首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RWJ-54428 (MC-02479) is a novel cephalosporin that binds to penicillin-binding protein (PBP) PBP 2' (PBP 2a) of methicillin-resistant staphylococci. Its in vitro activity was assessed against 472 gram-positive cocci, largely selected as epidemiologically unrelated isolates with multidrug resistance. The MIC at which 50% of isolates are inhibited (MIC(50)) and MIC(90) of RWJ-54428 for methicillin-resistant Staphylococcus aureus (MRSA) were 1 and 2 microg/ml, respectively, whereas they were 0.5 and 0.5 microg/ml, respectively, for methicillin-susceptible S. aureus. The MIC(50) and MIC(90) were 1 and 4 microg/ml, respectively, for methicillin-resistant coagulase-negative staphylococci (MRCoNS), whereas they were 0.25 and 1 microg/ml, respectively, for methicillin-susceptible isolates. The highest MICs for MRSA and MRCoNS isolates were 2 and 4 microg/ml, respectively. The MIC(50) and MIC(90) of RWJ-54428 for Enterococcus faecalis were 0.5 and 1 microg/ml, respectively, but they were 4 and 8 microg/ml, respectively, for Enterococcus faecium. For penicillin-susceptible, -intermediate, and -resistant pneumococci, the MIC(90)s of RWJ-54428 were 0.03, 0.25, and 0.5 microg/ml, respectively, with the highest MIC for a pneumococcus being 1 microg/ml, recorded for a strain for which penicillin and cefotaxime MICs were 8 and 4 microg/ml. MICs for Lancefield group A, B, C, and G streptococci were < or =0.008 microg/ml; those for viridans group streptococci, including isolates not susceptible to penicillin, were from 0.015 to 0.5 microg/ml. RWJ-54428 did not select resistant mutants of MRSA or enterococci in challenge experiments and has the potential to be useful for the treatment of infections caused by gram-positive cocci.  相似文献   

2.
RWJ-54428 (MC-02,479) is a new cephalosporin active against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The potency of this new cephalosporin against MRSA is related to a high affinity for penicillin-binding protein 2a (PBP 2a), as assessed in a competition assay using biotinylated ampicillin as the reporter molecule. RWJ-54428 had high activity against MRSA strains COL and 67-0 (MIC of 1 micro g/ml) and also showed affinity for PBP 2a, with a 50% inhibitory concentration (IC(50)) of 0.7 micro g/ml. RWJ-54428 also displayed excellent affinity for PBP 5 from Enterococcus hirae R40, with an IC(50) of 0.8 micro g/ml and a MIC of 0.5 micro g/ml. The affinity of RWJ-54428 for PBPs of beta-lactam-susceptible S. aureus (MSSA), enterococci (E. hirae), and Streptococcus pneumoniae showed that the good affinity of RWJ-54428 for MRSA PBP 2a and E. hirae PBP 5 does not compromise its binding to susceptible PBPs. RWJ-54428 showed stability to hydrolysis by purified type A beta-lactamase isolated from S. aureus PC1. In addition, RWJ-54428 displayed low MICs against strains of S. aureus bearing the four classes of staphylococcal beta-lactamases, including beta-lactamase hyperproducers. The frequency of isolation of resistant mutants to RWJ-54428 from MRSA strains was very low. In summary, RWJ-54428 has high affinity to multiple PBPs and is stable to beta-lactamase, properties that may explain our inability to find resistance by standard methods. These data are consistent with its excellent activity against beta-lactam-resistant gram-positive bacteria.  相似文献   

3.
RWJ-54428 (MC-02,479) is a new cephalosporin with activity against resistant gram-positive organisms, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae. The in vivo efficacy of RWJ-54428 was evaluated against gram-positive bacteria in four mouse models of infection. RWJ-54428 was effective in vivo against methicillin-susceptible and -resistant S. aureus in a mouse model of sepsis, with 50% effective doses being similar to those of vancomycin. In a single-dose neutropenic mouse thigh model of infection, RWJ-54428 at 30 mg/kg of body weight showed activity similar to that of vancomycin at 30 mg/kg against a strain of methicillin-resistant S. aureus. RWJ-54428 also showed a prolonged in vivo postantibiotic effect in this model. In a mouse model of pneumonia due to a penicillin-susceptible strain of Streptococcus pneumoniae, RWJ-54428 displayed efficacy and potency superior to those of penicillin G and cefotaxime. In a mouse model of pyelonephritis due to Enterococcus faecalis, RWJ-54428 had bactericidal effects similar to those of vancomycin and ampicillin, but at two- to threefold lower total daily doses. These studies show that RWJ-54428 is active in experimental mouse models of infection against gram-positive organisms, including strains resistant to earlier cephalosporins and penicillin G.  相似文献   

