparison with untreated cells. An rtPCR analysis of IL-6 mRNA expression shows an abolished signal in response to dexamethasone or rIL-6 plus dexamethasone. Using a flow cytometric assay, it is demonstrated that suramin inhibits IL-6 binding to its receptor. Taken together, these results indicate that SKW 6.4 cells treated with rIL-6 and/or dexamethasone undergo increased expression of IgM mRNA leading to increased intracellular IgM levels. Treatment with suramin or suramin plus rIL-6 does not alter the IL-6 protein level or the mRNA levels for IL-6 and IL-6 receptor. Suramin treatment causes a moderate decrease in IgM mRNA, and this is associated with a decreased intracellular level of IgM in SKW 6.4 cells. Overall these findings support the concept that IL-6 is an autocrine factor for immunoglobulin production and secretion in myeloma cells. Suramin interferes with IL-6 binding to its receptor and/or decreases IL-6 receptor expression. Dexamethasone has neither of these effects on IL-6 receptor expression or IL-6 binding to its receptor, and we postulate that it acts through a block in secretion or in degradation of intracellular immunoglobulin by decreasing IL-6 mRNA expression and IL-6 protein content. These studies suggest that the combination of suramin and dexamethasone not only synergistically growth inhibit myeloma cells but also act in concert to inhibit immunoglobulin secretion and represent a therapeutic approach worthy of further investigation  相似文献   

13.
Wang YD  De Vos J  Jourdan M  Couderc G  Lu ZY  Rossi JF  Klein B 《Oncogene》2002,21(16):2584-2592
Interleukin-6 (IL-6) is a major survival and proliferation factor of human malignant plasma cells and IL-6 dependent myeloma cell lines can be obtained from patients with terminal disease. We show here that mutated diphtheria toxin, a specific inhibitor of heparin-binding epidermal growth factor-like growth factor (HB-EGF), blocked the IL-6-induced growth of two myeloma cell lines (XG-1 and XG-14) and did not significantly affect that of two other cell lines (XG-6 and XG-13). The IL-6 mediated growth of myeloma cells was also inhibited by antibodies to ErbB1, a receptor for HB-EGF. The XG-1 and XG-14 cell lines that are sensitive to HB-EGF inhibitors overexpressed HB-EGF and EGF receptor (ErbB1) genes. They also overexpressed CD9, a tetraspanin that binds to the heparin-binding domain of HB-EGF and is critical for promoting ErbB1 activation by HB-EGF. The XG-6 and XG-13 myeloma cells that were not significantly sensitive to HB-EGF antagonists, poorly expressed HB-EGF, ErbB1 and CD9 genes or proteins. We demonstrated that recombinant HB-EGF supported the long-term growth of myeloma cells, as did IL-6. The myeloma cell growth factor activity of HB-EGF was completely inhited by antibodies to ErbB1, but also by antibodies to gp130 IL-6 transducer or to IL-6. These data indicate that in the XG-1 and XG-14 IL-6-dependent myeloma cell lines, the CD9/HB-EGF/erbB1 and the IL-6/IL-6R/gp130 pathways cooperate synergistically to trigger myeloma cell growth. They suggest that inhibitors of the EGF receptor or HB-EGF may be useful for inducing myeloma cell apoptosis in patients with multiple myeloma.  相似文献   

14.
15.
16.
17.
18.
Tu Y  Gardner A  Lichtenstein A 《Cancer research》2000,60(23):6763-6770
Interleukin 6 (IL-6) and insulin-like growth factor I (IGF-I) induce proliferative and antiapoptotic responses in multiple myeloma (MM) plasma cells. Because these cytokines may activate the phosphatidylinositol 3-kinase (PI 3-K)/AKT kinase pathway in other cell types, we investigated the role of PI 3-K/AKT in MM cell responses. IGF-I effectively activated PI 3-K in 8226 and OCI-My5 MM cells, but IL-6 was ineffective. However, IL-6 successfully activated PI 3-K in AF-10 MM cells and IL-6-dependent MH.60 plasmacytoma/hybridoma cells. IGF-I also successfully activated PI 3-K in four of four MM patient specimens, and IL-6 activated PI 3-K in three of four specimens. Inhibition of PI 3-K activity with wortmannin or Ly294002 blocked the antiapoptotic effect of IGF-I and the proliferative effect of IL-6 in the myeloma cell lines. Furthermore, a dominant negative PI 3-K construct, expressed in AF-10 cells by adenoviral infection, also significantly inhibited the IL-6 proliferative response in MM cells. In correlation with activation of PI 3-K, IGF-I also effectively activated the AKT kinase in 8226 and OCI-My5 cells, and IL-6 activated AKT in AF-10 and MH.60 cells. However, although incapable of activating PI 3-K in 8226 and OCI-My5 cells, IL-6 successfully activated AKT in these MM lines, suggesting PI 3-K-independent mechanisms of AKT activation. The prevention of a myeloma cell proliferative response resulting from inhibition of PI 3-K activity was not associated with an inhibition of IL-6-dependent extracellular signal-regulated kinase (ERK) activation. These results support a role for the PI 3-K/AKT pathway in cytokine-dependent responses in myeloma cells, which is independent of any activation of the ERK pathway.  相似文献   

19.
Soluble interleukin-6 receptor (sIL-6R) is part of IL-6 receptor that may stimulate cells that do not express the whole molecule. It may enhance myeloma cell proliferation and furthermore angiogenesis. The aim of the study was to evaluate the clinical significance and the relationship between serum levels of sIL-6R, with various stimulators of angiogenesis, such as hepatocyte growth factor (HGF) and interleukin-18 (IL-18) and with markers of proliferation, such as beta-2 microglobulin (B2M) levels and plasma cell Ki-67 proliferation index in the bone marrow, in patients with multiple myeloma (MM). We studied 45 newly diagnosed MM patients. Serum levels of sIL-6R, HGF, IL-18, and B2M and Ki-67 proliferation index (Ki-67 PI) in bone marrow’s plasma cells were determined. The mean concentrations of sIL-6R, HGF, IL-18, and B2M and the value of Ki-67 were significantly higher in the patients compared to controls and with increasing disease stage. sIL-6R was strongly positively correlated with HGF, IL-18, B2M, and Ki-67 PI. There is a positive correlation between plasma cell growth, as determined by Ki-67 PI, and different angiogenic cytokines, such as HGF and IL-18, with sIL-6R. This relationship suggests the significant role of these cytokines in the proliferation and disease activity in MM patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号