首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Interstitial cells of Cajal (ICC) are required for normal intestinal motility. ICC are found throughout the human colon and are decreased in the sigmoid colon of patients with slow transit constipation. AIMS: The aims of this study were to determine the normal distribution of ICC within the human colon and to determine if ICC are decreased throughout the colon in slow transit constipation. PATIENTS: The caecum, ascending, transverse, and sigmoid colons from six patients with slow transit constipation and colonic tissue from patients with resected colon cancer were used for this study. METHODS: ICC cells were identified with a polyclonal antibody to c-Kit, serial 0.5 microm sections were obtained by confocal microscopy, and three dimensional software was employed to reconstruct the entire thickness of the colonic muscularis propria and submucosa. RESULTS: ICC were located within both the longitudinal and circular muscle layers. Two networks of ICC were identified, one in the myenteric plexus region and another, less defined network, in the submucosal border. Caecum, ascending colon, transverse colon, and sigmoid colon displayed similar ICC volumes. ICC volume was significantly lower in the slow transit constipation patients across all colonic regions. CONCLUSIONS: The data suggest that ICC distribution is relatively uniform throughout the human colon and that decreased ICC volume is pan-colonic in idiopathic slow transit constipation.  相似文献   

2.
Background and aims Slow transit constipation (STC) is a colonic motor disorder that is characterized by measurably delayed movement of materials through the colon. Although abnormalities in the neuronal networks of the colon have been demonstrated in patients with STC, the etiology of STC remains unclear. Interstitial cells of Cajal (ICC) have been shown to be the pacemaker cells of the intestine and have been implied in the pathogenesis of a number of gastrointestinal motility dysfunctions, including idiopathic STC. This study aimed to determine the normal distribution of ICC within the colon of the Chinese and also to determine if ICC are decreased in Chinese STC patients.Patients and methods Twelve patients with STC and eight age-matched normal controls were studied. Specimens of sigmoid colon were obtained immediately after resection. ICC were identified with a monoclonal antibody to c-kit by an indirect immunofluorescence method. Immunostained tissues were examined with a laser scanning confocal microscope and the area occupied by ICC was calculated with an image analysis system.Results ICC were located in the external muscle layers including myenteric plexus (MP) and submucosal border (SMB). Two types of Kit-positive ICC were observed: bipolar cells characterized by one or two long processes and multipolar cells characterized by long stellate processes extending in various directions. A higher percentage of ICC was present in the MP regions and circular muscle (CM) layers compared with the SMB and longitudinal muscle (LM) layers. Tissues from STC patients showed a considerable decrease in the number of ICC located in the four regions (ICC-LM, ICC-MP, ICC-CM, ICC-SMB), especially the ICC-SMB, in which ICC almost completely disappeared.Conclusions Similar distribution of ICC was observed in the normal sigmoid colon of the Chinese. Decreased area of c-kit+ ICC may play an important role in the pathophysiology of STC. It remains to be determined whether the loss of ICC is primary or secondary to another lesion.  相似文献   

3.
In this paper we report the pathologic basis of chronic idiopathic intestinal pseudo-obstruction in a patient who had a subtotal colectomy and ileorectal anastomosis for severe obstipation. Conventional light microscopy of the resected intestine showed an increased thickness of the longitudinal muscle, minimal amounts of smooth muscle fibrosis, and normal smooth muscle cells. The morphology of the myenteric plexus was difficult to interpret with this technique, but quantification of colonic neurons revealed a significantly decreased number compared with controls. Silver stains of the myenteric plexus by Smith's method showed: (a) patchy loss of nerve tracts with replacement by Schwann cells, (b) degeneration and decreased numbers of both argryophilic and argyrophobic neurons, (c) fragmentation and dropout of many axons, and (d) increased thickness and disorganized spatial arrangement of other axons. The pathology of this intestinal neuropathy could be missed by conventional light microscopy and may be apparent only when a silver technique is used to visualize the myenteric plexus.  相似文献   

