首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Proteolytic processing of the amyloid precursor protein by beta -and gamma-secretases results in the production of Alzheimer's disease (AD) Abeta amyloid peptides. Modulation of secretase activity is being investigated as a potential therapeutic approach. Recent studies with human brain have revealed that the beta-secretase protein, BACE, is increased in cortex of AD patients. Analysis of betaCTF (or C99), the amyloid precursor protein (APP) product of BACE cleavage that is the direct precursor to Abeta, shows it is also elevated in AD, underlying the importance of beta-secretase cleavage in AD pathogenesis. The C-terminal product of gamma-secretase cleavage of APP, epsilonCTF (or AICD), is enriched in human brain cortical nuclear fractions, a subcellular distribution appropriate for a putative involvement of APP cytosolic domain in signal transduction. Analysis of AD cortex samples, particularly that of a carrier of a familial APP mutation, suggests that processing of APP transmembrane domain generates an alternative CTF product. All these particularities observed in the AD brain demonstrate that APP processing is altered in AD. The transgenic mouse model Tg2576 seems to be a promising laboratory tool to test potential modulators of Abeta formation. Indeed, C-terminal products of alpha-, beta-, and gamma-secretase cleavage are readily detectable in the brain of these transgenic mice. Finally, the finding of the same secretase products in platelets and neurons make platelets a potentially useful and easily accessible clinical tool to monitor effects of novel therapies based on inhibition of beta- or gamma-secretase.  相似文献   

2.
beta-Amyloid peptide (Abeta) is generated by two cleavages of amyloid precursor protein (APP). The initial cleavage by BACE is followed by gamma-secretase cleavage of the C-terminal APP fragment. Presenilin-1 (PS-1) is intimately related to gamma-secretase. Once formed, Abeta is mainly broken down by neprilysin. To estimate vulnerability to Abeta senile plaque formation, we measured the relative mRNA levels of APP695, APP751, APP770, BACE, presenilin-1 (PS-1) and neprilysin in nine brain areas and in heart, liver, spleen and kidney in a series of Alzheimer disease (AD) and control cases. Each of the mRNAs was expressed in every tissue examined. APP695 was the dominant APP isoform in brain. Compared with controls, APP695 and PS-1 mRNA levels were significantly elevated in high plaque areas of AD brain, while neprilysin mRNA levels were significantly reduced. BACE levels were not significantly different in AD compared with control brain. In peripheral organs, there were no significant differences in any of the mRNAs between AD and control cases. APP isoforms were differently expressed in the periphery than in brain, with APP 751>770>695. Neprilysin mRNA levels were much higher, while APP695 and PS-1 mRNA levels were much lower in the periphery than in brain. The data suggest that, in the periphery, the capacity to degrade Abeta is srong, accounting for the failure of Abeta deposits to form. In plaque prone areas of AD brain, the capacity to degrade Abeta is weak, while the capacity to generate Ab is upregulated. In plaque resistant areas of brain, a closer balance exists, but there is some tendency towards lower degrading and higher synthesizing capacity in AD brain compared with control brain. Overall, the data indicate that effectiveness of degradation by neprilysin may be a key factor in determining whether Abeta deposits develop.  相似文献   

3.
Mice engineered to overexpress disease-causing mutant amyloid precursor proteins (APP) display plaque deposition, but lack the hyperphosphorylated tau and massive neuronal loss characteristic of Alzheimer's disease (AD). Global gene expression profiles of brain regions from AD patients show upregulation of proapoptotic and inflammatory genes and down-regulation of neurotrophic, MAPK, phosphatase, and synaptic genes, while a profile of mice overexpressing a mutant APP shows the opposite trends in apoptotic and neurotrophic genes. The proteolytic fragments of the amyloid precursor protein have distinct biological actions. Both the gamma-secretase cleaved COOH-terminal fragment (CTFgamma) and the alpha-secretase cleaved NH2-terminal of APP (sAPPalpha) can regulate gene expression. While Abeta and CTFgamma can lead to toxicity and cell death, sAPPalpha promotes neurite outgrowth, enhances memory, and protects against a variety of insults, including Abeta toxicity. In AD, Abeta levels increase while sAPPalpha levels decrease. These subtleties in the levels of APP cleavage products are not reproduced in mice overexpressing mutant APP. In fact, the gene expression changes driven by sAPPalpha, such as increases in transthyretin and insulin-like growth factor 2, may protect these mice from high levels of Abeta.  相似文献   

