首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinergic excitation of mammalian hippocampal pyramidal cells   总被引:11,自引:0,他引:11  
Responses of CA1 pyramidal neurons to ACh were recorded with intracellular microelectrodes utilizing the in vitro guinea pig hippocampal slice preparation. ACh was delivered by drop or iontophoretic application to stratum oriens or stratum radiatum. Threshold dose for drop application was 1 mM. An initial hyperpolarization of 3.1 +/- 1.8 (S.D.) mV associated with a decrease in membrane input resistance (RN) of 21 +/- 9% (S.D.) occurred in about half the cells. This result is consistent with a presynaptic action of ACh mediated through excitation of inhibitory interneurons. This interpretation was supported by recordings of cholinergic excitatory responses from presumed interneurons, and repetitive spontaneous IPSPs from pyramidal neurons during the hyperpolarization. ACh evoked a slow depolarization (14.3 +/- 10.8 (S.D.) mV) accompanied by a peak increase in apparent input resistance (Ra) of about 60% in the majority of cells. Large increases in spike frequency were associated with these events but action potential shape was unchanged. Plots of Ra versus membrane potential following ACh application revealed that Ra increases were proportionately higher at depolarized membrane potential levels (less than or equal to -70 mV) in some neurons. In these cells Ra was increased significantly at -60 mV (28%), but only 6% at -75 mV. These results are consistent with the conclusion that ACh reduces a voltage-dependent gK, distinct from delayed rectification. ACh also induced a non-voltage-dependent increase in Ra in some cells. ACh-evoked changes in Ra were long-lasting and gave rise to alterations in firing mode, with development of burst generation. ACh also transiently blocked after hyperpolarizations which followed spike trains in pyramidal neurons and presumed interneurons, an action which may be related to effects on a Ca2+-activated gK.  相似文献   

2.
Effects of kainate on the excitability of rat hippocampal neurones   总被引:1,自引:0,他引:1  
Intracellular recordings from CA1 pyramidal neurones of the rat hippocampal slice preparation were used to study changes in neuronal excitability induced by the excitatory amino acid analogues kainate (KA) and N-methyl-D-aspartate (NMDA). Low concentrations of bath-applied KA (50-200 nM) or NMDA (1-3 microM) elicited a relatively small membrane depolarization and increased the number of spikes fired by a constant current pulse. The spike after-hyperpolarization (AHP) was depressed by KA but enhanced by NMDA. After blockade of the voltage-sensitive Na+ conductances with tetrodotoxin, intracellularly applied current pulses elicited Ca2+ spikes. Whereas NMDA always increased the duration (and number) of Ca2+ spikes and of their AHP, KA conversely reduced these spikes and (in almost half of the cells tested) the late phase of their AHP. When Ba2+ was used to replace extracellular Ca2+, prolonged plateau potentials developed and were also blocked by KA. NMDA had no effect on Ba2(+)-dependent responses. These results suggest that low concentrations of KA profoundly modified the electroresponsiveness of CA1 neurones perhaps by depressing a Ca2(+)-dependent K+ conductance mechanism responsible for dampening the excitability of these cells.  相似文献   

3.
M Segal 《Brain research》1982,246(1):77-87
Responses of hippocampal pyramidal cells to topical application of acetylcholine (ACh) were measured in the in vitro hippocampal slice preparation. ACh but not cyclic GMP produced a short-latency hyperpolarization associated with a decrease in input resistance. This was followed by a long-latency but long duration depolarization associated in some cells with an increase in input resistance. This change in resistance followed the depolarization and outlasted it by 5--20 min, until complete recovery. During the depolarization there was a reduction in magnitude of EPSPs produced by activation of the Schaffer collateral excitatory afferents. The reversal potential for the hyperpolarization was about -95 mV, and it was blocked by 4-aminopyridine. The depolarization, but not the hyperpolarization was markedly attenuated in slices maintained in low (25 degrees C) temperature. The responses to ACh were blocked by atropine but not by D-tubocurarine. The hyperpolarization as well as the depolarization were present in slices treated with tetrodotoxin (TTX)., but were reduced in slices superfused with a low Ca2+-high Mg2+ medium, and in slices treated with Mn2+ and Co2+ ions. It is suggested that ACh causes a fast increase in gK+, followed by a long-lasting energy-dependent depolarization associated with action potential discharges, a decrease in conductance and a suppression of EPSPs.  相似文献   

