首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The expression of alpha V integrins by neoplastic cells contributes to the promotion of local invasion and metastasis. The most characteristic extracellular ligands of alpha V integrins are vitronectin and fibronectin. Hepatocytes are the main source of vitronectin, and the capacity to synthesize and secrete vitronectin is usually retained in hepatocellular carcinoma. The aim of this study was to explore the expression, regulation, and functional role of alpha V integrins in hepatocellular carcinoma. We first analyzed the expression of alpha V integrins and their ligands fibronectin and vitronectin in 80 cases of hepatocellular carcinoma. alpha V integrin chain was detected in 44 cases and vitronectin in 50. Twenty-four of the 44 alpha V-positive tumors contained large amounts of vitronectin. These cases presented more frequently with adverse histoprognostic factors, including infiltrative growth pattern (62.5%), lack of capsule (71%), presence of capsular invasion (57%), and satellite nodules (50%). We then used HepG2 and Hep3B cell lines as in vitro models to study alpha V integrin regulation and function. HepG2 and Hep3B cells expressed alpha V integrin chain and used alpha V beta 1 and alpha V beta 5 for adhesion and migration on vitronectin. Tumor necrosis factor (TNF) alpha and transforming growth factor (TGF) beta significantly increased the expression levels of alpha V integrins and stimulated the adhesion and migration of both HepG2 and Hep3B cell lines on vitronectin. The effects of growth factors on cell adhesion and migration were reproduced by incubation with conditioned medium from rat liver myofibroblasts. In conclusion, our results support the existence of an alpha V integrin/vitronectin connection in hepatocellular carcinoma and suggest that this connection may be an adverse prognostic factor.  相似文献   

2.
Sahni A  Francis CW 《Blood》2004,104(12):3635-3641
We have shown previously that fibrin(ogen) binding potentiates the capacity of fibroblast growth factor 2 (FGF-2) to stimulate endothelial cell (EC) proliferation. We have now investigated the receptor requirement for EC proliferation by fibrinogen-bound FGF-2. ECs were cultured with 25 ng/mL FGF-2 with or without 10 microg/mL fibrinogen, and proliferation was measured as (3)H-thymidine incorporation. Proliferation was increased 2.4 +/- 0.5-fold over medium alone with FGF-2 and increased significantly more to 4.0 +/- 0.7-fold with fibrinogen and FGF-2 (P < .005). Addition of 7E3 or LM609, antibodies to alpha(v)beta(3), inhibited EC proliferation with fibrinogen-bound FGF-2 by 80% +/- 8% (P < .001) or 67% +/- 14% (P < .002), respectively, to levels significantly less than that observed with FGF-2 alone (P < .001). Neither LM609 nor 7E3 exhibited any inhibition of activity with FGF-2 alone. Peptide GRGDS caused dose-dependent inhibition of proliferation by fibrinogen-bound FGF-2 of 31% +/- 8%, 45% +/- 9%, and 68% +/- 11% at 0.25, 0.5, and 1 mM, respectively. Coimmunoprecipitation and immunofluorescence studies demonstrated a direct specific association between alpha(v)beta(3) and FGF receptor 1 (FGFR1) in ECs and fibroblasts when exposed to both FGF-2 and fibrinogen but not with vitronectin. We conclude that fibrinogen binding of FGF-2 enhances EC proliferation through the coordinated effects of colocalized alpha(v)beta(3) and FGFR1.  相似文献   

3.
Miao WM  Vasile E  Lane WS  Lawler J 《Blood》2001,97(6):1689-1696
The membrane glycoprotein CD36 is involved in platelet aggregation, inhibition of angiogenesis, atherosclerosis, and sequestration of malaria-parasitized erythrocytes. In this study, immunoprecipitations with anti-CD36 antibodies were performed to identify proteins that associate with CD36 in the platelet membrane. Platelets were solubilized in 1% Triton X-100, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), Brij 96, or Brij 99, and the proteins that coprecipitated with CD36 were identified by peptide mass spectrometry and Western blotting. The tetraspanin protein CD9 and the integrins alphaII(b)beta3 and alpha6beta1 specifically coprecipitated with CD36 from platelets that were solubilized in CHAPS and Brij 99 but not from platelets that were solubilized in Triton X-100. Only CD9 is coprecipitated with CD36 from platelets that were solubilized in Brij 96. Reciprocal immunoprecipitations with antibodies to CD9, alpha6, alphaIIb, or beta3 from Brij 99-solubilized platelets coprecipitated CD36. Coprecipitation of CD36, CD9, and alpha6beta1 was also observed on platelets from a patient with Glanzmann thrombasthenia, indicating that alphaII(b)beta3 is not required for the other proteins to associate. Colocalization of alpha6 and CD36, of CD9 and CD36, and of alpha6 and CD9 was observed on intact platelets prior to solubilization, using double immunofluorescence microscopy. These data indicate that CD36 associates with CD9 and integrins on human blood platelets. These associated proteins may mediate or participate in some of the diverse biological functions of CD36.  相似文献   

