首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Purpose: Microtubules are important cytoskeletal components involved in many cellular events. Antimicrotubule agents including polymerizing agents (paclitaxel and docetaxel) and depolymerizing drugs (vincristine, vinorelbine, and estramustine phosphate) are widely used either alone or in combination with other anticancer drugs. These antimicrotubule agents are promoters of apoptosis in cancer cells. In this review, we discuss the role of bcl-2 family genes in the regulation of apoptosis, and summarize effects of microtubule targeting agents on apoptotic signal transduction pathways. Conclusion: Disruption of microtubule structure by antimicrotubule drugs results in induction of tumor suppressor gene p53 and inhibitor of cyclin-dependent kinases, p21WAF1/CIP1 (p21), and activation/inactivation of several protein kinases including Ras/Raf, PKC/PKA I/II, MAP kinases, and p34cdc2. These protein kinases are associated directly or indirectly with phosphorylation of bcl-2. Phosphorylation of bcl-2 and the elevations of p53 and p21 lead to apoptosis. New pathways of antitumor agents could be directed at this p53, p21 and bcl-2/bax function, and may enhance the effect of existing agents. Received: 3 December 1998 / Accepted: 12 March 1999  相似文献   

3.
In the treatment of breast cancer, combination chemotherapy is used to overcome drug resistance. Combining doxorubicin and vinorelbine in the treatment of patients with metastatic breast cancer has shown high response rates; even single-agent vinorelbine in patients previously exposed to anthracyclines results in significant remission. Alterations in protein kinase-mediated signal transduction and p53 mutations may play a role in drug resistance with cross-talk between signal transduction and p53 pathways. The aim of this study was to establish the effects of doxorubicin and vinorelbine, as single agents, in combination, and as sequential treatments, on signal transduction and p53 in the breast cancer cell lines MCF-7 and MDA-MB-468. In both cell lines, increased p38 activity was demonstrated following vinorelbine but not doxorubicin treatment, whether vinorelbine was given prior to or simultaneously with doxorubicin. Mitogen-activated protein kinase (MAPK) activity and p53 expression remained unchanged following vinorelbine treatment. Doxorubicin treatment resulted in increased p53 expression, without changes in MAPK or p38 activity. These findings suggest that the effect of doxorubicin and vinorelbine used in combination may be achieved at least in part through distinct mechanisms. This additivism, where doxorubicin acts via p53 expression and vinorelbine through p38 activation, may contribute to the high clinical response rate when the two drugs are used together in the treatment of breast cancer.  相似文献   

4.
Patients with estrogen receptor (ER)-positive breast cancers have a better prognosis than those with ER-negative breast cancers, but often have low sensitivity to chemotherapy and a limited survival benefit. We have previously shown a combination effect of taxanes and fulvestrant and suggested that this treatment may be useful for ER-positive breast cancer. In this study, we evaluated the effects of combinations of hormone drugs and chemotherapeutic agents. In vitro, the effects of combinations of five chemotherapeutic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5-fluorouracil) and three hormone drugs (fulvestrant, tamoxifen, and 4-hydroxytamoxifen) were examined in ER-positive breast cancer cell lines using CalcuSyn software. Changes in chemoresistant factors such as Bcl2, multidrug resistance-associated protein 1, and microtubule-associated protein tau were also examined after exposure of the cells to hormone drugs. In vivo, tumor sizes in mice were evaluated after treatment with docetaxel or doxorubicin alone, fulvestrant alone, and combinations of these agents. Combination treatment with fulvestrant and all five chemotherapeutic agents in vitro showed synergistic effects. In contrast, tamoxifen showed an antagonistic effect with all the chemotherapeutic agents. 4-Hydroxytamoxifen showed an antagonistic effect with doxorubicin and 5-fluorouracil, but a synergistic effect with taxanes and vinorelbine. Regarding chemoresistant factors, Bcl2 and microtubule-associated protein tau were downregulated by fulvestrant. In vivo, a combination of fulvestrant and docetaxel had a synergistic effect on tumor growth, but fulvestrant and doxorubicin did not show this effect. In conclusion, fulvestrant showed good compatibility with all the evaluated chemotherapeutic agents, and especially with docetaxel, in vitro and in vivo.  相似文献   