4.
BACKGROUND: Surgical management of primitive chronic intestinal pseudo-obstruction involving the duodenum (megaduodenum) is an uncommon but still difficult problem. PATIENTS AND METHODS: Six patients who experienced severe symptoms were managed by an original surgical procedure including partial duodenal resection and reconstruction of a duodenal tract using a large duodenal anastomosis (duodenectomy-duodenoplasty). RESULTS: There was no postoperative complication. All preoperative symptoms completely regressed in all but one patient who had previously undergone a vagotomy and experienced transient early post-operative gastric stasis. With a median follow-up of 6 years (range 4-9), all patients had good functional results without any evidence of other motility disorders. The mean weight gain was 10 kg (range 7-15). CONCLUSIONS: Duodenectomy-duodenoplasty is a safe procedure resulting in efficient symptom relief in patients suffering from megaduodenum.  相似文献   

5.
Background Gastrointestinal motility is impaired in patients with diabetes mellitus (DM). Interstitial cells of Cajal (ICC) in the gastrointestinal tract play a central role in gastrointestinal motility. The present study examined whether ICC density, or expression of neuronal nitric oxide synthase (nNOS)- and substance P (SP)-containing nerves in the gastric antrum, were altered in patients with type 2 DM. Methods Paraffin-embedded gastric specimens from 51 controls and 36 male DM patients with gastric cancer were used for immunohistochemistry. Serial sections were stained with Kit and mast cell tryptase-specific antibodies. Fresh-frozen gastric specimens from patients with gastric cancer were used for immunofluorescence. The specimens were stained with antibodies to Kit, nNOS, and SP, and levels of expression of these three markers were compared between controls and DM patients. Results ICC density in the inner circular muscle layer, but not in the myenteric plexus, was lower in patients with severe DM than in controls in paraffin-embedded specimens. In addition, decreased expression of nNOS and SP accompanied by reduced ICC density was observed in frozen specimens from patients with DM. Conclusions These results suggest that lower gastric ICC, nNOS, and SP densities in patients with DM may be associated with the pathogenesis of diabetic gastroparesis.  相似文献   

6.
7.
The distribution of vasoactive intestinal polypeptide (VIP) and substance P-like immunoreactivities was studied by immunohistochemistry in the myenteric plexus and circular muscle layer of the ileum and proximal colon of rats 8 wk after induction of diabetes with streptozotocin. A consistent increase was observed in fluorescence intensity of VIP-like immunoreactivity in the nerve fibers, and intensely stained cell bodies were significantly more frequent in the myenteric plexus of the ileum (p less than 0.001) from diabetic animals. Some varicosities of VIP-like immunoreactive fibers in the myenteric plexus appeared to be enlarged. Vasoactive intestinal polypeptide-like immunoreactivity was increased and VIP-like immunoreactive nerves appeared thicker in the circular muscle layer of both diabetic ileum and proximal colon. The VIP levels were measured biochemically in tissue consisting of the smooth muscle layers and myenteric plexus. A significant increase in the VIP content per centimeter of intestine was found in both the ileum (p less than and proximal colon (p less than 0.01) from diabetic rats. In contrast, no apparent change in substance P innervation was observed immunohistochemically in the myenteric plexus and circular muscle layer of either diabetic ileum or proximal colon when compared with controls. The results are discussed in relation to the symptoms of autonomic neuropathy of the gut in diabetes.  相似文献   