4.
We have evaluated the effects of all-trans-retinoic acid (RA) on the adhesion of the human promyelocytic cell line NB4 to various components of the extracellular matrix. NB4 cells, radiolabelled with (111)Indium, showed a 2-3-fold increase (P < 0.001) in adhesion to fibronectin and thrombospondin upon RA (3 x 10(-7) microM) treatment, whereas adhesion to collagen I, laminin and vitronectin was not modified. The increase in cell adhesion, observed as early as day 1, preceded cell differentiation and was concomitant with tyrosine phosphorylation events. Using flow cytometry, we analysed the expression of major receptors for fibronectin (alpha4beta1 and alpha5beta1) and for thrombospondin (alpha(v)beta3, alpha(IIb)beta3, CD36 and CD47) on NB4 cells before and after RA treatment. Except for alpha(IIb)beta3, which was induced on RA-treated cells, we found no significant increase in the expression of the other receptors, and a decrease in the expression of CD36, upon RA treatment. Preincubation of RA-treated cells with blocking antibodies demonstrated a role for alpha4beta1 and alpha5beta1 in cell adhesion to fibronectin and alpha5beta1, alpha(IIb)beta3, CD36 and CD47 in cell adhesion to thrombospondin. Experiments with the synthetic peptides GRGDS (0.2 mM) and CSVTCG (0.2 mM) confirmed the participation of integrins, and integrins and CD36, in adhesion of RA-treated cells to fibronectin and thrombospondin, respectively. Further inhibition by heparin (10 microg/ml) and/or recombinant heparin-binding domain of thrombospondin (TSP18) indicated the additional participation of heparin-like receptors in cell adhesion to thrombospondin. Our results indicate that increase in NB4 cell adhesion to fibronectin and thrombospondin upon RA treatment is likely to occur through a modulation of the functional state of several receptors for these proteins.  相似文献   

5.
Shimizu  Y; Irani  AM; Brown  EJ; Ashman  LK; Schwartz  LB 《Blood》1995,86(3):930-939
Human fetal livers contain progenitor cells that become mast cells after 4 weeks of culture with recombinant human stem cell factor. Expression of cell surface CD29 (beta 1), CD18 (beta 2), CD61 (beta 3), and beta 5 integrins was investigated on such cells by flow cytometry and adhesion measurements. High surface expression of CD49e, CD51, and CD61 along with kit was apparent by 4 weeks of culture, whereas expression of each at day 0 was low to undetectable. CD29 and CD49d were detected on cells from day 0 to 4 weeks of culture; CD49b, CD49c, CD49f, CD18, and CD54 expression was negligible. The fetal liver- derived mast cells spontaneously adhered to vitronectin. No evidence for degranulation was found during vitronectin-dependent adhesion. Adhesion occurred in part through the CD61/CD51 receptor. No evidence for adhesion to vitronectin through CD29 and beta 5 integrins was obtained. Almost all of the vitronectin-adherent cells expressed CD51, CD61, kit, and tryptase, and exhibited metachromasia with toluidine blue. Thus, among the fetal liver-derived cells, developing mast cells were selectively adherent to vitronectin. These mast cells and the other cell types present also adhere spontaneously to fibronectin and to laminin, this adhesion being partially inhibited by antibodies against CD61 and CD29 integrins. In conclusion, human mast cells acquire functional vitronectin receptors as they develop from fetal liver progenitors under the influence of rhSCF. This may be important for the recruitment, localization, and retention of developing mast cells.  相似文献   