4.
One of the main neuropathological lesions observed at brain autopsy of Alzheimer's disease (AD) patients are the extracellular senile plaques mainly composed of amyloid-beta (Abeta) peptides. Abeta is generated by proteolytic processing of amyloid precursor protein (APP) via beta and gamma-secretases. The beta-secretase APP cleaving enzyme 1 (BACE1) has become a target of intense research aimed at blocking the enzyme activity. Recent studies showed that BACE1 is involved in processing other non-APP substrates, and that other proteases are involved in APP processing. We have recently established a novel approach to inhibit Abeta production via antibodies against the beta-secretase cleavage site of APP. These antibodies bind wild type and Swedish mutated APP expressed in transgenic mice brain tissues. The isolated antibodies do not bind any form of Abeta peptides. Antibody up-take experiments, using Chinese hamster ovary cells expressing wild-type APP, suggest that antibody internalization and trafficking are mediated via the endocytic pathway. Administration of antibodies to the cells growing media resulted in a considerable decrease in intracellular Abeta levels, as well as in the levels of the corresponding C-terminal fragment (C99). The relevance of intra-neuronal accumulation of mainly Abeta42 as an early event in AD pathogenesis suggests that this approach may be applicable as a novel therapeutic strategy in AD treatment.  相似文献   

5.
Aging of transgenic mice that overexpress the London mutant of amyloid precursor protein (APP/V717I) (Moechars et al., 1999a) was now demonstrated not to affect the normalized levels of alpha- or beta-cleaved secreted APP nor of the beta-C-terminal stubs. This indicated that aging did not markedly disturb either alpha- or beta-secretase cleavage of APP and failed to explain the origin of the massive amounts of amyloid peptides Abeta40 and Abeta42, soluble and precipitated as amyloid plaques in the brain of old APP/V717I transgenic mice. We tested the hypothesis that aging acted on presenilin1 (PS1) to affect gamma-secretase-mediated production of amyloid peptides by comparing aged APP/V717I transgenic mice to double transgenic mice coexpressing human PS1 and APP/V717I. In double transgenic mice with mutant (A246E) but not wild-type human PS1, brain amyloid peptide levels increased and resulted in amyloid plaques when the mice were only 6-9 months old, much earlier than in APP/V717I transgenic mice (12-15 months old). Mutant PS1 increased mainly brain Abeta42 levels, whereas in aged APP/V717I transgenic mice, both Abeta42 and Abeta40 increased. This resulted in a dramatic difference in the Abeta42/Abeta40 ratio of precipitated or plaque-associated amyloid peptides, i.e., 3.11+/-0.22 in double APP/V717I x PS1/A246E transgenic mice compared with 0.43 +/- 0.07 in aged APP/V717I transgenic mice, and demonstrated a clear difference between the effect of aging and the effect of the insertion of a mutant PS1 transgene. In conclusion, we demonstrate that aging did not favor amyloidogenic over nonamyloidogenic processing of APP, nor did it exert a mutant PS1-like effect on gamma-secretase. Therefore, the data are interpreted to suggest that parenchymal and vascular accumulation of amyloid in aging brain resulted from failure to clear the amyloid peptides rather than from increased production.  相似文献   

