首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in ganglioside composition and metabolism of deafferentiated rat hippocampus were estimated after septal lesion. A significant decrease in total ganglioside concentration was found 7 days after the lesion. The reduced level of total gangliosides persisted at 17 and 25 days. Relative increase in the proportion of GD1b and GX (O-acetylated GT1b) and decrease in GM1 were found in hippocampus only at 25 days post-lesion. The incorporation of 3H-N-acetylmannoseamine into gangliosides was examined in rats whose hippocampi were lesioned 25 days prior to radioprecursor injection. Differences in the labeling pattern of total and individual gangliosides were found. Increases in the label in GM1, GD3, and GD1a and decreases in GT1b and GQ1b were found 10 hr after isotope injection. However, decreases in the specific activity of all gangliosides except GT1b and GQ1b were observed 24 hr after 3H-N-acetylomannosamine injection, suggesting the activated turnover of gangliosides in postlesioned hippocampus. The significance of these changes has been discussed in terms of cellular damage and repair in the hippocampal tissue.  相似文献   

2.
The development profiles of 16 different gangliosides of the optic lobes of the chicken were followed from the sixth day of incubation to the tenth posthatching week and correlated to known morphological development. Several, previously undetected novel fractions occurred between the sixth and tenth embryonic days. According to their migration rates on TLC-plates 4 of them may be GT3, GT2, GT1c, GQ1c. Three even more slowly migrating fractions represent penta-, hexa-, and septa-sialogangliosides. At the sixth day of incubation, characterized by maximal proliferation of neuro-epithelial cells, the optic lobes contained predominantly GD3.Up to the eleventh day of incubation, parallel to decreased mitotic activity, maximal cell migration and neuron differentiation, GD3, GD2, and GT3 decreased in favor of newly detected polysialogangliosides. Thereafter, up to hatching, parallel to increased growth and arborization of dendrites and axons as well as synaptogenesis, the newly detected polysialogangliosides decreased in favor of GD1b, GT1b, GQ1b, and GD1a.At hatching the myelin-specific GM4 appeared, reaching about 8% of total ganglioside sialic acid after 10 weeks. Likewise a fraction, migrating somewhat faster than GM1,increased. This band, named GM1', is suggested to be also myelin-associated. The other monosialogangliosides were always minor fractions, none exceeding 4% of total ganglioside sialic acid.  相似文献   

3.
Monospecific IgG antibodies to GD1b ganglioside (GD1b-specific antibodies) have been found in patients with acute ataxic neuropathy and Guillain–Barré syndrome, but the association of the GD1b-specific antibodies with specific neurological conditions has yet to be established. We tested sera from more than 10,000 patients with various neurological disorders, and found six sera, which contained IgG antibodies to GD1b, but not to LM1, GM1, GM1b, GD1a, GalNAc-GD1a, GT1a, GT1b and GQ1b. All six patients who carried GD1b-specific antibodies presented with acute onset of ataxia and monophasic course of the illness, of whom five demonstrated cerebellar-like ataxia. Four patients had antecedent symptoms of upper respiratory tract infection. The six patients demonstrated areflexia, and four complained of distal numbness. All the six patients who had the GD1b-specific antibodies carried IgG antibodies to complex of GQ1b/GM1 and GT1a/GM1. GD1b-specific antibodies were significantly absorbed by GQ1b/GM1 and GT1a/GM1 and anti-GQ1b/GM1 and -GT1a/GM1 antibodies were absorbed by GD1b. In conclusion, the GD1b-specific antibodies, which recognizes GQ1b/GM1 or GT1a/GM1 complex, are associated with acute ataxia.  相似文献   