6.
The hierarchy of cytoadhesion molecules involved in hematopoietic/stem progenitor cell mobilization has not yet been delineated. Previous studies have suggested an important role for alpha4beta1 integrin in this process. To test whether mobilization involves dynamic interactions of alpha4beta1 with other integrins on hematopoietic cells, especially the beta2 integrins, mice and primates were treated with anti-beta1 or anti-beta2 antibodies alone or in combination. A single injection of anti-alpha4beta1 antibody elicited reproducible mobilization in contrast to other antibodies, and 3 injections yielded higher mobilization efficiency than each of the other antibodies. When the anti-beta2 (anti-CD11a or anti-CD18) or anti-alpha5/beta1 integrin antibody was combined with anti-alpha4, an augmentation in mobilization was seen that was either additive or synergistic, depending on the potency of the antibody used. Synergy between anti-alpha4 and anti-CD18 (beta(2)) antibody blockade was seen in primates and confirmed in anti-alpha4-treated CD18-deficient mice. In the latter, there was a 49-fold increase in mobilization with anti-alpha4, much higher than in littermate control animals, in CD18 hypomorphic mice, or in other strains of mice tested. Data from both the antibody blockade and gene-targeted mice suggest that the cooperativity of alpha4beta1 with beta2 integrins becomes evident when they are concurrently inhibited. It is unclear whether this cooperativity is exerted at the stage of reversible adhesion versus migration, and enhancement of and whether the 2 integrins work in a sequential or parallel manner. Whatever the mechanism, the data provide a novel example of beta1 and beta2 integrin crosstalk in stem/progenitor cell mobilization.  相似文献   

7.
May AE  Neumann FJ  Schömig A  Preissner KT 《Blood》2000,96(2):506-513
During acute inflammatory processes, beta(2) and beta(1) integrins sequentially mediate leukocyte recruitment into extravascular tissues. We studied the influence of VLA-4 (very late antigen-4) (alpha(4)beta(1)) engagement on beta(2) integrin activation-dependent cell-to-cell adhesion. Ligation of VLA-4 by the soluble chimera fusion product vascular cell adhesion molecule-1 (VCAM-1)-Fc or by 2 anti-CD29 (beta(1) chain) monoclonal antibodies (mAb) rapidly induced adhesion of myelomonocytic cells (HL60, U937) to human umbilical vein endothelial cells (HUVECs). Cell adhesion was mediated via beta(2) integrin (LFA-1 and Mac-1) activation: induced adhesion to HUVECs was inhibited by blocking mAbs anti-CD18 (70%-90%), anti-CD11a (50%-60%), or anti-CD11b (60%-70%). Adhesion to immobilized ligands of beta(2) integrins (intercellular adhesion molecule-1 [ICAM-1], fibrinogen, keyhole limpet hemocyanin) as well as to ICAM-1-transfected Chinese hamster ovary cells, but not to ligands of beta(1) integrins (VCAM-1, fibronectin, laminin, and collagen), was augmented. VCAM-1-Fc binding provoked the expression of the activation-dependent epitope CBRM1/5 of Mac-1 on leukocytes. Clustering of VLA-4 through dimeric VCAM-1-Fc was required for beta(2) integrin activation and induction of cell adhesion, whereas monovalent VCAM-1 or Fab fragments of anti-beta(1) integrin mAb were ineffective. Activation of beta(2) integrins by alpha(4)beta(1) integrin ligation (VCAM-1-Fc or anti-beta(1) mAb) required the presence of urokinase receptor (uPAR) on leukocytic cells, because the removal of uPAR from the cell surface by phosphatidylinositol-specific phospholipase C reduced cell adhesion to less than 40%. Adhesion was reconstituted when soluble recombinant uPAR was allowed to reassociate with the cells. Finally, VLA-4 engagement by VCAM-1-Fc or anti-beta(1) integrin mAb induced uPAR-dependent adhesion to immobilized vitronectin as well. These results elucidate a novel activation pathway of beta(2) integrin-dependent cell-to-cell adhesion that requires alpha(4)beta(1) integrin ligation for initiation and uPAR as activation transducer. (Blood. 2000;96:506-513)  相似文献   