4.
Intracellular recordings were obtained from granule cells of the dentate gyrus in mouse hippocampal slices maintained in vitro. All the spikes observed in standard Krebs solution had a short duration and were tetrodotoxin (TTX)-sensitive. When elicited by synaptic activation or by direct electrical stimulation of the cells, these fast sodium spikes were followed by a brief spike afterhyperpolarization. In contrast, antidromic spikes elicited by electrical stimulation of the hilum as well as spikes arising at the end of hyperpolarizing current pulses passed through the recording microelectrode were followed by depolarizing afterpotentials (DAPs). These DAPs were reversed into brief spike afterhyperpolarizations by depolarization of the cells. After substitution of calcium (Ca) by barium (Ba) or after introduction of tetraethylammonium (TEA) in the bath, the fast spike repolarization became slower and the brief spike afterhyperpolarizations were abolished, suggesting that they involved fast K conductances. Slow spikes and long-lasting depolarizations were also elicited in granule cells in the presence of Ba or TEA. Since these slow events were left unaffected by TTX and were selectively abolished by the Ca channel blockers cobalt or cadmium, they are likely to be mediated by voltage-dependent Ca conductances, unmasked by the reduction of the fast K conductances.  相似文献   

5.
Intracellular recordings were obtained from granule cells of the dentate gyrus in mouse hippocampal slices maintained in vitro. All the spikes observed in standard Krebs solution had a short duration and were tetrodotoxin (TTX)-sensitive. When elicited by synaptic activation or by direct electrical stimulation of the cells, these fast sodium spikes were followed by a brief spike afterhyperpolarization. In contrast, antidromic spikes elicited by electrical stimulation of the hilum as well as spikes arising at the end of hyperpolarizing current pulses passed through the recording microelectrode were followed by depolarizing afterpotentials (DAPs). These DAPs were reversed into brief spike afterhyperpolarizations of the cells. After substitution of calcium (Ca) by barium (Ba) or after introduction of tetraethylammonium (TEA) in the bath, the fast spike repolarization became slower and the brief spike afterhyperpolarizations were abolished, suggesting that they involved fast K conductances. Slow spikes and long-lasting depolarizations were also elicited in granule cells in the presence of Ba or TEA. Since these slow events were left unaffected by TTX and were selectively abolished by the Ca channel blockers cobalt or cadmium, they are likely to be mediated by voltage-dependent Ca conductances, unmasked by the reduction of the fast K conductances.  相似文献   

6.
Cellular properties have been examined in ventrally located Xenopus spinal cord neurons that are rhythmically active during fictive swimming and presumed to be motoneurons. Resting potentials and input resistances of such neurons are - 75 +/- 2 mV (mean +/- standard error) and 118 +/- 17 M ohm respectively. Most cells fire a single impulse, 0.5 to 2.0 ms in duration and 48.5 +/- 1.8 mV in amplitude, in response to a depolarizing current step. A minority fire several spikes of diminishing amplitude to more strongly depolarizing current. Cells held above spike, threshold fire on rebound from brief hyperpolarizing pulses. Spikes are blocked by 0.1 to 1.0 microM tetrodotoxin (TTX) and are therefore Na+-dependent. Current/voltage (I/V) plots to injected current are approximately linear near the resting potential but become non-linear at more depolarized levels. Cells recorded in TTX with CsCI-filled microelectrodes show a linearized I/V plot at depolarized membrane potentials suggesting the normal presence of a voltage-dependent K+ conductance activated at relatively depolarized levels. Most cells recorded in this way but without TTX fire long trains of spikes of near constant amplitude, pointing to a role of the K+ conductance in limiting firing in normal cells. Spike blockage with TTX reveals, in some cells, a transient depolarizing Cd2+-sensitive and therefore presumably Ca2+-dependent potential that increases in amplitude with depolarization. Cells in TTX, Cd2+, and strychnine, and recorded with CsCI-filled microelectrodes to block active conductances respond to hyperpolarizing current steps with a two component exponential response. The cell time constant (tau0) obtained from the longer of these by exponential peeling is relatively long (mean 15.7 ms). These findings contribute to an increased understanding of the cellular properties involved in spinal rhythm generation in this simple vertebrate.  相似文献   

