首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ha SK  Moon E  Ju MS  Kim DH  Ryu JH  Oh MS  Kim SY 《Neuropharmacology》2012,63(2):211-223
Inflammatory processes in the central nervous system play an important role in a number of neurodegenerative diseases mediated by microglial activation, which results in neuronal cell death. Microglia act in immune surveillance and host defense while resting. When activated, they can be deleterious to neurons, even resulting in neurodegeneration. Therefore, the inhibition of microglial activation is considered a useful strategy in searching for neuroprotective agents. In this study, we investigated the effects of 6-shogaol, a pungent agent from Zingiber officinale Roscoe, on microglia activation in BV-2 and primary microglial cell cultures. 6-Shogaol significantly inhibited the release of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). The effect was better than that of 6-gingerol, wogonin, or N-monomethyl-l-arginine, agents previously reported to inhibit nitric oxide. 6-Shogaol exerted its anti-inflammatory effects by inhibiting the production of prostaglandin E(2) (PGE(2)) and proinflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and by downregulating cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) expression. In addition, 6-shogaol suppressed the microglial activation induced by LPS both in primary cortical neuron-glia culture and in an in vivo neuroinflammatory model. Moreover, 6-shogaol showed significant neuroprotective effects in vivo in transient global ischemia via the inhibition of microglia. These results suggest that 6-shogaol is an effective therapeutic agent for treating neurodegenerative diseases.  相似文献   

3.
4.
Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol B (PFF-B) isolated from Ecklonia stolonifera, on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. PFF-B decreased secretion of pro-inflammatory cytokines including tumor necrosis factor α, interleukin (IL)-1β, and IL-6 and the expression of pro-inflammatory proteins such as cyclooxygenase-2 and inducible nitric oxide synthase in LPS-stimulated BV-2 cells. Profoundly, PFF-B inhibited activation of nuclear factor kappaB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α), which led to prevent the nuclear translocation of p65 NF-κB subunit. Moreover, PFF-B inhibited the phosphorylation of Akt, ERK, and JNK. These results indicate that the anti-inflammatory effect of PFF-B on LPS-stimulated microglial cells is mainly regulated by the inhibition of IκB-α/NF-κB and Akt/ERK/JNK pathways. Our study suggests that PFF-B can be considered as a therapeutic agent against neuroinflammation by inhibiting microglial activation.  相似文献   

5.
6.
7.
Unregulated activation of microglia is a key risk factor contributes to neurodegenerative diseases and suppression of this phenomenon is considered as a potential therapeutic target. The compound isolated from sea horse Hippocampus kuda Bleeler; 1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone [SE1] was characterized for its ability in suppressing LPS mediated activation of murine BV-2 cells. Despite the presence of various active molecular groups in the structure, SE1 has not well explored for its biological activities. The outcome of this study clearly indicated that SE1 inhibited the production of inflammatory mediators; nitric oxide, prostaglandin E(2) and pro-inflammatory cytokines. Furthermore, it inhibited the protein and gene expression levels of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β and interleukin-6. The responsible signaling mechanisms leading to these inhibitions were identified as SE1 mediated blocking of phosphorylation of mitogen activate protein kinase (MAPK) molecules; C-jun-N-terminal kinase (JNK), p38 and nuclear translocation of nuclear factor-κB (NF-κB) p65 and p50 subunits. These results suggest that SE1 has the potential to be further developed as therapeutic against neuro-inflammation.  相似文献   

8.
Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IкB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation.  相似文献   

9.
The microglial activation plays an important role in the progression of neurodegenerative diseases by secreting various proinflammatory cytokines and neurotoxic factors. Inhibition of microglial activation may alleviate neurodegenerative processes. To search for novel therapeutic agents against neuroinflammatory diseases, several fluorovinyloxyacetamide derivatives were screened for anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated microglial cells. From cell-based screening, it was found that a novel synthetic compound KT-15087 markedly attenuated the production of nitric oxide (NO) and tumor necrosis factor (TNF)-α in microglial cells. KT-15087 also suppressed the gene expression of inducible nitric oxide synthase (iNOS), TNF-α and interleukin (IL)-1β. The compound inhibited the nuclear translocation and DNA binding of NF-κB as well as the phosphorylation of p38 mitogen-activated protein kinases (MAPK) and c-jun N-terminal kinase (JNK). Moreover, KT-15087 showed a neuroprotective activity by reducing the cytotoxicity of LPS-stimulated microglia toward B35 neuroblastoma cells in the coculture. The neuroprotective activity of the compound was most effective when microglia were pretreated with the compound prior to LPS challenge. Taken collectively, KT-15087 has an anti-inflammatory activity in microglia, and might have a therapeutic potential for the treatment of neuroinflammatory diseases.  相似文献   