4.
Ceftobiprole (formerly BAL9141), the active component of the prodrug BAL5788 (ceftobiprole medocaril), is a novel cephalosporin with expanded activity against gram-positive bacteria. Among 152 Staphylococcus aureus isolates, including 5 vancomycin-intermediate and 2 vancomycin-resistant strains, MIC(50) and MIC(90) values for ceftobiprole were each 0.5 microg/ml against methicillin-susceptible strains and 2 mug/ml against methicillin-resistant strains. Against 151 coagulase-negative staphylococci (including 4 vancomycin-intermediate strains), MIC(50) and MIC(90) values were, respectively, 0.125 microg/ml and 1 microg/ml against methicillin-susceptible and 1 microg/ml and 2 microg/ml against methicillin-resistant strains. Teicoplanin was less active than vancomycin against coagulase-negative strains. Linezolid, quinupristin-dalfopristin, and daptomycin were active against all strains, whereas increased MICs for amoxicillin-clavulanate, cefazolin, minocycline, gentamicin, trimethoprim-sulfamethoxazole, levofloxacin, rifampin, mupirocin, fusidic acid, and fosfomycin were sometimes observed. At 2x MIC, ceftobiprole was bactericidal against 11 of 12 test strains by 24 h. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to select for clones with MICs >4 times those of the parents; the maximum MIC achieved for ceftobiprole after 50 passages (in 1 of 10 strains) was 8 mug/ml. Single-passage selections showed very low frequencies of resistance to ceftobiprole irrespective of genotype or phenotype; the maximal ceftobiprole MIC of recovered clones was 8 mug/ml.  相似文献   

5.
RWJ-54428 (also known as MC-02,479) is a new cephalosporin with promising activity against gram-positive bacteria. The pharmacodynamics (PDs) of RWJ-54428 against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis were studied in a neutropenic mouse thigh infection model. The RWJ-54428 MICs ranged from 0.25 to 1 mg/liter. Mice with ca. 10(6) CFU/thigh at the initiation of therapy were treated intraperitoneally with RWJ-54428 at doses that ranged from 3 to 1,200 mg/kg of body weight/day (in 2, 3, 4, 6, or 12 divided doses) for 24 h. The maximal reductions in bacterial counts in thigh tissues at 24 h for the methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and E. faecalis strains were -2.8, -3.8, and -1.7 log10 CFU/thigh, respectively. The percentage of a 24-h dosing interval that the unbound serum RWJ-54428 concentrations exceeded the MIC (fT>MIC) was the pharmacokinetic (PK)-PD parameter that best described the efficacy of RWJ-54428. The fT>MICs for a bacteriostatic effect (no net change in the numbers of CFU/thigh over 24 h) ranged from 14 to 20% for staphylococci and streptococci; for maximal reductions in the numbers of CFU/thigh, the fT>MICs ranged from 22 to 36% for these strains. For E. faecalis, the ranges of fT>MICs for static and maximal effects were 30 to 46% and 55 to 60%, respectively. These data show that treatment with RWJ-54428 results in marked antibacterial effects in vivo, with the PK-PD parameters for efficacy being comparable to those for the efficacy of penicillins and carbapenems active against staphylococci and pneumococci.  相似文献   

6.
Telavancin is an investigational, rapidly bactericidal lipoglycopeptide antibiotic that is being developed to treat serious infections caused by gram-positive bacteria. A baseline prospective surveillance study was conducted to assess telavancin activity, in comparison with other agents, against contemporary clinical isolates collected from 2004 to 2005 from across the United States. Nearly 4,000 isolates were collected, including staphylococci, enterococci, and streptococci (pneumococci, beta-hemolytic, and viridans). Telavancin had potent activity against Staphylococcus aureus and coagulase-negative staphylococci (MIC range, 0.03 to 1.0 microg/ml), independent of resistance to methicillin or to multiple agents. Telavancin activity was particularly potent against all streptococcal groups (MIC(90)s, 0.03 to 0.12 microg/ml). Telavancin had excellent activity against vancomycin-susceptible enterococci (MIC(90), 1 microg/ml) and was active against VanB strains of vancomycin-resistant enterococci (MIC(90), 2 microg/ml) but less active against VanA strains (MIC(90), 8 to 16 microg/ml). Telavancin also demonstrated activity against vancomycin-intermediate S. aureus and vancomycin-resistant S. aureus strains (MICs, 0.5 microg/ml to 1.0 microg/ml and 1.0 microg/ml to 4.0 microg/ml, respectively). These data may support the efficacy of telavancin for treatment of serious infections with a wide range of gram-positive organisms.  相似文献   