4.
In 5-month-old chickens, an intracranial injection of N-[3H]acetylmannosamine led to a labelling of all optic lobe ganglioside species in a fashion parallelling the relative ganglioside distribution. In contrast, after an intraocular injection of the same precursor, the optic nerve and the optic lobe connected to the injected eye, possessed an exceptionally high labelling of GD1a (in comparison with GD1a-sialic acid), and only negligible incorporation of radioactivity into the myelin-specific GM4 and into a fraction migrating close to GM1. Subtracting both these very low labelling fractions from the total gave a percentage distribution of ganglioside sialic acid which now corresponded well to the distribution of radioactivity along the whole optic nerve, including the region of nerve terminals in the optic lobe. This pattern of ganglioside labelling, which indicates that GD1a carries about 60% of total ganglioside sialic acid of retinal ganglion cell axons, did not change remarkably during post-hatching development up to 5 months. Long-time incorporation studies revealed similar turnover rates of the main retinal ganglion cell gangliosides. The average half-lives were 34 (GD1a), 35 (GQ1b), 36.3 (GT1b) and 38.5 days (GD3). The findings suggest that the retinal ganglion cell axons and their presynaptic terminals possess a similar ganglioside pattern, characterized by a high content of GD1a.  相似文献   

5.
IgG anti-GQ1b antibodies are a powerful serological marker for the diagnosis of Fisher syndrome (FS), but little is known regarding serological markers in FS patients that do not have the autoantibodies. The authors analyzed IgG antibodies against gangliosides other than GQ1b, ganglioside complexes, and ganglioside-like lipo-oligosaccharide (LOS) of Campylobacter jejuni isolates from FS patients. We identified 24 (12%) patients with GQ1b-seronegative FS among 207 FS patients who had been referred to our laboratory for anti-ganglioside antibody testing. Patients with GQ1b-seronegative FS were male and had a history of antecedent gastrointestinal illness more frequently than FS patients with IgG anti-GQ1b antibodies. Other clinical features during the illness were not distinguishing for GQ1b-seronegative FS. Four (17%) of 24 patients with GQ1b-seronegative FS had IgG antibodies against single gangliosides such as GM1b, GD1a, or GT1a. Antibodies against GM1 and GT1a complex were detected in four GQ1b-seronegative FS patients, three of whom did not have antibodies against single gangliosides. Mass spectrometry analysis showed that C. jejuni isolates from FS patients had GD1c-, GalNAc-GM1b-, or GalNAc-GD1c-like LOS, and not GQ1b-like LOS, highlighting the utility of examining serum antibodies against these ganglioside mimics in GQ1b-seronegative FS patients. Seven (29%) had IgG antibodies against the LOS from C. jejuni strains expressing GD1c-, GalNAc-GM1b-, or GalNAc-GD1c-like LOS. These findings suggest that IgG antibodies against GM1b, GD1c, GalNAc-GM1b, and ganglioside complexes are serological markers for GQ1b-seronegative Fisher syndrome.  相似文献   

6.
Ganglioside patterns in amyotrophic lateral sclerosis brain regions   总被引:1,自引:0,他引:1  
In a search for evidence of biochemical disorders in regions of postmortem brain other than the motor cortex in amyotrophic lateral sclerosis (ALS), ganglioside patterns were also examined in the frontal, temporal, and parahippocampal gyrus cortex. In 21 ALS brains studied (20 sporadic, 1 familial), abnormal patterns were found in the frontal cortex (81%), temporal cortex (75%), motor cortex (70%), and parahippocampal gyrus cortex (71%). Patterns were established by measuring the percentage distribution of 12 ganglioside species. Two abnormal patterns were detected. One was based on low proportions of GD1b, GT1b, and GQ1b associated with high proportions of GM2 and GD3 (GM1, GD1a, GD2, and GT1a values were normal). The second abnormality was the appearance of Gx. Neither abnormality was seen in the 13 non-ALS control brains. The first, and predominant, abnormality was found in the frontal cortex in 14 brains, and the second was observed in 13 brains; 10 brains showed both abnormalities. These findings thus constitute evidence that the disease process in ALS extends beyond the motor cortex and involves neurons in several brain areas.  相似文献   