8.
Cell migration requires a dynamic interaction between the cell, its substrate, and the cytoskeleton-associated motile apparatus. Integrin-associated protein (IAP)/CD47 is a 50-kd cell surface protein that is physically associated with beta3 integrins and that modulates the functions of beta3 integrins in various cells. However, in B-lymphocytes that express beta1 integrins but few beta3 integrins, the roles of IAP/CD47 remain to be determined. Cross-linking of IAP/CD47 by the immobilized anti-IAP/CD47 monoclonal antibody (mAb) B6H12, but not 2D3, produced signals to promote polarization with lamellipodia, a characteristic morphology during leukocyte migration, in pre-B and mature B-cell lines (BALL, Nalm6, ONHL-1, Daudi), but not in myeloma cell lines (RPMI8226, OPM-2). In the presence of the immobilized fibronectin (FN), soluble B6H12 could increase the rate of the polarization and activate migratory activity of BALL cells to FN in a transwell filter assay. Furthermore, the dominant-negative form of CDC42 completely blocked B6H12-induced morphologic and functional changes without inhibiting phorbol 12-myristate 13-acetate-induced spreading on FN in BALL cells, whereas the dominant-negative form of Rac1 inhibited all these changes. These findings demonstrate that in B-lymphocytes, IAP/CD47 may transduce the signals to activate the migratory activity, in which CDC42 may be specifically involved, and that IAP/CD47 shows synergistic effect with alpha4beta1 on B-cell migration. These findings would provide new insight into the role of IAP/CD47 on B-cell function.  相似文献   

9.
Heterotypic interaction among tumor cells (TCs) and endothelial cells (ECs) may play a critical role during the vascular dissemination of neoplastic cells and during pathologic angiogenesis in tumors. To identify molecules involved in these processes, the distribution of vascular junctional proteins was first studied by immunofluorescence at sites of heterologous intercellular contact using TC-EC mosaic monolayers grown on 2-dimensional collagen. Several members of the tetraspanin superfamily, including CD9, CD81, and CD151, were found to localize at the TC-EC contact area. The localization of tetraspanins to the TC-EC heterologous contact area was also observed during the active transmigration of TCs across EC monolayers grown onto 3-dimensional collagen matrices. Dynamic studies by time-lapse immunofluorescence confocal microscopy showed an active redistribution of endothelial CD9 to points of melanoma insertion. Anti-CD9 monoclonal antibodies were found to specifically inhibit the transendothelial migration of melanoma cells; the inhibitory effect was likely caused by a strengthening of CD9-mediated heterotypic interactions of TCs to the EC monolayer. These data support a novel mechanism of tetraspanin-mediated regulation of TC transcellular migration independent of TC motility and growth during metastasis and a role for these molecules in the formation of TC-EC mosaic monolayers during tumor angiogenesis.  相似文献   

10.
Laminar shear stress exerts important effects on endothelial cell (EC) function and inhibits apoptosis of ECs induced by various stimuli. The mechanism by which hemodynamic forces, such as shear stress, are transduced into cellular signaling is still not known. Located at the cell surface, integrins, which are required for cell adhesion and cell survival, are potential mechanotransducers. Therefore, we investigated the effect of shear stress on integrin expression in ECs. Shear stress time-dependently increased the mRNA expression of the fibronectin receptor subunits alpha(5) and beta(1) with a maximum at 6 hours (283+/-41% and 215+/-27% of control, respectively). In addition, the protein levels of the fibronectin receptor subunits alpha(5) and beta(1) were enhanced with a maximum at 12 hours of shear stress exposure (343+/-53% and 212+/-38% of control, respectively). The shear stress-induced upregulation of integrins is independent of nitric oxide. Furthermore, we confirmed the enhanced functional activity of alpha(5)beta(1) integrin expression by FACS analysis. As a functional consequence, human umbilical vein ECs, which were preexposed to shear stress, revealed a significantly increased attachment (178+/-10% of static controls) and a more pronounced extracellular signal-regulated kinase 1 and 2 activation in response to cell attachment. Finally, we demonstrated that shear stress requires RGD-sensitive integrins to mediate its antiapoptotic effect. Taken together, these results define a novel mechanism by which shear stress may exert its atheroprotective effects via upregulation of integrins to support EC adhesion and survival.  相似文献   