8.
Alterations in smooth muscle responsiveness and neural pathways in adjacent tissue may occur after local myenteric denervation. The in vitro contractile responses of both longitudinal and circular muscle to the mixed muscarinic and nicotinic cholinergic agonist carbachol were determined 15, 30, and 45 days after localized myenteric plexus ablation. Denervated longitudinal muscle exhibited decreased responsiveness to carbachol at all times examined. Denervated circulated muscle was initially supersensitive, but with time became subsensitive. These changes probably reflect the loss of the nicotinic (neuronal) component of the action of carbachol. Muscle orad to the site of denervation appeared subsensitive, while muscle caudad to the lesion was supersensitive (circular) or unaffected (longitudinal). These results suggest that there are changes in ascending and descending neural pathways. Alterations in the cholinergic responsiveness of intestinal smooth muscle, both at and beyond the site of myenteric plexus ablation, may result in altered intestinal motility that could lead to functional obstruction.Supported by National Institutes of Health grant AM 32594.Contribution 209, Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.  相似文献   

9.
This study presents the case of a patient who had jejunal diverticulosis with perforation and abscess formation as a complication of Fabry's disease. Light microscopy disclosed glycolipid deposition in the neurons and nerve fibers of the intestinal nerve plexuses and smooth muscle. Silver stains of the myenteric plexus in the involved segment of the bowel showed enlarged, granular argyrophobic neurons and a marked decrease in the number of argyrophilic neurons, with those remaining being enlarged and distorted by the cytoplasmic glycolipid accumulation. These abnormalities of the myenteric plexus suggest that jejunal diverticulosis may be the result of a variety of disorders of the smooth muscle or myenteric plexus, or both. We propose that jejunal diverticulosis in our patient was a consequence of uncoordinated smooth muscle activity resulting from Fabry's involvement of myenteric plexus neurons, with mucosal protrusion through the smooth muscle.  相似文献   

10.
Idiopathic chronic constipation has been correlated to neural abnormalities that consist of a reduced number of myenteric plexus neurons and a decreased concentration of VIP-positive nerve fibers within the circular muscle. Recent studies hypothesized the involvement of nitric oxide in motility disorders of the human gut. To date, no information is available on nitric oxide involvement in idiopathic chronic constipation. The density of VIP- and nitric oxide-producing neurons was evaluated by immunocytochemistry using anti-VIP and anti-nitric oxide synthase antibodies in five patients with idiopathic chronic constipation. A low total neuron density was found at the myenteric plexus. The density of VIP-positive neurons was low while that of nitric oxide synthase-positive neurons was high at both plexuses. Our data confirm that idiopathic slow-transit chronic constipation is due to abnormal neurogenic factors. The presence of numerous nitric oxide synthase-positive neurons, all along the colon and at both plexuses, supports the hypothesis that an excessive production of nitric oxide may cause the persistent inhibition of contractions.Supported by MURST University Funds.  相似文献   

11.
BACKGROUND & AIMS: Like the heart, intestinal smooth muscles exhibit electrical rhythmicity, which originates in pacemaker cells surrounding the myenteric plexus, called interstitial cells of Cajal (ICC-MY). In large mammals, ICC also line septa (ICC-SEP) between circular muscle (CM) bundles, suggesting they might be necessary for activating muscle bundles. It is important to determine their functional significance, because a loss of ICC in humans is associated with disordered motility. Our aims were therefore to determine the role of ICC-SEP in activating the thick CM in the human jejunum. METHODS: The mucosa and submucosa were removed and muscle strips were cut and pinned in cross-section so that the ICC-MY and ICC-SEP networks and the CM could be readily visualized. The ICC networks and CM were loaded with the Ca(2+) indicator fluo-4, and pacemaker and muscle activity was recorded at 36.5 +/- 0.5( degrees )C. RESULTS: Ca(2+) imaging revealed that pacemaker activity in human ICC-MY can entrain ICC-SEP to excite CM bundles. Unlike the heart, pacemaker activity in ICC-MY varied in amplitude, propagation distance, and direction, leading to a sporadic activation of ICC-SEP. CONCLUSIONS: ICC-SEP form a crucial conduction pathway for spreading excitation deep into muscle bundles of the human jejunum, necessary for motor patterns underlying mixing. A loss of these cells could severely affect motor activity.  相似文献   