10.
Liu D  Wang Z  Liu S  Wang F  Zhao S  Hao A 《Neuropharmacology》2011,61(4):592-599
Recent evidence has suggested that microglial activation plays an important role in the pathogenesis of depression. Activated microglia can secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to the development and maintenance of depression. Thus, inhibition of microglial activation may have a therapeutic benefit in the treatment of depression. In the present study, using BV2 microglial cell line and primary microglial culture, we investigated if fluoxetine, the most widely used antidepressant, can inhibit microglia activation. Our results showed that fluoxetine significantly inhibited lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α), interleukin- 6 (IL-6) and nitric oxide (NO). By RT-PCR, the mRNA level of these pro-inflammatory cytokines and iNOS was also attenuated by fluoxetine. We further investigated the intracellular signaling mechanism regulating the production of pro-inflammatory cytokines and NO from LPS-activated microglia. The results showed that fluoxetine inhibited IκB-a degradation, phosphorylation and nuclear translocation of the p65 subunit of NF-κB, and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in the LPS-stimulated microglia. Taken together, our results suggest that the therapeutic effects of fluoxetine are partially mediated by modulating microglial activation.  相似文献   

11.
Fucoidan, a sulfated polysaccharide extracted from brown seaweed, displays a wide variety of internal biological activities; however, the cellular and molecular mechanisms underlying fucoidan’s anti-inflammatory activity remain poorly understood. In this study, we investigated the inhibitory effects of fucoidan on production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators in BV2 microglia. Our data indicated that fucoidan treatment significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also attenuated expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, monocyte chemoattractant protein-1 (MCP-1), and pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor (TNF)-α. Moreover, fucoidan exhibited anti-inflammatory properties by suppression of nuclear factor-kappa B (NF-κB) activation and down-regulation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and AKT pathways. These finding suggest that fucoidan may offer substantial therapeutic potential for treatment of neurodegenerative diseases that are accompanied by microglial activation.  相似文献   

12.
OBJECTIVE Microglia were considered to be the main immune cells in the central nervous system, which could maintain the homeostasis of the brain.Under pathological conditions, microglia undergo significant changes in morphology and release a large number of pro-inflammatory mediators. Numerous studies have shown that neuroinflammatory responses mediated by microglial over-activation are involved in the pathogenesis of multiple neurodegenerative diseases. Therefore, finding a safe and effective drug that can inhibit microglialoveractivation becomes one of the significant strategies to prevent and treat neurodegenerative diseases. In our previous studies, we found that the dichloromethane(CH_2Cl_2) fraction of the 80% EtOH extraction of Stephaniajaponica, could inhibit nitric oxide(NO) release in microglial cel line induced by LPS. The compound QJT-14,obtained from the fraction, exhibited good activity. The purpose of this study is to explore the potential mechanism of QJT-14 suppressing microglia over-activation.METHODS Cell viability and NO production were detected by MTT and Griess assay, respectively. The mRNA expression of IL-1β, IL-6, TNF-α were measured by real-time PCR. The production of IL-6, TNF-α were tested by ELISA.The protein expression of NF-κB P65 were tested by Western blotting. NF-κB P65 nuclear translocation was detected by immunofluorescence assay. RESULTS JT-14 could significantly suppress NO production in LPSinduced microglia cell line, and did not affect the cell viability within the concentration range. QJT-14 attenuated pro-inflammatory factors expression at m RNA and protein levels in LPS-induced microglia. QJT-14 could significantly inhibit NF-κB P65 protein expression induced by LPS.CONCLUSION QJT-14 could inhibit microglia activation by inhibiting NF-κB pathway. Thesere sults indicated that QJT-14 has a potential therapeutic effect on neurodegenerative diseases.  相似文献   

13.
To study the anti-neuroinflammatory mechanisms of polygalasaponin F (PS-F), ELISA method was used to detect the secretion of inflammatory cytokines. Western blot was used to detect the protein expression and phosphorylation levels. Immunofluorescence assay was used to observe the NF-κB nuclear translocation. PS-F could inhibit the release of inflammatory cytokines TNF-α and NO induced by lipopolysaccharides (LPS) and reduce the expression of inducible nitric oxide synthases (iNOS). As for MAPK-signaling pathway, PS-F could only inhibit the phosphorylation levels of p38 MAPK, but did not significantly affect the phosphorylation levels of JNK and ERK1/2 protein kinases. PS-F could inhibit NF-κB nuclear translocation in a dose-dependent manner. The results of Western blot assay were consistent with immunofluorescence assays. Meanwhile, p38-specific inhibitor SB203580 (20 μM) and p65-specific inhibitor PDTC (100 μM) were, respectively, administered as a positive control. In addition, PS-F could significantly inhibit the cytotoxicity of conditioned medium prepared by LPS-stimulated BV-2 microglia (LPS conditioned media) to neuronal PC12 cells and improve cell viability. PS-F inhibits the secretions of neuroinflammatory cytokines by the regulation of NF-κB-signaling pathway.  相似文献   