11.
Although protein kinase C (PKC) activation is required for endothelial cell (EC) growth, migration, adhesion, and vessel formation, the role of individual PKC isoenzymes in these events is not defined. Because PKCalpha has been previously linked with enhanced EC migration and response to angiogenic growth factors, we characterized a specific phosphorothioate-modified 21-mer antisense PKCalpha (AS-PKCalpha). AS-PKCalpha (500 nmol/L) prevented the expression of PKCalpha protein by 90% in human ECs and did not reduce the expression of any other PKC isoenzyme. AS-PKCalpha reduced human EC migration by 64% compared with its control oligonucleotide in a "scratch" wounding assay, and AS-PKCalpha reduced human EC adhesion to the extracellular matrix protein vitronectin by 18%. Phosphorylation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) induced by vascular endothelial growth factor was inhibited by 30% in human ECs transfected with AS-PKCalpha. Compared with control, AS-PKCalpha also reduced the number of EC tubes formed in a 3D type I collagen gel assay by 37.5%. Finally, using an osmotic minipump, we infused AS-PKCalpha into mice in which myocardial infarction was induced by coronary ligation and found that the oligonucleotide was primarily taken up by intramyocardial blood vessels. Compared with the results with control oligonucleotide, AS-PKCalpha oligonucleotide inhibited the number of anti-PKCalpha-stained blood vessels by 48% and reduced the total vessel number by 72% as well. In conclusion, the expression of PKCalpha is required for full EC migration, adhesion to vitronectin, vascular endothelial growth factor-induced extracellular signal-regulated kinase activation, and tube formation and is likely to be of importance in myocardial angiogenesis in vivo after ischemia.  相似文献   

12.
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antiphospholipid antibodies (aPLs) and recurrent thrombosis or fetal loss. The thrombophilic state has been partially related to the induction of a proinflammatory and procoagulant endothelial cell (EC) phenotype induced by anti-beta(2)-glycoprotein I (beta(2)-GPI) antibodies that bind beta(2)-GPI expressed on the EC surface. Anti-beta(2)-GPI antibody binding has been shown to induce nuclear factor-kappa B (NF-kappa B) translocation leading to a proinflammatory EC phenotype similar to that elicited by interaction with microbial products (lipopolysaccharide [LPS]) and proinflammatory cytokines (interleukin 1 beta [IL-1 beta], tumor necrosis factor alpha [TNF-alpha]). However, the upstream signaling events are not characterized yet. To investigate the endothelial signaling cascade activated by anti-beta(2)-GPI antibodies, we transiently cotransfected immortalized human microvascular endothelial cells (HMEC-1) with dominant-negative constructs of different components of the pathway (Delta TRAF2, Delta TRAF6, Delta MyD88) together with reporter genes (NF-kappa B luciferase and pCMV-beta-galactosidase). Results showed that both human anti-beta(2)-GPI IgM monoclonal antibodies as well as polyclonal affinity-purified anti-beta(2)-GPI IgG display a signaling cascade comparable to that activated by LPS or IL-1. Delta TRAF6 and Delta MyD88 significantly abrogate antibody-induced as well as IL-1- or LPS-induced NF-kappa B activation, whereas Delta TRAF2 (involved in NF-kappa B activation by TNF) does not affect it. Moreover, anti- beta(2)-GPI antibodies and LPS followed the same time kinetic of IL-1 receptor-activated kinase (IRAK) phosphorylation, suggesting an involvement of the toll-like receptor (TLR) family. Our findings demonstrate that anti-beta(2)-GPI antibodies react with their antigen likely associated to a member of the TLR/IL-1 receptor family on the EC surface and directly induce activation.  相似文献   

