首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Tumor-specific immunosuppression is frequently observed in tumor-bearing hosts. Exosomes are nano-sized, endosomal-derived membrane vesicles secreted by most tumor and hematopoietic cells and have been shown to actively participate in immune regulation. We previously demonstrated that antigen-specific immunosuppressive exosomes could be isolated from the blood plasma of antigen-immunized mice. Here, we demonstrate that plasma-derived exosomes isolated from mice bearing OVA-expressing tumors were able to suppress OVA-specific immune responses in a mouse delayed-type hypersensitivity model. Enrichment of tumor-derived exosomes in the plasma of mice bearing subcutaneous melanoma was not detected using an exosome-tagging approach. Instead, depletion of MHC class II(+) vesicles from plasma-derived exosomes or using plasma-derived exosomes isolated from MHC class II-deficient mice resulted in significant abrogation of the suppressive effect. These results demonstrate that circulating host-derived, MHC class II(+) exosomes in tumor-bearing hosts are able to suppress the immune response specific to tumor antigens.  相似文献   

2.
《Seminars in immunology》2014,26(5):394-401
Cells constitutively release small (40–100 nm) vesicles known as exosomes, but their composition and function changes in response to a variety of physiological challenges, such as injury, infection, and disease. Advances in our understanding of the immunological relevance of exosomes have been made, however, few studies have explored their role in stress physiology. Exposure to a variety of acute stressors facilitates the efficacy of innate immune responses, but the mechanisms for these effects are not fully understood. Since exosomes are emerging as important inflammatory mediators, they likely exhibit a similar role when an organism is exposed to an acute stressor. Here, we review our current knowledge of the basic properties and immunological functions of exosomes and provide emerging data supporting the role of stress-modified exosomes in regulating the innate immune response, potentially enabling long-distance cellular communication and obviating the need for direct cell-to-cell contact.  相似文献   

3.
It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immunocompromised patients, in particular those with AIDS. Here, we investigate the efficacy of a novel cell-free vaccine composed of DC exosomes, which are secreted antigen-presenting vesicles that express functional major histocompatibility complex class I and II and T-cell-costimulatory molecules. They have already been shown to induce potent antitumor immune responses. We investigated the potential of DC2.4 cell line-derived exosomes to induce protective immunity against toxoplasmosis. Our data show that most adoptively transferred T. gondii-pulsed DC-derived exosomes were transferred to the spleen, elicited a strong systemic Th1-modulated Toxoplasma-specific immune response in vivo, and conferred good protection against infection. These findings support the possibility that DC-derived exosomes can be used for T. gondii immunoprophylaxis and for immunoprophylaxis against many other pathogens.  相似文献   

4.
Many different cells produce and release membraneous microvesicles (MV) or exosomes into their microenvironment. Exosomes represent a specific subtype of secreted derived vesicles which are defined as homogenous vesicles of 30–100 nm lined by a lipid bilayer, which contain a specific set of proteins, lipids, and nucleic acids. There are clear evidences that they serve as important biological signals messengers and carriers in physiological as well as in pathological processes. Those derived from tumours (tumour‐derived exosomes, TD‐exosomes) function as protumourigenic factors that can mediate intercellular communication in the tumour microenvironment and also contribute to cancer progression. The main functions of exosomes in the cancer microenvironment include the following: promotion of primary cancer growth, stimulation of angiogenesis, activation of stromal fibroblasts, sculpting the cancer ECM, generation of a premetastatic niche and suppression of host immune response. Exosomes have recently emerged as potentially promising diagnostic and prognostic biomarkers in cancer and other diseases. This article is a summary of information about the structure and origin of exosomes and also indicates the importance of exosomes and microRNAs in lung cancer. The role of exosomes in NSCLC is little known, and its explanation requires thorough research.  相似文献   

5.
Exosomes are small membrane vesicles of endocytic origin with a size of 50–100 nm. They can contain microRNAs, mRNAs, DNA fragments, and proteins, which are shuttled from a donor cell to recipient cells. Many different cell types including immune cells, mesenchymal cells, and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechanisms associated with biogenesis, payload, and transport of exosomes. We highlight the functional relevance of exosomes in cancer, as related to tumor microenvironment, tumor immunology, angiogenesis, and metastasis. Exosomes may exert an immunosuppressive function as well as trigger an anti-tumor response by presenting tumor antigens to dendritic cells. Exosomes may serve as cancer biomarkers and aid in the treatment of cancer.  相似文献   