12.
A quick-freezing and deep-etching (QF-DE) method was employed with whole-mount strips of rat duodenal muscle walls to exhibit the cytoskeletons of the myenteric plexus. Nerve fibers in the myenteric plexus, which contained fewer neurofilaments than other types of neurons examined, had many varicosed contours, and were bundled by enteroglial cells. Cytoskeleton arrays were rarely observed in the varicosed regions, where synaptic vesicles were often seen, although other nerve regions contained many neurofilaments running almost in parallel with the nerve fiber bundle. Enteroglial cells had short cytoskeletons predominantly across the cytoplasm, becoming thinner the around varicosed regions of the nerve bundles. Such enteroglial extruded areas were often in close association with neighboring nerve fibers, indicating intercommunications between the nerve fibers. In distal parts of enteric nerve processes, there were numerous synaptic vesicles, but few neurofilaments. Smooth muscle cells were closely associated with the enteric nerve processes. Fine network structures, responsible for the extracellular matrix, were present between the smooth muscle cells and the enteric nerve processes. These specific structures of the myenteric plexus could be important for signalling or for the transportation of neurotransmitters involved in gut motility. (Received Feb. 25, 1998; accepted July 6, 1998)  相似文献   

13.
It has been demonstrated that nitric oxide (NO) is a major inhibitory nonadrenergic, noncholinergic (NANC) neurotransmitter in the gastrointestinal (GI) tract. NO released in response to nerve stimulation of the myenteric plexus causes relaxation of the smooth muscle. NO is synthesized by the activation of neuronal NO synthase (nNOS) in the myenteric plexus. Released NO plays an important physiological role in various parts of the GI tract. NO regulates the muscle tone of the sphincter in the lower esophagus, pylorus, sphincter of Oddi, and anus. NO also regulates the accommodation reflex of the fundus and the peristaltic reflex of the intestine. Previous studies have shown that NOS inhibitors delay gastric emptying and colonic transit. The reduction of nNOS expression, associated with impaired local production of NO, may be responsible for motility disorders in the GI tract. There is accumulated evidence that dysfunction of NO neurons in the myenteric plexus may cause various GI diseases. These reports are reviewed and possible mechanisms of altered nNOS expression are discussed in this article. In particular, impaired nNOS synthesis of the myenteric plexus seems to be an important contributing factor to the pathogenesis of achalasia, diabetic gastroparesis, infantile hypertrophic pyloric stenosis, Hirschsprung's disease, and Chagas' disease. Reduced NO release and/or nNOS expression are suspicious in a subset of patients with functional dyspepsia. Although the etiology of intestinal pseudo-obstruction remains unknown, it is conceivable that extrinsic denervation may upregulate nNOS expression, resulting in enhanced muscular relaxation and disturbed peristalsis. An animal model of colitis showed impaired nNOS expression in the colonic myenteric plexus. Antecedent infection may be associated with the impaired NO pathways observed in functional dyspepsia, colitis, and Chagas' disease.  相似文献   

14.
The structural relationships between interstitial cells of Cajal (ICC), varicose nerve fibers, and smooth muscle cells in the gastrointestinal tract have led to the suggestion that ICC may be involved in or mediate enteric neurotransmission. We characterized the distribution of ICC in the murine stomach and found two distinct classes on the basis of morphology and immunoreactivity to antibodies against c-Kit receptors. ICC with multiple processes formed a network in the myenteric plexus region from corpus to pylorus. Spindle-shaped ICC were found within the circular and longitudinal muscle layers (IC-IM) throughout the stomach. The density of these cells was greatest in the proximal stomach. IC-IM ran along nerve fibers and were closely associated with nerve terminals and adjacent smooth muscle cells. IC-IM failed to develop in mice with mutations in c-kit. Therefore, we used W/W(V) mutants to test whether IC-IM mediate neural inputs in muscles of the gastric fundus. The distribution of inhibitory nerves in the stomachs of c-kit mutants was normal, but NO-dependent inhibitory neuro-regulation was greatly reduced. Smooth muscle tissues of W/W(V) mutants relaxed in response to exogenous sodium nitroprusside, but the membrane potential effects of sodium nitroprusside were attenuated. These data suggest that IC-IM play a critical serial role in NO-dependent neurotransmission: the cellular mechanism(s) responsible for transducing NO into electrical responses may be expressed in IC-IM. Loss of these cells causes loss of electrical responsiveness and greatly reduces responses to nitrergic nerve stimulation.  相似文献   