13.
OBJECTIVE: To evaluate whether the effect of human monoclonal anticardiolipin antibodies (aCL) on platelet interaction with the subendothelium under flow conditions is dependent on beta(2)-glycoprotein I (beta(2)GPI). METHODS: Three monoclonal IgM aCL with anti-beta(2)GPI activity (TM1B3, GR1D5, and EY2C9) obtained from patients with antiphospholipid syndrome, a monoclonal aCL with lupus anticoagulant activity but without anti-beta(2)GPI activity (FRO) obtained from a patient with a splenic lymphoma, and a control monoclonal IgM without aCL activity were used. TM1B3, GR1D5, EY2C9, FRO, and control IgM (30 microg/ml) were added to reconstituted blood containing gel-filtered platelets (200 x 10(9)/liter), factor VIII (100 units/dl), and fibrinogen (1.5 gm/liter). Samples were perfused (wall-shear rate 800 seconds(-1)), with and without the addition of purified beta(2)GPI (20 microg/ml), through annular chambers containing collagen-rich denuded vascular segments, and the percentages of surface covered by platelets and by thrombi were evaluated. RESULTS: No differences in the percentages of surface covered by platelets and by thrombi were observed among samples with TM1B3, GR1D5, EY2C9, FRO, and control IgM added when reconstituted blood samples without beta(2)GPI were used. However, a significant increase in the percentage of surface covered by platelets was observed in the presence of TM1B3, GR1D5, and EY2C9 but not in the presence of FRO when samples containing beta(2)GPI were used. Increased thrombi formation was induced by TM1B3 and GR1D5 but not by EY2C9 or FRO in samples with added beta(2)GPI. CONCLUSION: Monoclonal aCL require anti-beta(2)GPI activity to promote platelet interaction with the subendothelium under flow conditions.  相似文献   

14.
Lysophosphatidylcholine (lysoPC), a major lipid component of oxidized low density lipoprotein, inhibits endothelial cell (EC) migration and proliferation, which are critical processes during angiogenesis and the repair of injured vessels. However, the mechanism(s) of lysoPC-induced inhibition of EC migration and proliferation has not been clarified. In this report, we demonstrate the critical role of extracellular signal-regulated kinase (ERK) in growth factor-stimulated EC migration and proliferation as well as their inhibition by lysoPC. EC migration and proliferation stimulated by basic fibroblast growth factor (FGF-2) were blocked by inhibition of ERK activity by both the specific mitogen-activated protein kinase kinase (MEK) 1 inhibitor PD98059 and the overexpression of a dominant-negative mutant of MEK1. Conversely, overexpression of a constitutively active mutant of MEK1 increased EC migration and proliferation, which were comparable to those of ECs stimulated with FGF-2. LysoPC inhibited FGF-2-induced ERK activation via prevention of Ras activation without inhibiting tyrosine phosphorylation of phospholipase C-gamma. Taken together, our data demonstrate that ERK activity is required for FGF-2-induced EC migration and proliferation and suggest that inhibition of the Ras/ERK pathway by lysoPC contributes to the reduced EC migration and proliferation.  相似文献   

15.
CD9, a 24-kDa member of the tetraspanin family, influences cellular growth and development, activation, adhesion, and motility. Our investigation focuses on the hypothesis that the CD9 second extracellular loop (EC2) is important in modulating cell adhesive events. Using a Chinese hamster ovary (CHO) cell expression system, we previously reported that CD9 expression inhibited cell adhesion to fibronectin and fibronectin matrix assembly. For the first time, a functional epitope on CD9 EC2 that regulates these processes is described. Binding of mAb7, an EC2-specific anti-CD9 monoclonal antibody, reversed the CD9 inhibitory activity on CHO cell adhesion and fibronectin matrix assembly. This reversal of cell phenotype also was observed in CHO cells expressing CD9 EC2 truncations. Furthermore, our data showed that the EC2 sequence (173)LETFTVKSCPDAIKEVFDNK(192) was largely responsible for the CD9-mediated CHO cell phenotype. Two peptides, (135)K-V(172) (peptide 5b) and (168)P-I(185) (peptide 6a), selectively blocked mAb7 binding to soluble CD9 and to CD9 on intact cells. These active peptides reversed the influence of CD9 expression on CHO cell adhesion to fibronectin. In addition, confocal microscopy revealed that CD9 colocalized with the integrin alpha(5)beta(1) and cytoskeletal F-actin in punctate clusters on the cell surface, particularly at the cell margins. Immunoprecipitation studies confirmed CD9 association with beta(1) integrin. The cellular distribution and colocalization of focal adhesion kinase and alpha-actinin with cytoskeletal actin was also influenced by CD9 expression. Thus, CD9 may exhibit its effect by modulating the composition of adhesive complexes important in facilitating cell adhesion and matrix assembly.  相似文献   