7.
The need for new antimicrobial agents with activity against Gram-positive organisms has become increasingly important because of emerging resistance. We compared the activity of a new b-lactam antimicrobial agent, RWJ-54428 (MC-02 479), with representatives of other classes of antimicrobial agents against 76 Staphylococcus aureus (including four glycopeptide- intermediate strains), 50 coagulase-negative staphylococci, 20 Enterococcus faecalis, 20 Enterococcus faecium, 10 Enterococcus gallinarum/Enterococcus casseliflavus, 54 Streptococcus pneumoniae and 22 viridans streptococcal isolates. The MIC(90) of RWJ-54,428 was < or = 2 mg/L for all groups of bacteria tested except E. faecium. The activity against four strains of glycopeptide-intermediate S. aureus was similar to that for other methicillin-resistant S. aureus isolates (range 0.5-2.0 mg/L).  相似文献   

8.
LB 11058 is a novel parenteral cephalosporin with a C-3 pyrimidinyl-substituted vinyl sulfide group and a C-7 2-amino-5-chloro-1,3-thiazole group. This study evaluated the in vitro activity and spectrum of LB 11058 against 1,245 recent clinical isolates, including a subset of gram-positive strains with specific resistant phenotypes. LB 11058 was very active against Streptococcus pneumoniae. The novel cephalosporin was 8- to 16-fold more potent than ceftriaxone, cefepime, or amoxicillin-clavulanate against both penicillin-intermediate and -resistant S. pneumoniae. LB 11058 was also very active against both beta-hemolytic streptococci (MIC at which 90% of isolates were inhibited [MIC(90)], 64 micro g/ml) and Corynebacterium spp. (MIC(50), 32 micro g/ml). Against gram-negative pathogens, LB 11058 showed activity against Haemophilus influenzae (MIC(90), 0.25 to 0.5 micro g/ml) and Moraxella catarrhalis (MIC(90), 0.25 micro g/ml), with MICs not influenced by beta-lactamase production. In conclusion, LB 11058 demonstrated a broad antibacterial spectrum and was highly active against gram-positive bacteria, particularly against multidrug-resistant staphylococci and streptococci.  相似文献   

9.
The activity of a new ketolide, ABT-773, was compared to the activity of the ketolide telithromycin (HMR-3647) against over 600 gram-positive clinical isolates, including 356 Streptococcus pneumoniae, 167 Staphylococcus aureus, and 136 Streptococcus pyogenes isolates. Macrolide-susceptible isolates as well as macrolide-resistant isolates with ribosomal methylase (Erm), macrolide efflux (Mef), and ribosomal mutations were tested using the NCCLS reference broth microdilution method. Both compounds were extremely active against macrolide-susceptible isolates, with the minimum inhibitory concentrations at which 90% of the isolates tested were inhibited (MIC90s) for susceptible streptococci and staphylococci ranging from 0.002 to 0.03 microg/ml for ABT-773 and 0.008 to 0.06 microg/ml for telithromycin. ABT-773 had increased activities against macrolide-resistant S. pneumoniae (Erm MIC90, 0.015 microg/ml; Mef MIC90, 0.12 microg/ml) compared to those of telithromycin (Erm MIC90, 0.12 microg/ml; Mef MIC90, 1 microg/ml). Both compounds were active against strains with rRNA or ribosomal protein mutations (MIC90, 0.12 microg/ml). ABT-773 was also more active against macrolide-resistant S. pyogenes (ABT-773 Erm MIC90, 0.5 microg/ml; ABT-773 Mef MIC90, 0.12 microg/ml; telithromycin Erm MIC90, >8 microg/ml; telithromycin Mef MIC90, 1.0 microg/ml). Both compounds lacked activity against constitutive macrolide-resistant Staphylococcus aureus but had good activities against inducibly resistant Staphylococcus aureus (ABT-773 MIC90, 0.06 microg/ml; telithromycin MIC90, 0.5 microg/ml). ABT-773 has superior activity against macrolide-resistant streptococci compared to that of telithromycin.  相似文献   