6.
The syncytiotrophoblast (STB) of human placenta constitutively produces and secretes extracellular vesicles of different size, morphology and function that enter the maternal circulation, and participate in the maternal–fetal cross‐talk during pregnancy. Syncytiotrophoblast‐derived microvesicles/microparticles (STBM) are larger microvesicles (0.2–2 μm) shed by the apical plasma membrane of the STB as a result of cell activation and turnover. Simultaneously with the STBM shedding, the STB produces and secretes exosomes – nanosized (30–100/150 nm) membrane‐bound microvesicles that originate from the endosomal compartment. They convey cell–cell contact ‘by proxy’ transporting signals/packages of information between donor and recipient cells locally or/and at a distance. STBM and exosomes, delivered directly in the maternal blood surrounding the chorionic villi of the placenta, have contrasting biological functions. While the exosomes are immunosuppressive down regulating maternal immunity in pluripotent ways, the main effects of STBM on the maternal immune system are pro‐inflammatory, immune activating, and pro‐coagulant. Since both STBM and exosomes are present in the maternal circulation throughout normal pregnancy logical questions are what is the net effect of these vesicles on the maternal immune system and is this effect beneficial or detrimental to pregnancy. In this review, the current knowledge about placenta‐derived extracellular vesicles with a main focus on exosomes is summarized and discussed. In a concluding remark, a hypothetical proposal on how STBM and exosomes might interact in pregnancy is discussed and a way to evaluate this interaction is suggested.  相似文献   

7.
Intercellular communication includes the exchange of various membrane vesicles including exosomes. Exosomes are intraluminal nanovesicles generated from multivesicular bodies, a late endosomal compartment. Cancer cells release exosomes that influence their proximate and distant environment to facilitate angiogenesis, metastatic dissemination and immune escape. Cancer‐derived vesicles may also trigger an anti‐tumour response by transferring tumour antigens to immune cells. We wanted to investigate whether differentiation and maturation of myeloid cells changes their capacity to take up cancer‐derived extracellular vesicles (EV). We compared the efficiency of vesicle uptake by monocytes, macrophages and dendritic cells. To visualize and quantify the cellular uptake, EV were labelled with two different dyes, carboxyfluoresceine diacetate succinimidyl‐ester (CFSE), or DSSN+, a water soluble distyrylstilbene oligoelectrolyte which preferentially intercalates into the cell membrane. With the help of cytokines, THP‐1 monocytes were differentiated into immature or mature dendritic cells, or macrophages. EV uptake was monitored by flow cytometry and immunofluorescence microscopy. The results show that macrophages and mature dendritic cells acquired stronger fluorescence transferred by EV than monocytes or immature dendritic cells indicating that the differentiation status influences the efficiency of EV uptake.  相似文献   

8.
任亚娜  范华骅  高峰 《国际免疫学杂志》2007,30(4):273-276,F0003
有多种细胞都能分泌一种被称为exosomes的小囊泡,这些囊泡由细胞内的内吞小体出泡产生,它包裹着特殊的蛋白质,在信息传递中起着很重要的作用。特别是在免疫系统中,exosomes能够将外来抗原传递给T细胞,并且在免疫调节中发挥作用。exosomes作为一种免疫治疗的新手段,可以应用在肿瘤治疗和免疫耐受等方面。  相似文献   

9.
Exosomes are small membrane vesicles derived from late endosome. They are about 30--100 nm in diameter. The secretion of exosomes is a process in which multivesicular bodies fuse with the cell membrane, and all cells that contain multivesicular endocytic compartments could theoretically secrete exosomes. The surprising biological functions of exosomes are only slowly being unveiled, but it is already clear that they serve to remove obsolete membrane proteins and act as messages of inter-cellular communication. Exosomes derived from tumor or antigen-presenting cells have been extensively investigated. They are released into the extracellular environment and fuse with the membranes of neighboring cells, delivering membrane and cytoplasmic proteins from one cell to another. Exosomes carry immunorelevant structures which play important roles in immune response, such as MHC molecules, costimulatory molecules, heat shock proteins, and naive tumor antigens. Therefore they have been suggested as potential vaccines. Consequently, exosomes have shown considerable anti-tumor effect in several studies and are in phase I clinical trials.  相似文献   