7.
A close relationship between acute motor conduction block neuropathy and antibodies against the complex of GM1 and GalNAc‐GD1a has been reported. This study investigates the hypothesis that conduction block at the early phase of axonal Guillain‐Barré syndrome (GBS) is also associated with such ganglioside complexes. Sera were obtained from seven French patients with initial evidence of isolated conduction blocks that resolved or progressed to acute motor axonal neuropathy. Serum IgG to asialo‐GM1 and gangliosides of LM1, GM1, GM1b, GD1a, GalNAc‐GD1a, GD1b, GT1a, GT1b, and GQ1b as well as their complexes were measured. Five of seven patients progressed within the first month of disease to AMAN. One patient had IgG antibodies against the complex of asialo‐GM1 and each of the other ganglioside antigens. Another patient carried IgG antibodies against GM1 complex with GM1b, GD1a, and GT1a as well as asialo‐GM1 complex with GD1a and GT1a. None had IgG antibodies against GM1/GalNAc‐GD1a complex. Six patients had IgG against single antigens GM1, GD1a, GalNAc‐GD1a, GD1b, and asialo‐GM1. In three patients, a reduced reaction against GM1/GalNAc‐GD1a complex was observed. The presence of conduction block in axonal GBS is not always associated with anti‐GM1/GalNAc‐GD1a complex antibodies.  相似文献   

8.
The monoclonal antibody A2B5 is specific to ganglioside GQ1c   总被引:2,自引:0,他引:2  
The neural specific monoclonal antibody A2B5 was found to interact with GQ1c but not with Gq1b, nor did it interact with other glycolipids such as GM1, GD1a, GD1b, GT1a, GT1b and GA1. Since GQ1c is enriched in embryonic chicken brains but not in adult chicken brains, this antibody should be useful as a tool in assessing the role of GQ1c in neuronal maturation.  相似文献   

9.
Left sciatic nerves in rats were crushed and allowed to regenerate for variable periods of time up to 14 days; uncrushed right nerves from the same animals were used as controls. Two days before killing the rats, both L-5 dorsal root ganglia (DRG) were injected with 100 microcuries [3H]glucosamine. Gangliosides were purified separately from sciatic nerve (SN) distal to the crush site, lumbosacral trunk (LST) proximal to the crush site, and the injected DRG. Changes in major glycoconjugate classes were previously reported; in this study total gangliosides were separated by high performance thin layer chromatography, located by autofluorography and radioactivity was measured by liquid scintillography. In control DRG, major radiolabelled gangliosides were GM3 and LM1; in control LST and SN, GD1b and GT1b were the major ones. During day two and four following crush, GM3 and LM1 decreased in DRG, but at one and two weeks were at normal and elevated levels, respectively; there were inverse changes in GD3, GT1b and GQ1b. GD1b, GT1b and GQ1b were lower in crushed than in control LST and SN between days zero and four. In LST, GM3 and LM1 remained constant for four days, but were elevated at one and two weeks, whereas GD1a was elevated at all times. Indeed, GD1a is the major recently synthesized ganglioside that is transported into LST and SN two to four days after trauma, suggesting that it may play an important role in regeneration. Indices of oligosaccharide complexity and degree of sialylation indicated that between two and four days following crush, gangliosides in DRG had more complex oligosaccharides and more sialic acid residues than in either controls or in DRG of crushed nerves at one and two weeks post-crush. The degrees of ganglioside sialylation and oligosaccharide complexity in crushed LST and SN were lower than in control specimens between one and seven days after crush. Changes in the ganglioside composition of peripheral nerve following trauma may be important for axonal regeneration.  相似文献   