6.
CONTEXT: Amyloid plaques, a major pathological feature of Alzheimer disease (AD), are composed of an internal fragment of amyloid precursor protein (APP): the 4-kd amyloid-beta protein (Abeta). The metabolic processing of APP that results in Abeta formation requires 2 enzymatic cleavage events, a gamma-secretase cleavage dependent on presenilin, and a beta-secretase cleavage by the aspartyl protease beta-site APP-cleaving enzyme (BACE). OBJECTIVE: To test the hypothesis that BACE protein and activity are increased in regions of the brain that develop amyloid plaques in AD. METHODS: We developed an antibody capture system to measure BACE protein level and BACE-specific beta-secretase activity in frontal, temporal, and cerebellar brain homogenates from 61 brains with AD and 33 control brains. RESULTS: In the brains with AD, BACE activity and protein were significantly increased (P<.001). Enzymatic activity increased by 63% in the temporal neocortex (P =.007) and 13% in the frontal neocortex (P =.003) in brains with AD, but not in the cerebellar cortex. Activity in the temporal neocortex increased with the duration of AD (P =.008) but did not correlate with enzyme-linked immunosorbent assay measures of insoluble Abeta in brains with AD. Protein level was increased by 14% in the frontal cortex of brains with AD (P =.004), with a trend toward a 15% increase in BACE protein in the temporal cortex (P =.07) and no difference in the cerebellar cortex. Immunohistochemical analysis demonstrated that BACE immunoreactivity in the brain was predominantly neuronal and was found in tangle-bearing neurons in AD. CONCLUSIONS: The BACE protein and activity levels are increased in brain regions affected by amyloid deposition and remain increased despite significant neuronal and synaptic loss in AD.  相似文献   

7.
Buoyant membrane fractions containing presenilin 1 (PS1), an essential component of the gamma-secretase complex, and APP CTFbeta, a gamma-secretase substrate, can be isolated from cultured cells and brain by several different fractionation procedures that are compatible with in vitro gamma-secretase assays. Analysis of these gradients for amyloid beta protein (Abeta) and CTFgamma production indicated that gamma-secretase activity is predominantly localized in these buoyant membrane microdomains. Consistent with this localization, we find that gamma-secretase activity is cholesterol dependent. Depletion of membrane cholesterol completely inhibits gamma-secretase cleavage, which can be restored by cholesterol replacement. Thus, altering cholesterol levels may influence the development of Alzheimer's disease (AD) by influencing production and deposition of Abeta within cholesterol rich membrane microdomains.  相似文献   

8.
Recent epidemiological and clinical data suggest that elevated serum homocysteine levels may increase the risk of developing Alzheimer's disease (AD), but the underlying mechanisms are unknown. We tested the hypothesis that high serum homocysteine concentration may increase amyloid beta-peptide (Abeta) levels in the brain and could therefore accelerate AD neuropathology. For this purpose, we mated a hyperhomocysteinemic CBS(tm1Unc) mouse carrying a heterozygous dominant mutation in cystathionine-beta-synthase (CBS*) with the APP*/PS1* mouse model of brain amyloidosis. The APP*/PS1*/CBS* mice showed significant elevations of serum homocysteine levels compared to the double transgenic APP*/PS1* model of amyloidosis. Results showed that female (but not male) APP*/PS1*/CBS* mice exhibited significant elevations of Abeta40 and Abeta42 levels in the brain. Correlations between homocysteine levels in serum and brain Abeta levels were statistically significant. No increases in beta secretase activity or evidence of neuronal cell loss in the hyperhomocysteinemic mice were found. The causes of neuronal dysfunction and degeneration in AD are not fully understood, but increased production of Abeta seems to be of major importance. By unveiling a link between homocysteine and Abeta levels, these findings advance our understanding on the mechanisms involved in hyperhomocysteinemia as a risk factor for AD.  相似文献   

9.
Neuropeptides corticotropin releasing factor (CRF) and somatostatin (SRIF) are substantially decreased in cortical regions of Alzheimer's disease (AD) post-mortem brain tissue. The accumulation of amyloid-beta (Abeta) in AD brain has been postulated to be neurotoxic. Using male Tg2576 mice transgenic over-expressing amyloid-beta protein precursor (APP), we examined brain concentrations of CRF and SRIF at 12, 18 and 24 months. Mice were evaluated for locomotor activity and spatial memory. The APP mice had continued increased locomotor activity from 6 months of age compared to controls. Spatial memory was impaired beginning at 12 months in the APP mice relative to controls. APP mice at 24 months had a significantly higher number of amyloid plaques when compared to the 12 and 18 month time points. Brain concentrations of SRIF and CRF were significantly altered in a number of cortical and sub-cortical brain regions relative to controls, but in most regions were increased rather than decreased as in clinical AD. This data shows that although the insertion of the APP gene does cause age dependent increase in plaque load, it does not cause a change in regional neuropeptides consistent with AD, suggesting that neuropeptide changes in AD are not solely due to Abeta load.  相似文献   