7.
Adenosine 3',5'-cyclic monophosphate (cAMP) was injected by a fast and quantitative pressure injection method into voltage-clamped identified Helix neurons. The intracellular elevation of cAMP caused an inward current which was not accompanied by a significant change in membrane conductance in a negative potential range with little activation of voltage-dependent membrane conductances. Near resting potential Na+ ions were the main carrier of the cAMP-induced inward current as measured with ion-selective microelectrodes. TTX did not affect the Na+ influx. K+ and less effective Ca2+ could substitute for Na+ in carrying the inward current. In the presence of Na+, divalent cations such as Ca2+ and Mg2+, and also La3+ exerted an inhibitory influence on the cAMP-induced inward current, and Ca2+ as measured with ion-selective microelectrodes did not contribute significantly to the current. Thus, the inward current was of a non-specific nature. Simultaneously to this cAMP action, the membrane permeability for K+ ions was decreased by cAMP. This effect became particularly obvious when K+ currents were activated by long-lasting, depolarizing voltage steps. In this situation a reduced K+ efflux following cAMP injection was observed by means of K+-selective microelectrodes located near the external membrane surface. Outward K+ currents were less reduced by cAMP if external Ca2+ was replaced by Ni2+. The nearly compensatory increase and decrease of two membrane conductances in the same neuron explained the lack of change in the cell input resistance despite the considerable depolarizing action of intracellularly elevated cAMP.  相似文献   

8.
Extracellular 4-aminopyridine (4-AP), tetraethylammonium chloride (TEA) and quinine depolarized the neuropile glial cell membrane and decreased its input resistance. As 4-AP induced the most pronounced effects, we focused on the action of 4-AP and clarified the ionic mechanisms involved. 4-AP did not only block glial K+ channels, but also induced Na+ and Ca2+ influx via other than voltage-gated channels. The reversal potential of the 4-AP-induced current was -5 mV. Application of 5 mM Ni2+ or 0.1 mM d-tubocurarine reduced the 4-AP-induced depolarization and the associated decrease in input resistance. We therefore suggest that 4-AP mediates neuronal acetylcholine release, apparently by a presynaptic mechanism. Activation of glial nicotinic acetylcholine receptors contributes to the depolarization, the decrease in input resistance, and the 4-AP-induced inward current. Furthermore, the 4-AP-induced depolarization activates additional voltage-sensitive K+ and Cl- channels and 4-AP-induced Ca2+ influx could activate Ca2+-sensitive K+ and Cl- channels. Together these effects compensate and even exceed the 4-AP-mediated reduction in K+ conductance. Therefore, the 4-AP-induced depolarization was paralleled by a decreasing input resistance.  相似文献   

9.
Preparations of lysed synaptosomes exhibit a high affinity Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ accumulation activity, with a Km for Ca2+ congruent to 0.5 microM, close to the cytosolic concentration of Ca2+. When these membrane suspensions were incubated with cholinergic agonists muscarine or oxotremorine (1-20 microM), both Ca2+/Mg2+ ATPase and ATP-dependent CA2+ uptake were inhibited in a concentration-dependent fashion. Atropine alone (0.5-1.0 microM) had no effect on either enzyme or uptake activity, but significantly inhibited the actions of both muscarine and oxotremorine. No significant effects by cholinergic agonists or antagonists were seen on fast or slow phase voltage-dependent Ca2+ channels or Na+-Ca2+ exchange. These results suggest that activation of presynaptic muscarinic receptors produce inhibition of two processes required for the buffering of optimal free Ca2+ by the nerve terminal. Activation of presynaptic muscarinic receptors have been reported to reduce the release of ACh from nerve terminals. Alterations in intracellular free Ca2+ may contribute to a reduction in transmitter (ACh) release seen following activation of cholinergic receptors.  相似文献   

10.
The combination of sarcolemmal depolarization and hypokalemia exhibited by the different forms of hypokalemic paralysis has been attributed to abnormalities of the K+ conductance governing the resting membrane potential (V(REST)). Supportive data have been observed in muscle fibers biopsied from patients with familial hypokalemic periodic paralysis (HypoPP) that paradoxically depolarize at low K+. Although this observation is consistent with anomalous K+ conductance, rigorous experimental support is lacking. To establish a foundation for understanding the pathophysiology of hypokalemic paralysis, we studied Ba2+-treated muscle fibers under voltage clamp. As anticipated, Ba2+ blocked inward rectifying K+ (IRK) currents, and thereby promoted depolarization, supporting the notion that the IRK conductance governs V(REST). The IRK conductance also declined when muscle was challenged with reduced external K+. When the external K+ declined below 1 mM, V(REST) became uncoupled from the K+ reversal potential and depolarized. Partial ( approximately 50%) block of the IRK conductance with Ba2+ potentiated this uncoupling threshold, such that depolarization could be elicited by exposure to 2 mM external K+. A quantitative computer model of resting ionic conductances was constructed, and simulations demonstrated that small alterations to resting conductances, such as adding a low-amplitude aberrant inward current flowing through "gating pores" in mutant Na+ channels causing HypoPP-2, can promote paradoxical depolarization in low K+. These findings offer a simple explanation for some of the heretofore poorly understood physiological abnormalities of HypoPP muscle and support the notion that pathological gating pore leakage currents may directly predispose to paralytic attacks.  相似文献   