15.
The distribution of delta- and mu-type opioid binding sites in the gastrointestinal tract of the rat and guinea pig was studied by autoradiography after in vitro incubation of tissue slices with 3H-D-Ala2,D-Leu5-enkephalin, and 3H-naloxone or 3H-dihydromorphine to locate delta- and mu-type opioid receptors, respectively. In the gastric fundus, both mu- and delta-type binding sites were found to occur associated with the circular muscle, muscularis mucosae, and submucosal plexus, whereas in the corpus and antrum, binding was located primarily in the submucosal plexus, deep muscular plexus, and mucosa. Some mu-type opioid receptor sites were present in the myenteric plexus. A dense distribution of both mu- and delta-type binding sites was observed throughout the mucosa of the duodenum and ileum of the rat. In guinea pig ileal tissue, however, only mu-type binding could be demonstrated, occurring in the submucosal plexus and diffusely over the muscle layers. Endogenous opioid peptides, acting at these receptors sites, might be involved in the control of gastrointestinal motility, endocrine and exocrine secretions, as well as intestinal fluid and electrolyte transport.  相似文献   

16.
OBJECTIVE: Interstitial cells of Cajal are critical for the generation of electrical slow waves that regulate the phasic contractile activity of the tunica muscularis of the GI tract. Under certain pathophysiological conditions loss of interstitial cells of Cajal may play a role in the generation of certain motility disorders. The aim of the present study was to determine if there is an abnormality in the density or distribution of interstitial cells of Cajal from patients with Crohn's disease. METHODS: Small intestines from control subjects and patients with Crohn's disease were examined using immunohistochemistry and antibodies against the Kit receptor, which is expressed in interstitial cells of Cajal within the tunica muscularis of the GI tract. The density and distribution of interstitial cells of Cajal were assessed in the longitudinal and circular muscle layers and in the myenteric and deep muscular plexus regions of Crohn's and control tissues. RESULTS: Tissues from Crohn's disease patients showed an almost complete abolition of interstitial cells of Cajal within the longitudinal and circular muscle layers and a significant reduction in numbers at the level of the myenteric and deep muscular plexuses. CONCLUSIONS: In tissues from Crohn's disease patients, the density of interstitial cells of Cajal was reduced throughout the tunica muscularis in comparison to control small intestines. The disturbance of intestinal motility that occurs in patients with Crohn's disease may be a consequence of the loss of or defects in specific populations of interstitial cells of Cajal within the tunica muscularis.  相似文献   

17.
BACKGROUND: Diabetes mellitus is a well-known cause of gastrointestinal dysmotility. The pathogenesis of diabetic gastroenteropathy is mainly considered to be a neuropathy, but the cause of dysmotility remains unknown. Interstitial cells of Cajal (ICC), which express c-kit receptor tyrosine kinase (KIT), are considered to be pacemaker cells for the gastrointestinal movement. Therefore, we investigated a possible involvement of ICC in the pathogenesis of diabetic gastroenteropathy in humans. METHODS: The KIT-positive cells in the proper muscle layer of the colon were detected by immunohistochemistry in patients with diabetes mellitus and normal control subjects. Mast cells, which are also known to express KIT, were detected by staining with Alcian blue. The numbers of KIT-positive cells and Alcian blue-positive cells in the proper muscle layer were counted under the microscope and the number of KIT-positive cells apart from Alcian blue-positive cells was calculated. RESULTS: In the normal control subjects, KIT-positive cells were located at the myenteric plexus region and in the circular muscle layer of the colon. Their distribution pattern was similar to that of ICC. The average number of KIT-positive cells, apart from mast cells (which reflects the number of ICC), in patients with diabetes mellitus was approximately 40% of that found in normal subjects. CONCLUSIONS: Deficiency of ICC might be related to the pathogenesis of diabetic gastroenteropathy in humans.  相似文献   