10.
Neuroimmunology of gangliosides in human neurons and glial cells in culture   总被引:4,自引:0,他引:4  
Gangliosides (sialic-acid-bearing glycolipids) have received attention in recent years because of their role in cell recognition phenomena, synaptic transmission, memory generation, and nerve regeneration in the fields of neurosciences. It is suggested that each brain region or each neural cell type may contain a specific and characteristic set of gangliosides. We have investigated the immunocytochemical localization of several classes of gangliosides that include GM1, GM4, GD3, and GQ gangliosides on the cell surface of various cell types found in human neural cell cultures with antibodies specific for these gangliosides. Cell cultures were obtained from adult human brains and fetal human dorsal root ganglia and spinal cord and cultured in vitro for the period up to 6 months and utilized for the ganglioside immunocytochemistry. It was demonstrated that GM1 ganglioside was present in all galactocerebroside-positive oligodendrocytes and most of glial fibrillary acid protein (GFAP)-positive astrocytes (80%), most of neurofilament-positive neurons (80%), 50-70% of Schwann cells, and 5-10% of fibronectin-positive fibroblasts; GM4 ganglioside could be detected in all oligodendrocytes, 80% of astrocytes, and 50% of Schwann cells, while no staining was found in neurons or fibroblasts; GD3 ganglioside was present in all oligodendrocytes and 5-10% of astrocytes but not in neurons, Schwann cells, or fibroblasts; and all of fetal CNS neurons and approximately 80-90% of fetal dorsal root ganglia (DRG) neurons and a small percentage of astrocytes (10-20% in fetal and less than 1% in adult astrocytes) was labeled by A2B5 antibody which is specific for GQ ganglioside, while this antibody did not stain cell surface of oligodendrocytes, Schwann cells, or fibroblasts. Three classes of gangliosides, GM1, GM4, and GD3 were found to be definite components of fetal and adult human oligodendroglial plasma membrane, while GM1 and GM4 gangliosides were detected on the surface of most astrocytes. Only a minor population of astrocytes from both fetal and adult human CNS contained GD3 and GQ gangliosides. Two classes of gangliosides, GM1 and GQ, were detected on the surface of fetal human neurons. More than half of fetal Schwann cells reacted to GM1 and GM4 antibodies but did not to GD3 or GQ antibodies. We recognized the presence of a specific and characteristic set of gangliosides on the cell surface of different human neural cell types and these findings should facilitate further investigation of the precise biological activity of these gangliosides.  相似文献   

11.
Summary Serum IgG and IgM antibodies to gangliosides GM1, GM2, GM3, AGM1, GD1a, GD1b and GT1b were determined in 210 patients with different degenerative and inflammatory disorders including motor neuron diseases, peripheral radiculopathies and neuropathies, multiple sclerosis and neuroborreliosis. No single disorder was associated specifically with ganglioside antibodies. No characteristic patterns of ganglioside antibodies were observed in any disease category. However, 32% of all patients had pathological antibody titres to at least one ganglioside. Four patients had pathological IgG and IgM titres for all gangliosides evaluated. They suffered from systemic lupus erythematosus [2], neuroborreliosis and schizophrenia, respectively. The results of this study indicate that the introduction of ganglioside antibody determination as a differential diagnostic test in clinical neurology is only helpful in a few patients with typical lower motor neuron syndromes.  相似文献   

12.
Developmental changes in gangliosides in the course of neurite outgrowth were examined in dissociated fetal rat cerebral neurons in culture. About a 2-fold increase in ganglioside levels was seen with the progression of neurite formation for up to 24 h in predominantly neuronal cultures. Ganglioside patterns appeared to be unchanged during the first 24 h, subsequently consisted of higher amounts of GD3 and b-series gangliosides (such as GD1b, GT1b, and GQ1b), and lower amounts of a-series gangliosides (GM1 and GD1a). Although the addition of colchicine to the cell growth medium inhibited neurite outgrowth in developing neurons, little if any differences in ganglioside patterns were found between control and colchicine-treated cells. Ganglioside levels decreased slightly in colchicine-treated cells in agreement with the decrease in cell attachment to culture dishes. Although colchicine treatment 8 h after plating caused complete retraction of formed neurites, the ganglioside level of the cells continued to increase during the following 16-hour incubation. Thus, the data suggest that ganglioside synthesis in differentiating neurons does not primarily accompany the expansion in cell surfaces due to neurite formation, and raises the possibility that a large proportion of gangliosides is retained in intracellular compartments.  相似文献   