11.
The possibility that cholinergic stimulation might directly activate a receptor-operated Ca2+ channel was investigated in the CA1 region of guinea pig hippocampus using intracellular recording techniques. Two cholinergic responses were studied: (1) the plateau depolarization evoked by cholinergic stimulation in the presence of Ba2+; and (2) the Ca2(+)-dependent component of membrane depolarization. Both of these responses were blocked by 1-5 microM of nifedipine, a blocker of voltage-dependent L-type Ca2+ channels. In addition, the plateau response was mimicked by direct postsynaptic depolarization in the presence of Ba2+. We conclude that cholinergic stimulation does not directly activate a Ca2+ conductance in these neurons, but rather leads to the indirect activation of L channels which may be located both pre- and postsynaptically.  相似文献   

12.
Bonansco C  Buño W 《Hippocampus》2003,13(1):150-163
This article reports the cellular mechanisms underlying a form of intracellular "theta-like" (theta-like) rhythm evoked in vitro by microiontophoresis of N-methyl-D-aspartate (NMDA) at the apical dendrites of CA1 pyramidal neurons. Rhythmic membrane potential (Vm) oscillations and action potential (AP) bursts (approximately 6 Hz; approximately 20 mV; approximately 2-5 APs) were evoked in all cells. The response lasted approximately 2 s, and the initial oscillations were usually small (< 20 mV) and below AP threshold. Rhythmic bursts were never evoked by imposed depolarization in the absence of NMDA. Block of Na+ conductance with tetrodotoxin (TTX) (1.5 microM), of non-NMDA receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (20 microM) and of synaptic inhibition by bicuculline (50 microM) and picrotoxin (50 microM) did not prevent NMDA oscillation. Inhibition of the voltage dependence of the NMDA conductance in Mg2+-free Ringer's solution blocked oscillations. Preventing Ca2+ influx with Ca2+-free and Co2+ (2-mM) solutions and block of the slow Ca2+-dependent afterhyperpolarization (sAHP) by carbamilcholine (5 microM), isoproterenol (10 microM), and intracellular BAPTA blocked NMDA oscillations. Inhibition of L-type Ca2+ conductance with nifedipine (30 microM) reduced oscillation amplitude. Block of tetraethylammonium (TEA) (10 mM) and 4AP (10 mM)-sensitive K+ conductance increased the duration and amplitude, but not the frequency, of oscillations. In conclusion, theta-like bursts relied on the voltage dependence of the NMDA conductance and on high-threshold Ca2+ spikes to initiate and boost the depolarizing phase of oscillations. The repolarization is initiated by TEA-sensitive K+ conductance and is controlled by the sAHP. These results suggest a role of interactions between NMDA conductance and intrinsic membrane properties in generating the CA1 theta-rhythm.  相似文献   

13.
Kong WJ  Guo CK  Zhang S  Zhang XW  Wang YJ  Li ZW 《Brain research》2006,1102(1):103-108
Hair cells of inner ear are suggested to be inhibited by the activation of the alpha9-containing nicotinic acetylcholine (ACh) receptors (alpha9-containing nAChRs). Several studies have suggested that the native nicotinic-like ACh receptors (nAChRs) in hair cells display a significant permeability of Ca(2+) ions and unusual pharmacological properties. The activation of native nAChRs will initiate the hyperpolarization of hair cells by activation of the small conductance, Ca(2+)-activated K(+) channels (SK). In this work, the properties of the ACh-sensitive potassium current (IK(ACh)) in outer hair cells (OHCs) of guinea pigs were investigated by employing whole-cell patch-clamp. Followed by perfusion of ACh, OHCs displayed a rapid desensitized current with an N-shaped current-voltage curve (I-V) and a reversal potential of - 66 +/- 7 mV. The IK(ACh) was still present during perfusion of either iberiotoxin (IBTX, 200 nM) or TEA (5 mM) but was potently inhibited by apamin (1 muM), TEA (30 mM). The IK(ACh) demonstrated a strong sensitivity to alpha-bungarotoxin (alpha-BgTx), bicuculline and strychnine. These results suggested that OHCs display the well-known SK current, which might be gated by the alpha9-containing nAChRs. Two important changes were present after lowering the Ca(2+) concentration in the external conditions from 2 mM to 0.2 mM: one was a flattened N-shape I-V relationship with a maximum shifted toward hyperpolarized potentials from -20 approximately -30 mV approximately -40 to -50 mV, the other was a significant reduction in the agonist maximal response (percentage of maximal response 10.5 +/- 5.4). These results indicated that native nAChRs are both permeable to and modulated by extracellular Ca(2+) ions. Taken together, this work provides direct evidences that SK channels in OHCs of guinea pigs are gated by alpha9-containing nAChRs, which play an important role in the fast cholinergic efferent inhibition. This fast inhibition is both potently dependent on the permeability of Ca(2+) ions through the native nAChRs and modulated by Ca(2+) ions.  相似文献   