16.
We analyzed herein whether members of the tetraspanin superfamily are involved in human immature dendritic cell (DC) functions such as foreign antigen internalization, phagocytosis, and cell migration. We show that CD63, CD9, CD81, CD82, and CD151 are present in immature DCs. Whereas CD9 and CD81 are mostly expressed at the cell surface, CD63 and CD82 are also located in intracellular organelles. Complexes of monoclonal antibody (Mab) FC-5.01-CD63 or Fab-5.01-CD63 were rapidly translocated "outside-in" and followed the endocytic pathway through early endosomes and lysosomes, reaching major histocompatibility complex (MHC) class II-enriched compartments (MIICs) in less than one hour. Internalization of CD63 was also observed during Saccharomyces cerevisiae phagocytosis. Moreover, an association of CD63 with the beta-glycan receptor dectin-1 was observed. Mabs against CD9, CD63, CD81, and CD82 enhanced by 50% the migration induced by the chemokines macrophage inflammatory protein-5 (MIP-5) and MIP-1alpha. Concomitantly, Mabs against CD63 and CD82 diminished the surface expression of CD29, CD11b, CD18, and alpha5 integrins. By immunoprecipitation experiments we found that CD63 associated with integrins CD11b and CD18. These results suggest that CD9, CD63, CD81, and CD82 could play a role in modulating the interactions between immature DCs and their environment, slowing their migratory ability. However, only CD63 would intervene in the internalization of complex antigens.  相似文献   

17.
Epithelial cell interactions with matrices are critical to tissue organization. Indirect immunofluorescence and immunoprecipitations of cell lysates prepared from stratified cultures of human epidermal cells showed that the major integrins expressed by keratinocytes are alpha E beta 4 (also called alpha 6 beta 4) and alpha 2 beta 1. The alpha E beta 4 integrin is localized at the surface of basal cells in contact with the basement membrane, whereas alpha 2 beta 1/alpha 3 beta 1 integrins are absent from the basal surface and are localized only on the lateral surface of basal and spinous keratinocytes. Anti-beta 4 antibodies potently inhibited keratinocyte adhesion to matrigel or purified laminin, whereas anti-beta 1 antibodies were ineffective. Only anti-beta 4 antibodies were able to detach established keratinocyte colonies. These data suggest that alpha E beta 4 mediates keratinocyte adhesion to basal lamina, whereas the beta 1 subfamily is involved in cell-cell adhesion of keratinocytes.  相似文献   

18.
The mechanisms responsible for the accumulation of eosinophils at sites of allergic and other inflammatory reactions are unknown, but recent studies have implicated both eosinophil and endothelial adhesion molecules in this process. However, less well studied have been the adhesive interactions between eosinophils and the subendothelial basement membrane and interstitial connective tissues. To test the hypothesis that eosinophils might interact with extracellular matrix proteins, we analyzed purified human eosinophils for the expression and function of various beta 1 integrins. Using indirect immunofluorescence and flow cytometry, purified eosinophils from mildly allergic donors were found to consistently express the integrin subunits beta 1 (CD29), alpha 4 (CD49d, very late activation antigen [VLA]-4 alpha), and alpha 6 (CD49f, VLA-6 alpha). No significant expression of the alpha 1, alpha 2, alpha 3, alpha 5, or beta 4 subunits was detected. Platelet contamination of the eosinophil preparations was excluded by light microscopy and by the inability to detect expression of platelet glycoproteins alpha v, CD41b, and CD42b. Immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of eosinophils confirmed the expression of cell-surface beta 1, alpha 4, and alpha 6. Furthermore, eosinophils purified from allergic donors were shown to adhere to plate-bound laminin, but not to type 1 or type 4 collagen. Adhesion to laminin was concentration-dependent, required divalent cations, and was completely and specifically inhibited by the anti-alpha 6 monoclonal antibody (MoAb) GoH3 and by the anti-beta 1 MoAb 33B6. Interestingly, the anti-beta 1 MoAb 18D3 (which like 33B6 blocks eosinophil binding to VCAM-1) did not inhibit eosinophil adhesion to laminin, suggesting that there are functionally distinct epitopes on the beta 1 subunit. Eosinophils purified from 4 healthy, nonallergic donors also showed alpha 6-dependent adhesion to laminin, although these cells adhered less well. These studies establish the expression of alpha 6 beta 1 on human eosinophils and document its function as a laminin receptor. Interaction of eosinophil alpha 6 beta 1 with laminin, eg, in basement membranes, may contribute to the localization of these cells at inflammatory sites in vivo.  相似文献   