13.
Gangliosides of human cerebrospinal fluid in various neurologic diseases.   总被引:1,自引:0,他引:1  
Simultaneous profile determination and quantification of human cerebrospinal fluid (CSF) gangliosides in various neurologic diseases (n = 71) was examined. Gangliosides were extracted with methanol/chloroform from clinically available amounts of CSF (4-5 ml), then separated and quantified by high-performance thin-layer chromatography (HPTLC) and direct densitometry. Based on chromatographic comparison with standards, the percentage of lipid-bound NeuAc positive fractions in 'normal' CSF samples were: GM1 (II3 NeuAc-GgOse4Cer) (3%); GD3 (II3 NeuAc2-Lac-Cer) (4%); GD1a (IV3 NeuAc, II3 NeuAc-GgOse4 Cer) (15%); X1 (3%); GD1b (II3(NeuAc)2-GgOse4 Cer) (16%); X2 (4%); GT1b (IV3 NeuAc, II3(NeuAc)2-GgOse4-Cer) (40%); and GQ1b (IV3(NeuAc)2, II3(NeuAc)2-GgOse4-Cer (15%). Similarity between CSF and CSF and human cerebellar cortex, particularly in proportion of "b" series gangliosides (GQ1b, GT1b, GD1b), could be observed. A higher proportion of GD1a ganglioside, with decreased GQ1b was found in infancy. The total ganglioside content (mean +/- 2 SD) varied between 645-894 micrograms/l. Significant alterations of the CSF ganglioside profile, with an increase in less polar gangliosides, GM3 and GD3, correlated with the blood-brain barrier dysfunction (CSF hemorrhages, compressive syndrome), or some malignant processes (metastatic brain melanoma). A statistically significant increase in the content of total CSF gangliosides was found in the following groups of patients as compared to controls: (1) ischemic cerebrovascular accident (CVI) with good outcome (P less than 0.02); (2) peripheral neuropathy and polyneuropathy (P less than 0.001) and (3) intravertebral discopathy (P less than 0.05). A significant decrease in the content of total CSF gangliosides was found in CVI group with lethal outcome (P less than 0.05).  相似文献   

14.
The ganglioside composition of the cerebral hemispheres of young and adult rats of either sex has been herein assessed for the first time. In females, the total ganglioside content at any age, the content of GM1, GD1a, and GD1b at 8 days, and the content of GM1, GD1b, GT1b, and GQ1b at 60 days were higher in the right than in the left hemisphere. In males, no difference was observed. Concerning the ceramide moiety, a difference was displayed by C18:1 long-chain base in GD1a, whose proportion was higher in the left than in the right hemisphere of females aged 8 days. The comparison between homolateral hemispheres of rats of different sex revealed several differences. On average, in 8-day-old animals, the content of gangliosides was higher in females than in males. At 60 days the amount of gangliosides was on average lower in females than in males, even if with some exception. The data obtained with the current investigation show the existence of a ganglioside lateralization in rat brain, exclusively in females, and almost entirely at charge of the oligosaccharide portion. Moreover, age-dependent changes of ganglioside pattern and content show a dependence on brain lateralization. J. Neurosci. Res. 50:643–648, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
A 77-year-old man presented sensory-dominant neuropathy associated with IgM M-protein reacting with various gangliosides. The M-protein bound to gangliosides with polysialosyl residue, such as GD1b, GD3, GT1b, GT3, GQ1b, and GQ1c. In addition, GD1a, GM3 and LM1, having a terminal monosialosyl epitope, were also recognized. Previously, Ilyas et al. described a similar case in which sensory symptoms were associated with IgM M-protein reacting with gangliosides containing a disialosyl group, such as GD3, GD1b, and GT1b, but not GM3 and GD1a. It is suggested that the reactivity of IgM M-protein with polysialogangliosides may be associated with the pathogenesis of sensory-dominant neuropathy.  相似文献   

16.
Anti-glycolipid antibodies are associated with immune-mediated neuropathies and screening is often performed as part of the diagnostic assessment for patients presenting with peripheral neuropathy. We report our experience in testing for immunoglobulin (Ig) G and IgM anti-glycolipid (GM1, GM2, GM3, GM4, GD1a, GD1b, GD2, GD3, GT1a, GT1b, GQ1b, sulfatides) antibodies in 290 consecutive patients presenting with neuropathy. Anti-glycolipid antibodies were detected significantly more often (43%) in patients who were diagnosed with definite immune-mediated neuropathy than in patients without a final diagnosis of immune-mediated neuropathy (control group) (23%). With positive and negative predictive values of 22% and 90%, respectively, anti-glycolipid antibodies are not a very reliable diagnostic tool in early patient contact. Certain antibodies (IgM to GM2, GT1a and IgG to GM3, GD3 and GT1b) were equally or more prevalent in the control group; clinicians should be aware of this distribution when receiving positive screening results for these antibodies. Concomitant IgG and IgM reactivities were found for GM1, GM2, GD1b and sulfatides, and were detected more frequently in patients with definite immune-mediated neuropathies.  相似文献   