18.
The distribution of 5-hydroxytryptamine-like immunoreactivity was studied in whole-mount preparations of intestine from human fetuses. Immunoreactive nerve cell bodies were located in the myenteric plexus and were occasionally found in the submucous plexus; they were often seen to have long processes. Varicose fibers were found in the ganglia and internodal strands of the myenteric and submucous plexuses, in the deep muscular plexus of the circular muscle, and in the walls of some small mesenteric blood vessels immediately outside the intestine. This study provides evidence for the presence of serotoninergic nerves in the human intestine.  相似文献   

19.
Because there is evidence for vagal autonomic neuropathy as the cause of diabetic gastroparesis, we hypothesized that this disorder should be associated with morphologic abnormalities of the abdominal vagus nerve or gastric myenteric plexus, or both. We studied the smooth muscle and myenteric plexus of the stomach in 18 nondiabetic controls and 16 patients with long-standing diabetes. Five of the diabetics had gastroparesis and 11 did not. We utilized conventional histology and Smith's silver technique for visualizing the myenteric plexus. Neurons within the myenteric plexus were quantified in sections stained with each technique. The abdominal vagus nerves from 5 diabetics (2 with gastroparesis) and 12 nondiabetic controls were stained with hematoxylin and eosin, Gomori trichrome, luxol-fast blue, and Holmes' silver stains. There were no abnormalities in the numbers or appearance of neurons or axons in the myenteric plexus of the stomach of diabetics, with or without gastroparesis. Also absent were abnormalities of the smooth muscle or vagus nerve. Thus, no morphologic abnormalities of the gastric wall or abdominal vagus were identified in diabetic gastroparesis.  相似文献   

20.
In this study the innervation of the normal human oesophagus was compared with samples taken from 12 patients undergoing Heller's cardiomyotomy for achalasia. The distribution of all nerve fibres in the oesophageal wall was revealed by immunoreactivity to neuron specific enolase and subpopulations of nerve fibres were revealed by immunoreactivity to vasoactive intestinal peptide, neuropeptide Y, enkephalin and substance P. In healthy oesophagus, many nerve fibres immunoreactive for vasoactive intestinal peptide and neuropeptide Y were present in the circular and longitudinal muscle layers of the oesophageal wall and in the cardia of the stomach, whereas fibres immunoreactive for enkephalin and substance P were uncommon. Neuropeptide Y-reactive fibres were commonly seen around blood vessels. In the myenteric plexus cell bodies reactive for vasoactive intestinal peptide and neuropeptide Y were prevalent, as were varicose and non-varicose fibres. In contrast, samples from patients with achalasia revealed few nerve fibres immunoreactive for vasoactive intestinal peptide or neuropeptide Y in either circular or longitudinal muscle, suggesting damage to the inhibitory motor neurons to the muscle layers. Very few fibres were found that were reactive for neuron-specific enolase, indicating that other fibre populations (e.g. excitatory cholinergic motor neurons) are also damaged in achalasia. These abnormalities were observed in biopsies from both the constricted and dilated portions of the oesophagus, but the pattern of innervation in the gastric cardia was normal. Myenteric ganglion cells were seen in the oesophagus in only two patients and varicose nerve fibres in the myenteric plexus were uncommon. Neuropeptide Y-reactive perivascular nerve fibres were still found in achalasia as well as non-varicose nerve fibres in the myenteric plexus. These findings indicate damage to all intrinsic neurons in the oesophageal wall in achalasia; however, extrinsic nerve fibres appear to be intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号