19.
Pierangeli SS  Harris EN 《Lupus》2003,12(7):539-545
The association of antiphospholipid (aPL) antibodies with thrombosis in patients with antiphospholipid syndrome (APS) is well documented in humans and in animal studies. However, the mechanisms by which aPL antibodies induce thrombosis are the subject of much current study. It has been suggested that aPL may activate endothelial cells (ECs), thus creating a hypercoagulable state that precedes and contributes to thrombosis in patients with APS. Several studies have shown that aPL upregulate ECs' adhesion molecules (CAMs): intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin (E-sel) or induce tissue factor (TF) in monocytes in vitro. Similarly, the incubation of EC with antibodies reacting with beta2glycoprotein I (beta2GPI) has been shown to induce EC activation with concomitant upregulation of CAMs, IL-6 production and alteration of prostaglandin metabolism. Our group has shown that aPL-mediated upregulation of adhesion molecules on ECs correlates with an increased adhesion of leukocytes to endothelium in the microcirculation of mouse cremaster muscle, a n indication of EC activation in vivo, andwith enhanced thrombosis in vivo. In another series of studies, investigators have shown that upregulation of expression of adhesion molecules by some murine monoclonal anti-beta2glycoprotein I (anti-beta2GPI) antibodies correlated with fetal resorption in mice in vivo. More recently, one study showed that the anti-hypercholesterolaemic drug fluvastatin inhibited the aPL-mediated enhanced adhesion of monocytes to ECs in vitro. Data from our laboratories indicate that fluvastatin also reverses thrombus formation and activation of EC induced by aPL in an in vivo mouse model. As additional support for the hypothesis that aPL antibodies activate ECs and may create an hypercoagulable state in APS patients, two recent studies indicated that levels of soluble ICAM-1 and VCAM-1 were significantly increased in the plasma of patients with APS and recurrent thrombosis. Furthermore, studies utilizing knockout mice and specific monoclonal anti-VCAM-1 antibodies have demonstrated that expression of ICAM-1, P-selectin, E-selectin and VCAM-1 are important in in vivo aPL-mediated thrombosis and EC activation in mice. Recent data suggests that aPL antibodies also induce expression of TF not only in monocytes but in ECs. Hence, the interference of aPL with the TF mechanism may be another important mechanism by which these antibodies create a hypercoagulable state and prone patients to thrombosis. Specifically, how aPL alters EC activation state and the molecular and intracellular mechanisms involved have not yet been defined. APL may interact with specific cell surface receptors (proteins and/or lipids) induce signals that have consequences downstream, and that ultimately will result in upregulation of cell surface proteins (i.e., CAMs and TF) and subsequently induce EC activation. In that regard, our group recently showed that aPL-mediated upregulation of adhesion molecules in ECs is preceded by activation of the nuclear factor kappa B (NFkappaB). Other intracellular mechanisms triggered by aPL are not completely understood and are the subject of current investigation. In conclusion, studies suggest that activation of ECs by aPL is an important mechanism that may precede thrombus formation in patients with APS. Hence, the interplay between aPL antibodies and ECs is important inthe pathogenesis of thrombosis in APS.  相似文献   

20.
Tetraspanins associate with several transmembrane proteins forming microdomains involved in intercellular adhesion and migration. Here, we show that endothelial tetraspanins relocalize to the contact site with transmigrating leukocytes and associate laterally with both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Alteration of endothelial tetraspanin microdomains by CD9-large extracellular loop (LEL)-glutathione S-transferase (GST) peptides or CD9/CD151 siRNA oligonucleotides interfered with ICAM-1 and VCAM-1 function, preventing lymphocyte transendothelial migration and increasing lymphocyte detachment under shear flow. Heterotypic intercellular adhesion mediated by VCAM-1 or ICAM-1 was augmented when expressed exogenously in the appropriate tetraspanin environment. Therefore, tetraspanin microdomains have a crucial role in the proper adhesive function of ICAM-1 and VCAM-1 during leukocyte adhesion and transendothelial migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号