10.
The in vitro activity of PD 117,596, a new fluoroquinolone antibiotic, was tested against 448 bacterial isolates (15 genera) by agar dilution (inoculum, 10(4) CFU per spot). The activity of PD 117,596 was compared with that of 15 antibiotics against 327 gram-negative strains and with that of 8 other antibiotics against 121 gram-positive strains. PD 117,596 demonstrated the best activity against Klebsiella spp., Enterobacter spp., Acinetobacter spp., Serratia marcescens, and Branhamella catarrhalis (MICs for 90% of the isolates [MIC90S], 0.008 to 0.25 microgram/ml). PD 117,596 (MIC90, 0.25 microgram/ml) was at least twofold more active than ciprofloxacin against Pseudomonas aeruginosa and Pseudomonas spp. PD 117,596 and ciprofloxacin were similar in activity against Escherichia coli, Proteus mirabilis, Haemophilus influenzae, H. parainfluenzae, Neisseria gonorrhoeae, Legionella pneumophila, and Campylobacter jejuni (MIC90, 0.002 to 0.125 microgram/ml). PD 117,596 was more active than ciprofloxacin against streptococcal groups A, B, C, and G, S. pneumoniae, and enterococci (MIC90S, 0.06 to 0.125 microgram/ml). Against Staphylococcus aureus, including methicillin-resistant isolates, PD 117,596 (MIC90S, 0.03 to 0.06 microgram/ml) was 4- to 16-fold more active than ciprofloxacin and was most active against Corynebacterium spp. PD 117,596 appears to be the most active fluoroquinolone to date, with excellent activity against gram-positive bacteria and enhanced activity against gram-negative aerobic-facultative bacteria.  相似文献   

11.
BO-1341, a new antipseudomonal semisynthetic cephalosporin, was evaluated for in vitro and in vivo antibacterial activities in comparison with ceftazidime, cefotaxime, and cefoperazone. The in vitro activity of BO-1341 was generally superior or comparable to the activities of the reference antibiotics against clinical isolates of the family Enterobacteriaceae. BO-1341 was highly active against Pseudomonas aeruginosa (MIC for 90% of the strains tested, 1.56 micrograms/ml), Pseudomonas maltophilia (MIC for 50% of the strains tested, 1.56 micrograms/ml), and Acinetobacter calcoaceticus (MIC for 90% of the strains tested, 3.13 micrograms/ml). Furthermore, BO-1341 was highly active against P. aeruginosa isolates resistant to the other antibiotics. Of 199 P. aeruginosa isolates tested, only 2 were resistant to BO-1341. These two strains were also resistant to ceftazidime, cefotaxime, and cefoperazone. Haemophilus influenzae, Branhamella catarrhalis, and nonenteric streptococci were also susceptible to BO-1341, but Staphylococcus aureus, Streptococcus faecalis, and Bacteroides fragilis were not susceptible to the compound. The protective efficacy against experimental infections in mice caused by nine strains of gram-negative bacteria, including P. aeruginosa, reflected the potent in vitro activity.  相似文献   

12.
E1077, a new injectable cephalosporin with a broad antibacterial spectrum and potent antibacterial activity, was evaluated for its in vitro and in vivo antibacterial activities in comparison with those of cefpirome, cefuzonam, ceftazidime, and cefotaxime. E1077 showed broad in vitro antibacterial activity against gram-positive and gram-negative bacteria. Against methicillin-susceptible Staphylococcus aureus, E1077 was as active as cefpirome; the MIC for 90% of strains tested (MIC90) was 1.0 microgram/ml. Against methicillin-resistant S. aureus, E1077 was less active (MIC90, 64 micrograms/ml). For Enterobacter cloacae and Pseudomonas aeruginosa, E1077 was fourfold more active than cefpirome, with MIC90s of 1.0 and 16 micrograms/ml, respectively. For Proteus vulgaris, the MIC90 of E1077 was 32 micrograms/ml, which was fourfold greater than that of cefpirome. Against other gram-negative strains tested, the in vitro activity of E1077 was comparable to that of cefpirome. The broad antibacterial spectrum of E1077 was reflected by its in vivo efficacy against experimental septicemia caused by gram-positive and gram-negative bacteria. Against S. aureus 90 and P. aeruginosa E7, E1077 had activity superior to those of the reference compounds; against most other bacterial strains, the efficacy of E1077 was similar to that of cefpirome. Levels of E1077 in plasma and tissue of mice were studied. At 15 min after a single subcutaneous administration, E1077 displayed high peak levels (mean, 31.8 +/- 3.1 micrograms/ml). These results indicate that the in vitro and in vivo efficacies of E1077 are similar to those of cefpirome except against P. aeruginosa and P. vulgaris.  相似文献   