10.
Tumor-derived exosomes have been regarded as a new kind of cancer vaccine; however, their therapeutic efficacy needs to be further improved. Superantigen staphylococcal enterotoxin A (SEA)-coated tumor cells have been shown to potently induce tumor-specific T cell response. To increase efficacy of tumor-derived exosomes to induce antitumor immune response, we modified the exosomes by protein transfer of SEA tailed with a highly hydrophobic transmembrane domain (SEA-TM) and designated those SEA-TM-anchored exosomes as Exo/SEA-TM. We found the exosomes secreted from murine lymphoma E.G7-OVA cell line were round vesicles with the sizes of 40-100 nm limited by a bilayer membrane. Interestingly, the inner structure of the exosomes were visible under the transmission electron microscope; those "honeycomb-like" inner structure has not been described by other labs. Immunization with Exo/SEA-TM inhibited tumor growth and prolonged survival of the mice challenged with parental tumor cells more significantly than with exosomes (Exo) and even more than with the mixture of exosomes and SEA-TM. The results of mixed lymphocyte-tumor reaction (MLTR) showed that the increased IL-2, IFN-gamma secretion, and specific cytotoxic T lymphocyte (CTL) could be effectively induced from the splenic lymphocytes of the mice immunized with Exo/SEA-TM. In vivo depletion experiments showed that CD8(+) T cells are the main effector cells, and both CD4(+) T cells and NK cells are also involved in the antitumor effect of Exo/SEA-TM immunization. Therefore, tumor-derived exosomes surface anchored with SEA-TM can efficiently induce tumor-specific CTL thereby resulting in more potent inhibition of tumor growth. Our data provide an efficient and novel approach to tumor immunotherapy by protein modification of tumor-derived exosomes.  相似文献   

11.
Exosomes bearing HLA-G are released by melanoma cells   总被引:14,自引:0,他引:14  
Tumor cells release membrane vesicles, named exosomes, capable of specific cytotoxic T-lymphocyte activation by transferring tumor antigens to dendritic cells. By contrast, the nonclassical human leucocyte antigen (HLA)-G class I molecule displays immunotolerant properties and can be ectopically expressed by tumor cells, thereby allowing their escape from immunosurveillance. We describe here that a melanoma cell line, named Fon, established from an HLA-G-positive melanoma biopsy, spontaneously expressed high levels of the HLA-G1 membrane-bound isoform. Exosomes released by Fon cells were purified and analyzed both for their density on sucrose gradient and their protein composition by Western blotting and flow cytometry. Besides the expression of well-described proteins such as Lamp-2, notably, these melanoma-derived exosomes bore HLA-G1. In addition, exosomes harboring HLA-G1 were secreted by the HLA-G-negative M8 melanoma cells transfected with the HLA-G1 cDNA. Thus, the presence of tolerogenic HLA-G molecules on melanoma-derived exosomes may provide a novel way for tumors to modulate host's immune response.  相似文献   

12.
Exosomes: from biogenesis and secretion to biological function   总被引:10,自引:0,他引:10  
Exosomes are small microvesicles that are released from late endosomal compartments of cultured cells. Recent work has shown that exosome-like vesicles are also found in many body fluids such as blood, urine, ascites and amnionic fluid. Although the biological function of exosomes is far from being fully understood, exosomes may have general importance in cell biology and immunology. The present review aims to address some of the facets of exosome research with particular emphasis on the immunologist's perspective: (i) exosomes as a novel platform for the ectodomain shedding of membrane proteins by ADAMs and (ii) recent findings on the role of exosomes in tumor biology and immune regulation.  相似文献   

13.
Exosomes are small membrane-bound vesicles (30-100?nm) that are secreted by different types of cells and they have been well documented to resemble saucers or flattened spheres under the electron microscope. Recently, evidence indicates that exosomes play important roles in the immune modulation and are associated with the immune pathogenesis of autoimmune diseases, including rheumatoid arthritis (RA), Sjogren’s syndrome (SS) and systemic lupus erythematosus (SLE). In this review, we will summarize current research advances of exosomes in immunoregulation, pathogenesis, diagnosis and therapeutics of autoimmune diseases.  相似文献   

14.
Ectosomes as modulators of inflammation and immunity   总被引:1,自引:0,他引:1  
Vesicles released by cells have been described using various names, including exosomes, microparticles, microvesicles and ectosomes. Here we propose to differentiate clearly between ectosomes and exosomes according to their formation and release. Whereas exosomes are formed in multi-vesicular bodies, ectosomes are vesicles budding directly from the cell surface. Depending upon the proteins expressed, exosomes activate or inhibit the immune system. One of the major properties of exosomes released by antigen-presenting cells is to induce antigen-specific T cell activation. Thus, they have been used for tumour immunotherapy. By contrast, the major characteristics of ectosomes released by various cells, including tumour cells, polymorphonuclear leucocytes and erythrocytes, are the expression of phosphatidylserine and to have anti-inflammatory/immunosuppressive activities similarly to apoptotic cells.  相似文献   

15.
In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), relapses are markedly reduced during pregnancy. Exosomes are lipid-bound vesicles and are more abundant in the serum during pregnancy. Using murine EAE, we demonstrate that serum exosomes suppress T cell activation, promote the maturation of oligodendrocyte precursor cells (OPC), and pregnancy exosomes facilitate OPC migration into active CNS lesions. However, exosomes derived from both pregnant and non-pregnant mice reduced the severity of established EAE. Thus, during pregnancy, serum exosomes modulate the immune and central nervous systems and contribute to pregnancy-associated suppression of EAE.  相似文献   