14.
We have attempted to suppress voltage-dependent conductances in hippocampal neurons by introducing various intracellular agents. Voltage-clamp studies were carried out using acutely dissociated hippocampal neurons from adult guinea pigs. Synaptic events were examined using intracellular recordings in the slice preparation. Sodium conductance was suppressed when the quaternary lidocaine derivative QX 314 was introduced intracellularly. Potassium conductances were blocked by intracellular cesium or Tris. We also found that the anion fluoride could affect calcium conductance by an intracellular action. When anions other than fluoride were used for intracellular recordings, the voltage-dependent calcium current inactivated slowly and showed persistent activation at membrane potentials between -40 and -10 mV. In contrast, when fluoride was present intracellularly, the inactivation kinetics of the calcium current were accelerated and the persistent component of the current was largely suppressed. Intracellular recordings in the hippocampal slice showed that when electrodes contained cesium, QX 314, and fluoride, the spiking and nonlinear responses of the neuronal membrane to depolarization were blocked. In these conditions the time course and voltage-dependence of EPSPs could be examined in detail without complications due to voltage-dependent currents of the postsynaptic cell.  相似文献   

15.
Synaptic transmission between reciprocally inhibitory heart interneurons (HN cells) of the medicinal leech was examined in the absence of Na-mediated action potentials. Under voltage clamp, depolarizing steps from a holding potential of -60 mV elicited 2 kinetically distinct components of inward current in the presynaptic HN cell: an early transient current that inactivates within 200 msec and a persistent current that only partially decays over several seconds. Both currents begin to activate near -60 mV. Steady-state inactivation occurs over the voltage range between -70 and -45 mV and is completely removed by 1-2-sec hyperpolarizing voltage steps to -80 mV. The inward currents are carried by Ca2+, Ba2+, or Sr2+ ions, but not by Co2+, Mn2+, or Ni2+. These same inward currents underlie the burst-generating plateau potentials previously described in HN cells (Arbas and Calabrese, 1987a,b). With a presynaptic holding potential of -60 mV, the threshold for transmitter release is near -45 mV. Postsynaptic currents in the contralateral HN cell have a reversal potential near -60 mV. The largest postsynaptic currents (300-400 pA) exhibit an initial peak response that is followed by a more slowly decaying component. The persistent component of Ca2+ current in the presynaptic neuron is strongly correlated with the prolonged component of the postsynaptic current, while the transient presynaptic Ca2+ current appears to correspond to the early peak of postsynaptic current. These data are consistent with the hypothesis that voltage-dependent calcium currents contribute to the oscillatory capability of reciprocally inhibitory HN cells by (1) generating the plateau potential that drives the burst of action potentials and (2) underlying the release of inhibitory transmitter onto the contralateral cell.  相似文献   

16.
M Sawada  M Ichinose  T Maeno 《Brain research》1990,512(2):333-338
The ionic mechanism of the effect of intracellularly injected inositol 1,3,4,5-tetrakisphosphate (IP4) on the membrane of identified neurons (R9-R12) of Aplysia kurodai was investigated with conventional voltage-clamp, pressure injection, and ion-substitution techniques. Intracellular injection of IP4 into a neuron voltage-clamped at -45 mV reproducibly induced a slow inward current (20-60 s in duration, 3-5 nA in amplitude) associated with a conductance increase. The current was decreased by depolarization and increased by hyperpolarization. The extrapolated reversal potential was -21 mV. The IP4-induced inward current was sensitive to changes in the external Na+, Ca2+ and K+ concentration but not to changes in Cl- concentration, and was resistant to tetrodotoxin (50 microM). When the cell was perfused with tetraethylammonium (5 mM) but not with 4-aminopyridine (5 mM), the IP4-induced inward current recorded at -45 mV slightly increased. The IP4-induced inward current was partially reduced by calcium channel blockers (Co2+ and Mn2+). These results suggest that intracellularly injected IP4 can activate a non-specific cation conductance.  相似文献   