5.
6.
Chemotherapy drugs that induce apoptosis by causing DNA double-strand breaks, upregulate the tumor suppressor p53. This study investigated the regulation of the growth-regulatory protein insulin-like growth factor binding protein-3 (IGFBP-3), a p53 target, by DNA-damaging agents in breast cancer cells. IGFBP-3 was upregulated 1.4- to 13-fold in response to doxorubicin and etoposide in MCF-10A, Hs578T, MCF-7 and T47D cells, which express low to moderate basal levels of IGFBP-3. In contrast, IGFBP-3 was strongly downregulated by these agents in cells with high basal levels of IGFBP-3 (MDA-MB-231, MDA-MB-436 and MDA-MB-468). In MDA-MB-468 cells containing the R273H p53 mutation, reported to display gain-of-function properties, chemotherapy-induced suppression of IGFBP-3 was not reversed by the p53 reactivating drug, PRIMA-1, or by p53 silencing, suggesting that the decrease in IGFBP-3 following DNA damage is not a mutant p53 gain-of-function response. SiRNA-mediated downregulation of endogenous IGFBP-3 modestly attenuated doxorubicin-induced apoptosis in MDA-MB-468 and Hs578T cells. IGFBP-3 downregulation in some breast cancer cell lines in response to DNA-damaging chemotherapy may have clinical implications because suppression of IGFBP-3 may modulate the apoptotic response. These observations provide further evidence that endogenous IGFBP-3 plays a role in breast cancer cell responsiveness to DNA damaging therapy.  相似文献   

7.
PURPOSE: We evaluated the in vitro sensitivity of four malignant rhabdoid tumor (MRT) cell lines to six chemotherapeutic agents: 5-fluororuacil, vincristine, carboplatin, doxorubicin, etoposide, and paclitaxel. We also sought to determine whether a defect in the p53 signaling pathway may contribute to the pronounced drug resistance of MRT. METHODS: MRT cells were treated with various concentrations of each drug and the effects on DNA synthesis were quantified using a thymidine incorporation assay. In addition, the effect of various concentrations of doxorubicin on cell growth was evaluated in all four cell lines. Functionality of the p53 pathway was evaluated by incubating cells with carboplatin or doxorubicin and monitoring the effects on the levels of the p53, p21(WAF1/CIP1), and MDM 2 proteins by Western blot analyses. RESULTS: Vincristine (EC(50) 0.5-2.9 n M) and doxorubicin (EC(50) 1.9-5.7 n M) were found to be most effective in inhibiting proliferation and were within clinically relevant concentrations. However, only doxorubicin exhibited cytotoxicity (EC(50) 2.4-13.1 n M), whereas vincristine and the other drugs tested were cytostatic. Interestingly, all four cell lines had remarkably similar dose response curves to all drugs tested, despite the fact that they were derived from different patients and arose in different tissues. When challenged with DNA-damaging drugs, p53 and the downstream effectors, p21(WAF1/CIP1) and MDM 2 were upregulated. CONCLUSIONS: These studies indicate that the p53 pathway is functional and responsive to DNA-damaging drugs, and does not likely contribute to the drug resistance of MRT. The in vitro sensitivity of MRT cells to doxorubicin suggests that it may be a clinically important agent for the treatment of MRT.  相似文献   

8.
p53 is frequently mutated in patients with prostate cancer, especially in those with advanced disease. Therefore, the selective elimination of p53 mutant cells will likely have an impact in the treatment of prostate cancer. Because p53 has important roles in cell cycle checkpoints, it has been anticipated that modulation of checkpoint pathways should sensitize p53-defective cells to chemotherapy while sparing normal cells. To test this idea, we knocked down ataxia telangiectasia mutated (ATM) gene by RNA interference in prostate cancer cell lines and in normal human diploid fibroblasts IMR90. ATM knockdown in p53-defective PC3 prostate cancer cells accelerated their cell cycle transition, increased both E2F activity and proliferating cell nuclear antigen expression, and compromised cell cycle checkpoints, which are normally induced by DNA damage. Consequently, PC3 cells were sensitized to the killing effects of the DNA-damaging drug doxorubicin. Combining ATM knockdown with the Chk1 inhibitor UCN-01 further increased doxorubicin sensitivity in these cells. In contrast, the same strategy did not sensitize either IMR90 or LNCaP prostate cancer cells, both of which have normal p53. However, IMR90 and LNCaP cells became more sensitive to doxorubicin or doxorubicin plus UCN-01 when both p53 and ATM functions were suppressed. In addition, knockdown of the G(2) checkpoint regulators ATR and Chk1 also sensitized PC3 cells to doxorubicin and increased the expression of the E2F target gene PCNA. Together, our data support the concept of selective elimination of p53 mutant cells by combining DNA damage with checkpoint inhibitors and suggest a novel mechanistic insight into how such treatment may selectively kill tumor cells.  相似文献   