14.
Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia.  相似文献   

15.
Cordyceps militaris, a traditional medicinal mushroom, produces the bioactive compound cordycepin (3'-deoxyadenosine). Although cordycepin has been shown to have pharmacological, immunological stimulating, anti-cancer, and anti-inflammatory activities, its activities and cellular mechanisms during microglial activation have yet to be elucidated. Thus, we evaluated the anti-inflammatory effect of cordycepin on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of cordycepin on LPS-induced nuclear factor-kappaB (NF-κB) activation and on phosphorylation of mitogen-activated protein kinases (MAPKs). After LPS stimulation, nitric oxide (NO), prostaglandin E? (PGE?), and pro-inflammatory cytokine production was detected in BV2 microglia. However, we found that cordycepin significantly inhibited the excessive production of NO, PGE?, and pro-inflammatory cytokines in a concentration-dependent manner without causing cytotoxicity. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB-α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS-stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Therefore, cordycepin may be useful in treating neurodegenerative diseases by inhibiting inflammatory mediator production in activated microglia.  相似文献   

16.
Microglial activation plays a pivotal role in the pathogenesis of neurodegenerative diseases by producing various proinflammatory cytokines and nitric oxide (NO). In the present study, the anti-inflammatory and subsequent neuroprotective effects of catechol and its derivatives including 3-methylcatechol, 4-methylcatechol, and 4-tert-butylcatechol were investigated in microglia and neuroblastoma cells in culture. The four catechol compounds showed anti-inflammatory effects with different potency. The catechols significantly decreased lipopolysaccharide (LPS)-induced NO and tumor necrosis factor (TNF)-alpha production in BV-2 microglia cells. The catechols also inhibited the expression of inducible nitric oxide synthase (iNOS) and TNF-alpha at mRNA or protein levels in the LPS-stimulated BV-2 cells. In addition, the catechols inhibited LPS-induced nuclear translocation of p65 subunit of nuclear factor (NF)-kappaB, IkappaB degradation, and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in BV-2 cells. Moreover, the catechols attenuated the cytotoxicity of LPS-stimulated BV-2 microglia toward co-cultured rat B35 neuroblastoma cells. The catechols, however, did not protect B35 cells against H(2)O(2) toxicity, indicating that the compounds exerted the neuroprotective effect by inhibiting the inflammatory activation of microglia in the co-culture. The anti-inflammatory and neuroprotective properties of the catechols in cultured microglia and neuroblastoma cells suggest a therapeutic potential of these compounds for the treatment of neurodegenerative diseases that are associated with an excessive microglial activation.  相似文献   

17.
In the course of a search for anti-neuroinflammatory metabolites from marine fungi, aurantiamide acetate (1) was isolated from marine-derived Aspergillus sp. as an anti-neuroinflammatory component. Compound 1 dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. It also attenuated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and other pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In a further study designed to elucidate the mechanism of its anti-neuroinflammatory effect, compound 1 was shown to block the activation of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-induced BV2 microglial cells by inhibiting the phosphorylation of the inhibitor kappa B-α (IκB)-α. In addition, compound 1 decreased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). These results suggest that compound 1 has an anti-neuroinflammatory effect on LPS stimulation through its inhibition of the NF-κB, JNK and p38 pathways.  相似文献   

18.
19.
20.
Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. This study was designed to evaluate the pharmacological effects of EsA on lipopolysaccharide (LPS)-stimulated BV2 microglia and primary microglia cells. Our results indicated that EsA pretreatment significantly decreased LPS-induced production of Nitric Oxide (NO) and Prostaglandin E2 (PGE2) and impeded LPS-mediated upregulation of pro-inflammatory mediators' expression such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-12 (IL-12) and tumor necrosis factor-a (TNF-α) in both BV2 microglia and primary microglia cells. Moreover, EsA markedly suppressed nuclear factor-κB p65 (NF-κB p65) translocation by blocking IκB-α phosphorylation and degradation in LPS-treated BV2 cells. EsA also decreased phosphorylation level of mitogen-activated protein kinases (MAPKs) and inhibited NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome mediated caspase-1 activation in LPS-stimulated BV2 cells. Additionally, EsA decreased β-amyloid1–42 (Aβ1–42)-induced production of TNF-α, IL-1β and IL-6 in primary microglia. Thus, EsA might be a promising therapeutic agent for alleviating neuroinflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号