17.
Although the concept of GABAB receptors was introduced only ten years ago, several actions of GABAB agonists are already well established. They cause depression of transmitter release, a decrease in voltage-dependent Ca2+ conductance and an increase in K+ conductance. It has recently been reported that GABA also changes the voltage dependence of the transient ('A' type) K+ channel. Depression of transmitter release by GABAB agonists may be caused by a decrease in Ca2+ conductance, an increase in K+ conductance or a modulation of A channels in presynaptic nerve terminals. Slow IPSPs in some neurons are generated by an increase in K+ conductance that can be blocked by GABAB antagonists and pertussis toxin. K+ channels of variable amplitude that are blocked by pertussis toxin are activated by GABAB agonists in cultured hippocampal neurons. Since arachidonic acid activates similar channels in excised patches of membrane, it may form part of a normal second messenger system linking GABAB receptors to K+ channels.  相似文献   

18.
The water-soluble inhibitory benzodiazepine, midazolam, was applied in low nanomolar concentrations to CA1 hippocampal neurons in vitro, recorded intracellularly. The drug caused a long-lasting hyperpolarization and moderate conductance increase, which persisted with TTX-induced synaptic blockade or with intracellular injection of Cl- ions, but not in zero Ca2+ perfusate. Calcium spikes elicited in the presence of TTX were enhanced by midazolam. It was concluded that these low nanomolar concentrations, which did not enhance GABA actions, inhibited by augmenting Ca2+ mediated K+-conductance.  相似文献   

19.
The effects of intracellular Ca2+ (Ca2+i) on K+ currents in hippocampal cells were examined using acutely isolated cells obtained from adult guinea pigs. Whole-cell voltage-clamp recordings were carried out in a configuration that allowed a continuous perfusion of the intracellular medium. Recording media were made to block inward currents and allowed selective activation of K(+)-dependent outward currents. Voltage-dependent outward currents consisted of an initial rapidly decaying component followed by a sustained component. The time constant of decay of the transient current was about 25 msec, and previous studies (Numann et al., 1987) showed that the kinetic and pharmacological properties of this current closely resembled the A current recorded in invertebrate neurons (Connor and Stevens, 1971; Thompson, 1982). Intracellular perfusion of hippocampal cells with a solution containing elevated Ca2+ (about 4.5 x 10(-4) M) elicited outward currents at the holding potential (-45 to -55 mV) and produced changes in voltage-dependent K+ currents. The transient outward current (IA) activated by depolarization was suppressed with increases in Ca2+i. Delayed, sustained K+ currents were greatly potentiated. Data also showed that, among the 3 effects elicited by Ca2+i, suppression of IA was most sensitive to Ca2+i elevation. Previous results (Numann et al., 1987) showed that IA had a lower threshold (about -45 mV) than sustained currents (about -40 mV). By using low levels of depolarization (-40 mV), IA can be selectively activated, and the suppressive effect of Ca2+i on IA was confirmed on the kinetically isolated IA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
C Erxleben 《Glia》1991,4(3):285-292
Unitary currents through single ion channels in the glial cells, which ensheath the abdominal stretch receptor neurons of the crayfish, were characterized with respect to their basic kinetic properties. In cell-attached and excised patches two types of Ca(++)-independent K+ channels were observed with slope conductances of 57 pS and 96 pS in symmetrical K+ solution. The 57 pS K+ channel was weakly voltage-dependent with a slope of the Po vs. membrane potential relationship of +95 mV for an e-fold change in Po. In addition to the main conductance level, the channel displayed conductance levels of 80 and 109 pS. In excised patches, channel activity of this "subconductance" K+ channel showed "rundown" that could be prevented with 2 mM ATP-Mg on the cytoplasmic side of the membrane. The 96 pS K+ channel was strongly voltage-dependent with a slope of +12 mV for an e-fold change in Po. Averaged single-channel currents elicited by voltage jumps proved the channel to be of the delayed rectifying type. Channel activity persisted in excised patches with minimal salt solution and in virtually Ca(++)-free saline. Because of its dependence on intracellular ATP-Mg, the subconductance K+ channel is discussed as a target of modulation by transmitters or peptides via phosphorylation of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号