13.
Ro 63-9141 is a new member of the pyrrolidinone-3-ylidenemethyl cephem series of cephalosporins. Its antibacterial spectrum was evaluated against significant gram-positive and gram-negative pathogens in comparison with those of reference drugs, including cefotaxime, cefepime, meropenem, and ciprofloxacin. Ro 63-9141 showed high antibacterial in vitro activity against gram-positive bacteria except ampicillin-resistant enterococci, particularly vancomycin-resistant strains of Enterococcus faecium. Its MIC at which 90% of the isolates tested were inhibited (MIC(90)) for methicillin-resistant Staphylococcus aureus (MRSA) was 4 microg/ml. Ro 63-9141 was bactericidal against MRSA. Development of resistance to the new compound in MRSA was not observed. Ro 63-9141 was more potent than cefotaxime against penicillin-resistant Streptococcus pneumoniae (MIC(90) = 2 microg/ml). It was active against ceftazidime-susceptible strains of Pseudomonas aeruginosa and against Enterobacteriaceae except Proteus vulgaris and some isolates producing extended-spectrum beta-lactamases. The basis for the antibacterial spectrum of Ro 63-9141 lies in its affinity to essential penicillin-binding proteins, including PBP 2' of MRSA, and its stability towards beta-lactamases. The in vivo findings were in accordance with the in vitro susceptibilities of the pathogens. These data suggest the potential utility of Ro 63-9141 for the therapy of infections caused by susceptible pathogens, including MRSA. Since insufficient solubility of Ro 63-9141 itself precludes parenteral administration in humans, a water-soluble prodrug, Ro 65-5788, is considered for development.  相似文献   

14.
In vitro activity of BMY-28100, a new oral cephalosporin.   总被引:2,自引:12,他引:2       下载免费PDF全文
The activity of BMY-28100, a new orally administered cephalosporin, was compared with those of cephalexin and cefaclor. BMY-28100 was the most active drug against Staphylococcus aureus (MIC for 90% of strains tested [MIC90], 1.0 microgram/ml), streptococci (MIC90S, less than or equal to 0.125 microgram/ml), and Klebsiella pneumoniae (MIC90, 2 micrograms/ml). The drug was active against Haemophilus influenzae and gonococci but not against other organisms generally resistant to cephem antibiotics.  相似文献   

15.
BACKGROUND AND METHODS: The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. RESULTS: Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. CONCLUSION: In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.  相似文献   

16.
The in vitro antibacterial activity of DU-6681a, a parent compound of DZ-2640, against gram-positive and -negative bacteria was compared with those of penems and cephalosporins currently available. MICs at which 90% of the isolates are inhibited (MIC90s) of the compound for clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus and Staphylococcus epidermidis, including methicillin-susceptible and -resistant strains, were 0.10, 25, and 12.5 microg/ml, respectively. DU-6681a inhibited the growth of all strains of Streptococcus pyogenes and of penicillin-susceptible and -insusceptible Streptococcus pneumoniae at 0.006, 0.025, and 0.20 microg/ml, respectively, and MIC90s of the compound were 6.25 and >100 microg/ml for Enterococcus faecalis and Enterococcus faecium, respectively. MIC90s of DU-6681a were 0.20, 0.10, and 0.025 microg/ml for Haemophilus influenzae, Moraxella catarrhalis, and Neisseria gonorrhoeae, respectively. For Pseudomonas aeruginosa, the MIC50 and MIC90 of DU-6681a were 25 and 50 microg/ml, respectively. DU-6681a activity was not affected by different media, varied inoculum size (10(4) to 10(7) CFU), or the addition of human serum but was decreased under acidic conditions against gram-negative bacteria, under alkaline conditions against gram-positive bacteria, and in human urine, as was the activity of the other antibiotics tested. The frequency of spontaneous resistance to DU-6681a was less than or equal to those of the reference compounds. Time-kill curve studies demonstrated the bactericidal action of DU-6681a against S. aureus, S. pneumoniae, Escherichia coli, and H. influenzae.  相似文献   

17.
Against 182 anaerobe and 241 aerobe strains obtained from diabetic foot infections, doripenem was the most active carbapenem against Pseudomonas aeruginosa (MIC(90), 2 microg/ml), more active than imipenem against Proteus mirabilis, and ertapenem was more active against Escherichia coli and Klebsiella spp. The MIC(50) and MIC(90) values were < or =0.125 microg/ml for methicillin-sensitive Staphylococcus aureus and all streptococci and 0.25/1 for Bacteroides fragilis.  相似文献   