9.
10.
11.
Role of MDM2 Overexpression in Doxorubicin Resistance of Breast Carcinoma   总被引:2,自引:1,他引:2  
Several oncoproteins or tumor suppressor gene products have been indicated to be of value as predictors of the de novo resistance to cytotoxic agents. In this study, we have investigated the role of MDM2 (murine double minutes) overexpression in doxorubicin resistance of breast cancer. Immunocytochemical analysis demonstrated that MDM2-positive tumors, even with p53-negative pheno-type, were significantly more resistant to doxorubicin treatment compared to MDM2-negative tumors. An in vitro experimental model using stable mdm2 -transfected MCF-7 cells carrying wild-type p53 confirmed that the cells become approximately 3-fold more resistant to doxorubicin as a result of MDM2 overexpression, and the wild-type p53 function, such as the induction of p21Waf1 following DNA damage, was significantly suppressed. MDM2 overexpression is suggested to be a novel marker for predicting lack of response to doxorubicin treatment in breast cancer patients.  相似文献   

12.
Recent evidence indicates that alterations of the p53 tumor suppressor gene can modulate the response of tumor cells to DNA-damaging agents and increase drug resistance. To evaluate whether p53 alterations affect response to chemotherapy in breast cancer, we examined the p53 status before and after treatment of primary tumors from 44 patients who received neoadjuvant chemotherapy. p53 status was determined by gene mutations and by mRNA expression levels. Eleven patients (25%) showed alterations in the p53 gene. Comparison of the clinical response between subgroups with or without p53 alterations revealed that p53 alterations were strongly associated to clinical resistance to chemotherapy (p<0.001).  相似文献   

13.
The INK4a/ARF locus on human chromosome 9p21 encodes two tumor suppressors, p16INK4a and p14ARF, that restrain cell growth by affecting the functions of the retinoblastoma protein and p53, respectively. Overexpression of ARF results in cell cycle arrest in both G1 and G2. To elucidate the effect of p14ARF gene on multidrug-resistant tumor cells, we transferred a p14ARF cDNA into p53-mutated MCF-7/Adr human breast cancer cells. In this report we demonstrated for the first time that p14ARF expression was able to greatly inhibit the MCF-7/Adr cell proliferation. Furthermore, p14ARF expression resulted in decrease of MDR-1 mRNA and P-glycoprotein production, which linked to the reducing resistance of MCF-7/Adr cells to doxorubicin. These results imply that drug resistance might be effectively reversed by the wild-type p14ARF expression in human breast cancer cells.  相似文献   

14.
To study the mechanisms of the development of hormone refractory prostate cancer, we established an androgen-independent (AI) prostate cancer cell line derived from hormone-dependent (AD) LNCaP cells. Our previous studies have demonstrated that AI cells are deficient in expression of p21(WAFl/CIP1) (p21) due to overexpressed AR and are resistant to apoptosis. In this study, the induction of p53 and p21 expression by vinorelbine (Navelbine) was compared between AD and AI cells in an attempt to understand the difference(s) in apoptotic signalling pathways in these cells. Using a series of deletion of p21 reporter constructs, we found that vinorelbine mediated p21 induction in a p53-dependent manner in AD cells. In contrast, p21 expression restored by vinorelbine in AI cells was found to be through both p53-dependent and-independent pathways. In the absence of two p53 binding sites, Spl-3 and Spl-4 sites, in the promoter of human p21 gene, were found to be required for vinorelbine-mediated p21 activation. No p21 induction was observed by paclitaxel in AI cells. Exposure of AI cells to paciltaxel followed by vinorelbine produced synergism. Our data, thus, provide a basis for the synergistic combination of vinorelbine and paclitaxel for the treatment of advanced prostate cancer.  相似文献   

15.
16.
In the present study, we compared the dynamics and composition of microtubules in cell lines derived from the human breast adenocarcinoma MCF-7 containing either the wild-type p53 (wt-p53; MN1) or a dominant-negative variant of p53 gene (mut-p53; MDD2). Mut-p53 cells were significantly resistant to the cytotoxicity of the microtubule-targeted drugs (vinca alkaloids and taxanes), as compared with wt-p53 cells. Studies by high-resolution time-lapse fluorescence microscopy in living cells indicated that the dynamics of microtubules of mut-p53 cells were altered in complex ways and were significantly increased as compared with microtubules in wt-p53 cells. The percentage of time microtubules spent in growing and shortening phases increased significantly, their catastrophe frequency increased, and their overall dynamicity increased by 33%. In contrast, their shortening rate and the mean length shortened decreased. Cells containing mut-p53 displayed increased polymerisation of tubulin, increased protein levels of the class IV beta-tubulin isotype, STOP and survivin, and reduced protein levels of class II beta-tubulin isotype, MAP4 and FHIT. We conclude that p53 protein may contribute to the regulation of microtubule composition and function, and that alterations in p53 function may generate complex microtubule-associated mechanisms of resistance to tubulin-binding agents.  相似文献   