16.
Exosomes are nano‐sized membrane vesicles (50–120 nm), which are released from a wide variety of cells. Depending on their cellular origin, they can induce immune stimulatory‐, inhibitory‐, or tolerance‐inducing effects. However, it is still unclear what role exosomes play during human inflammatory diseases. It has not been studied whether exosomes derived from human dendritic cells (DCs), the first cells to encounter allergens in the mucosa, can carry aeroallergens and contribute to allergic immune responses. We therefore explored whether DC‐derived exosomes can present the major cat allergen Fel d 1 and whether they thereby contribute to the pathogenesis of allergic disease. Our results demonstrate that exosomes are able to present aeroallergens and thereby induce T‐cell T(H)2‐like cytokine production in allergic donors. Thus, these exosomes may be important immune‐stimulatory factors in allergic immune responses and important targets or engineered tools in immunotherapy.  相似文献   

17.
《Autoimmunity reviews》2023,22(3):103260
Exosomes are spherical lipid bilayer vesicles composed of lipids, proteins and nucleic acids that deliver signaling molecules through a vesicular transport system to regulate the function and morphology of target cells, thereby involving in a variety of biological processes, such as cell apoptosis or proliferation, and cytokine production. In the past decades, there are emerging evidence that exosomes play pivotal roles in the pathological mechanisms of several autoimmune diseases (ADs), including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes mellitus (T1DM), Sjogren's syndrome (SS), multiple sclerosis (MS), inflammatory bowel disease (IBD). systemic sclerosis (SSc), etc. Several publications have shown that exosomes are involved in the pathogenesis of ADs mainly through intercellular communication and by influencing the response of immune cells. The level of exosomes and the expression of nucleic acids can reflect the degree of disease progression and are excellent biomarkers for ADs. In addition, exosomes have the potential to be used as drug carriers thanks to their biocompatibility and stability. In this review, we briefly summarized the current researches regarding the biological functions of exosomes in ADs, and provided an insight into the potential of exosomes as biomarkers and therapeutic delivery for these diseases.  相似文献   

18.
外排体是细胞分泌到细胞外基质中的一种功能性囊泡,胶质瘤外排体在胶质瘤的发生发展、辅助诊断和治疗中的作用日益受到重视。本文对常见胶质瘤外排体标志物、介导免疫治疗、抗肿瘤治疗载体、干预肿瘤细胞信号通路等方面进行总结。  相似文献   

19.
调节性T 细胞为T 细胞的一类控制体内自身免疫反应性的T 细胞亚群,在维持机体的免疫耐受以及调控免 疫应答中起重要作用。外泌体是细胞分泌的异质性纳米级胞外囊泡。现在研究认为外泌体在细胞间通讯中发挥重要作用, 外泌体可将其细胞内的多种RNA、DNA 片段、脂质和蛋白质等物质转送到不同的受体细胞,从而改变受体细胞的生物学活性。 多项研究证据表明Treg 细胞可分泌外泌体发挥免疫调节作用,并参与感染免疫、器官移植、超敏反应、自身免疫病以及肿瘤的 发生与发展。本文对Treg 细胞来源外泌体的组成成分、形成途径以及其免疫调节作用等进行综述。  相似文献   

20.
Major histocompatibility complex class II (MHCII) is encoded by polymorphic genes present in vertebrates and expressed predominately in leukocytes. Upon leukocyte differentiation, intracellular MHCII is dynamically redistributed within the cells and it is expressed at maximal levels on mature antigen presenting cells (APCs). In addition, APCs secrete MHCII within endosome-derived vesicles known as exosomes which possess diverse immunomodulatory properties. Genetic and biochemical data have confirmed that piscine leukocytes express the MHCII components as well as costimulatory molecules that are necessary for the function of APCs. However data concerning the biosynthesis and the distribution of the MHCII complex within leukocytes of lower vertebrates is scarce. The presented data demonstrates for the first time that salmon leukocytes secrete vesicles that contain exosomal markers and the abundance of MHCII indicates that these exosomes are released by APCs. The secretion was specifically induced by CpG stimulation in vitro and it was observed only in head kidney leukocytes but not in splenocyte cultures. Flow cytometry revealed that, unlike splenocytes, the majority of the MHCII-positive head kidney leukocytes were Ig-negative and a population of cells expressing high levels of surface MHCII underwent degranulation upon CpG stimulation suggesting that the MHCII-containing exosomes were derived from maturing salmon APCs. Gene expression analyses have further demonstrated that CpG-B, despite its relatively weak proinflammatory activity compared to LPS, induced expression of a larger group of genes involved in regulation of the adaptive immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号