17.
Sera from 40 patients with Guillain-Barré syndrome (GBS), including the subtypes acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor and sensory axonal neuropathy (AMSAN), and Miller Fisher syndrome (MFS) were examined for the presence of anti-ganglioside antibodies using the ganglioside agglutination assay, and the enzyme-linked immunosorbent assay (ELISA). In the ELISA system, sera were tested for IgM and IgG antibodies to GM1, GM2, GD1a, GD1b, GT1b, and GQ1b gangliosides. Antibodies to gangliosides were detected in 21 (53%) of the GBS patients by agglutination assay and in 17 (43%) of the patients by ELISA. Some of the sera reacted with more than one ganglioside. Antibodies were not found in the control sera that were studied. The agglutination assay may be useful for rapid screening of GBS sera for antibodies to multiple gangliosides.  相似文献   

18.
We have previously shown that patients with primary progressive multiple sclerosis (MS) have significantly elevated plasma levels of antibody to GM3 ganglioside compared to patients with relapsing-remitting MS, healthy subjects and patients with other neurological diseases. Anti-GM3 antibody levels were elevated also in patients with secondary progressive MS but to a lesser extent than in primary progressive MS. As gangliosides are particularly enriched in the axonal membrane, these findings suggested that antiganglioside immune responses might contribute to the axonal damage in progressive forms of MS. The present study was performed to determine whether peripheral blood T cell responses to GM3 are also increased in progressive MS. Blood was collected from 98 untreated patients with MS (40 with relapsing-remitting, 27 with secondary progressive and 31 with primary progressive MS), 50 healthy subjects and 24 patients with other disorders of the CNS, and reactivity to GM1, GM3, GD1a, GD1b, GD3, GT1b, GQ1b and sulphatide was assessed by 6-day T cell proliferation assays. Increased T cell reactivity to GM3 and GQ1b occurred significantly more often in patients with primary progressive MS than in healthy subjects and patients with other CNS diseases. These findings suggest that ganglioside-specific T cells may contribute to the axonal damage in primary progressive MS.  相似文献   

19.
In previous studies, we showed that low (nM) concentrations of opioid prolong the action potential duration (APD) of many mouse dorsal root ganglion (DRG) neurons via Gs-linked excitatory opioid receptors, whereas micromolar opioid levels shorten the APD via Gi/Go-linked inhibitory receptors. In addition, cholera toxin-B subunit (CTX-B) selectively blocks opioid- but not forskolin-induced prolongation of the APD in DRG neurons. Since CTX-B binds with selective high affinity to GM1 ganglioside located on the cell surface, the results suggest that GM1 plays an essential role in regulating excitatory opioid receptor functions. This hypothesis was tested by treating DRG neurons in mouse DRG-cord explants with exogenous gangliosides and determining whether the efficacy of opioid agonists in prolonging the APD is enhanced. The threshold concentration of the opioids, dynorphin(1-13) and morphine required to prolong the APD in many DRG neurons was markedly decreased from nM to fM levels after bath exposure to 10 nM to 1 microM GM1 ganglioside for less than 5 min. In contrast, GM2 and GM3 gangliosides and asialo-GM1 ganglioside were ineffective, even when DRG neurons were exposed to high concentrations (1-10 microM) for periods greater than 1 h. Although GD1a, GD1b and GQ1b gangliosides appeared to be as effective as GM1 when tested at microM concentrations for 15 min, tests at lower concentrations, shorter periods, and/or at lower temperature (24 degrees vs 34 degrees C), showed that they were significantly less effective than GM1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We tested patients with celiac disease (CD) for the presence of serum anti-ganglioside antibodies. Six of twenty-seven patient sera were reactive against brain gangliosides by an agglutination immunoassay. Neurological examination in all six revealed the presence of distal sensory loss, consistent with the diagnosis of peripheral neuropathy. When tested by ELISA for antibodies to isolated GM1, GM2, GD1a, GD1b, GT1b, and GQ1b gangliosides, all six were positive for IgG antibodies to at least one. The neuropathy of celiac disease may be autoimmune and associated with anti-ganglioside antibodies. The presence of IgG reactivity furthermore implicates a T cell-mediated response to ganglioside antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号