17.
Alli E  Bash-Babula J  Yang JM  Hait WN 《Cancer research》2002,62(23):6864-6869
Stathmin is a p53-regulated protein known to influence microtubule dynamics. Because several chemotherapeutic agents used to treat breast cancer alter the dynamic equilibrium of tubulin polymerization, stathmin may play an important role in determining the sensitivity to these drugs. Therefore, we evaluated the effect of stathmin expression on the action of taxanes and Vinca alkaloids using a panel of human breast cancer cell lines. Cell lines harboring mutant p53 expressed high levels of stathmin. Two cell lines with different levels of endogenous stathmin expression and isogenic-paired cell lines transfected to overexpress stathmin were used to determine whether or not stathmin modulated the sensitivity to drugs. Overexpression of stathmin decreased polymerization of microtubules, markedly decreased binding of paclitaxel, and increased binding of vinblastine. Stathmin overexpression decreased sensitivity to paclitaxel and, to a lesser extent, to vinblastine. In contrast, stathmin content had no significant effect on the sensitivity to chemotherapeutic drugs that do not target microtubules. Cell lines overexpressing stathmin were more likely to enter G(2) but less likely to enter mitosis as determined by fluorescence-activated cell sorting and mitotic index. This effect was magnified when stathmin-overexpressing cells were treated with vinblastine as measured by the detection of proteins phosphorylated in early mitosis. These data suggest that the action of antimicrotubule drugs can be affected by stathmin in at least two ways: (a) altered drug binding; and (b) growth arrest at the G(2) to M boundary. Mutant p53 breast cancers exhibiting high levels of stathmin may be resistant to antimicrotubule agents.  相似文献   

18.
19.
Tumor suppressor p53 is a master regulator of apoptosis and plays key roles in cell cycle checkpoints. p53 responds to metabolic changes and alters metabolism through several mechanisms in cancer. Lactate dehydrogenase A (LDHA), a key enzyme in glycolysis, is highly expressed in a variety of tumors and catalyzes pyruvate to lactate. In the present study, we first analyzed the association and clinical significance of p53 and LDHA in breast cancer expressing wild‐type p53 (wt‐p53) and found that LDHA mRNA levels are negatively correlated with wt‐p53 but not with mutation p53 mRNA levels, and low p53 and high LDHA expression are significantly associated with poor overall survival rates. Furthermore, p53 negatively regulates LDHA expression by directly binding its promoter region. Moreover, a series of LDHA gain‐of‐function and rescore experiments were carried out in breast cancer MCF7 cells expressing endogenous wt‐p53, showing that ectopic expression of p53 decreases aerobic glycolysis, cell proliferation, migration, invasion and tumor formation of breast cancer cells and that restoration of the expression of LDHA in p53‐overexpressing cells could abolish the suppressive effect of p53 on aerobic glycolysis and other malignant phenotypes. In conclusion, our findings showed that repression of LDHA induced by wt‐p53 blocks tumor growth and invasion through downregulation of aerobic glycolysis in breast cancer, providing new insights into the mechanism by which p53 contributes to the development and progression of breast cancer.  相似文献   

20.
There is considerable interest in the potential use of estrogen derivatives for the treatment and prevention of breast cancer. We demonstrated previously that the sulfamoylated estrone derivative 2-methoxyestrone-3-O-sulfamate (2-MeOEMATE) induced G2-M cell cycle arrest and modest levels of apoptosis in breast cancer cells in vitro, whereas the parent estrone derivative, 2-methoxyestrone, did not. 2-MeOEMATE also induced breast tumor regression in vivo in intact rats. To further explore the significance of sulfamoylation on the anticancer activity of estrone derivatives and to elucidate their mechanism of action, we synthesized two additional agents, 2-ethylestrone and 2-ethylestrone-3-O-sulfamate (2EtEMATE). 2-MeOEMATE and 2-EtEMATE inhibited the growth of a panel of estrogen receptor-negative and -positive breast cancer cell lines in vitro, induced mitotic arrest and apoptosis, and suppressed the long-term clonogenic potential of MCF7 and CAL51 breast cancer cells. In each assay, the sulfamoylated estrone derivatives were >10-fold more potent than their parent compounds. The sulfamoylated estrone derivatives were also significantly more potent inhibitors of cell growth than the previously studied endogenous estradiol metabolite 2-methoxyestradiol. 2-MeOEMATE and 2-EtEMATE functioned as antimicrotubule agents and inhibited the ability of paclitaxel to promote tubulin assembly in vitro. Like other antimicrotubule agents, the sulfamoylated estrone derivatives induced BCL-2 and BCL-XL phosphorylation and increased p53 expression. 2-MeOEMATE and 2-EtEMATE are novel antimicrotubule agents that have potent anticancer activity in breast cancer cells in vitro and may be beneficial as anticancer agents in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号