18.
The in vitro activity of GR 20263, a new cephalosporin, was compared primarily with the activities of moxalactam (LY 127935), cefotaxime, cefoxitin, cefuroxime, and cefazolin against 293 clinical isolates of a variety of gram-positive and -negative bacteria. The minimal inhibitory concentrations of GR 20263 for 90% of group isolates were between 0.06 and 0.5 microgram/ml for the Enterobacteriaceae, Haemophilus influenzae, Neisseria gonorrhoeae, and Lancefield group A beta-hemolytic streptococci; 2 micrograms/ml for Pseudomonas aeruginosa; 16 micrograms/ml for Staphylococcus aureus; and in excess of 128 micrograms/ml for Bacteroides fragilis and Lancefield group D streptococci. In comparison with the other agents, GR 20263 was markedly more active against the Enterobacteriaceae than cefuroxime, cefoxitin, and cefazolin, but marginally less active than moxalactam or cofotaxime. Aganist S. aureus, cefazolin was 16-fold and cefotaxime was 4-fold more active than GR 20263 and moxalactam. GR 20263 was eight-fold more active than cefotaxime and moxalactam against P. aeruginosa.  相似文献   

19.
Antimicrobial Activity of Cefmenoxime (SCE-1365)   总被引:3,自引:10,他引:3       下载免费PDF全文
The in vitro activity of cefmenoxime (SCE-1365 or A-50912), a new semisynthetic cephalosporin antibiotic, was compared with those of cefazolin, cefoxitin, and cefamandole against a broad spectrum of 486 organisms and with that of cefotaxime against 114 organisms. Cefmenoxime and cefotaxime exhibited nearly equivalent activities against those organisms tested and were the most active of these cephalosporins against all aerobic and facultative organisms except Staphylococcus aureus. The minimum inhibitory concentration (MIC) of cefmenoxime required to inhibit at least 90% of strains tested (MIC(90)) ranged from 0.06 to 8 mug/ml for the Enterobacteriaceae. The MIC(90)s for gram-positive cocci were 0.015 and 128 mug/ml with good activity against the gram-positive organisms. In addition, cefmenoxime activity was bactericidal and only slightly affected by differences in inoculum size. The combination of cefmenoxime and gentamicin was synergistic against 80% of the Enterobacteriaceae and 100% of P. aeruginosa strains tested. Development of resistance to cefmenoxime was slow or absent for organisms with low initial MICs but more rapid for those with higher initial MICs. Cefmenoxime exhibited good protective activity in mice infected with Escherichia coli, Enterobacter cloacae, Proteus mirabilis, Proteus vulgaris, or S. aureus but was less effective against P. aeruginosa.  相似文献   

20.
The antibacterial activity of DQ-113, formerly D61-1113, was compared with those of antibacterial agents currently available. MICs at which 90% of the isolates tested are inhibited (MIC90s) of DQ-113 against clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus and methicillin-susceptible and -resistant coagulase-negative staphylococci were 0.03, 0.008, 0.03, and 0.06 microg/ml, respectively. Moreover, DQ-113 showed the most potent activity against ofloxacin-resistant and methicillin-resistant S. aureus, with a MIC90 of 0.25microg/ml. DQ-113 inhibited the growth of all strains of Streptococcus pneumoniae, including penicillin-resistant strains, and Streptococcus pyogenes at 0.06 microg/ml, and DQ-113 was more active than the other quinolones tested against Enterococcus faecalis and Enterococcus faecium with MIC90s of 0.25 and 2 microg/ml, respectively. Against vancomycin-resistant enterococci, DQ-113 showed the highest activity among the reference compounds, with a MIC range from 0.25 to 2 microg/ml. DQ-113 also showed a potent activity against Haemophilus influenzae, including ampicillin-resistant strains (MIC90, 0.015 microg/ml), and Moraxella catarrhalis (MIC90, 0.03 microg/ml). The activity of DQ-113 was roughly comparable to that of levofloxacin against all species of ENTEROBACTERIACEAE: The MICs of DQ-113 against ofloxacin-susceptible Pseudomonas aeruginosa ranged from 0.25 to 2 microg/ml, which were four times higher than those of ciprofloxacin. From these results, DQ-113 showed the most potent activity against gram-positive pathogens among antibacterial agents tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号