10.
Transgenic mouse models of Alzheimer's disease (AD) are being utilized as models for elucidating AD etiology and potential therapeutic approaches. However, two major drawbacks of these models are: (1) transgenic animals often over-express amyloid beta (Abeta) to high levels compared to that seen in sporadic human AD and (2) the current intellectual property issues surrounding a number of these models make them difficult to utilize in a commercial setting. Our goal was to identify an appropriate non-transgenic mouse strain, devoid of these patent restrictions and test whether amyloid-modulating compounds will lower total brain and plasma Abeta. Plasma and brain samples were collected from eight commonly used mouse strains (C57BL/6, SJL, CF-1, DBA/2, CD-1, 129, FVB and B6D2F1; Charles River Labs) and total Abetalevels were validated and quantified with a rodent-specific monoclonal Abetaantibody. Plasma Abeta in SJL mice was the highest of the eight strains tested (213 pM +/- 21 pM), but was not significantly different than the seven other strains. Total brain Abeta in SJL mice was also the greatest of the mouse strains tested (356 pM +/- 73 pM). SJL, C57BL/6 and CF-1 mice had total brain Abeta levels that were significantly greater than Abeta levels in B6D2F1 mice (242 +/- 20 pM). In vivo efficacy of an Abeta lowering agent was observed in CF-1 mice upon oral administration of the gamma-secretase inhibitors, DAPT and LY-411575. The absolute levels of rodent brain Abeta detected and the efficacy of the gamma-secretase treatment were dependent upon the antibodies used, as well as the extraction methodology. The measurement of total brain Abeta lowering in a common mouse strain could help accelerate drug discovery programs for Alzheimer's disease without relying on costly transgenic animals that overexpress APP in a manner that may not be predictive of the effects of these compounds in human AD.  相似文献   

11.
Accumulation of the amyloid beta-peptide (Abeta) in the brain is believed to initiate a series of neurotoxic events that causes neurodegeneration in Alzheimer's disease (AD). Abeta is generated by processing of the beta-amyloid precursor protein (APP) through the successive action of two proteolytic enzymes, beta-secretase and gamma-secretase. While beta-secretase has been identified as the membrane-bound aspartyl protease BACE, the identity of gamma-secretase, which catalyzes the final, intramembrane cleavage of APP as well as of several other type I transmembrane proteins, has been enigmatic for a long time. Exciting progress has been made in the past year towards its uncovering. Genetics paved the way for subsequent biochemical reconstitution studies that demonstrated that gamma-secretase is a protein complex composed of presenilin (PS), nicastrin (NCT), APH-1 and PEN-2. Thus, the complete set of genes that is required to generate Abeta from its precursor has now ultimately been identified. PS carries the active site of gamma-secretase and is a founding member of a novel class of polytopic aspartyl proteases that utilize a non-classical active site to cleave their membrane-tethered substrates. The other components are required for assembly, stabilization and maturation of the complex and NCT may be involved in the recognition of gamma-secretase substrates.  相似文献   

12.
The accumulation and deposition of fibrillar Abeta is thought the primary cause of Alzheimer's disease (AD). Abeta is generated by sequential proteolytic processing involving beta- and gamma-secretase on Amyloid beta protein precursor (APP). Recently, gamma-secretase was shown to cleave near the cytoplasmic membrane boundary of APP, called epsilon-site cleavage, as well as in the middle of the membrane domain, called gamma-site cleavage. Recent findings indicate that gamma- and epsilon-site cleavage are regulated independently. In this review, the reduction of epsilon-site cleavage in AD and the importance of epsilon-site cleavage are discussed.  相似文献   

13.
Data that have accumulated for well over a decade have implicated the beta-amyloid (Abeta) peptide as a central player in the pathogenesis of Alzheimer's disease (AD). Amyloid plaques, composed primarily of Abeta progressively form in the brains of AD patients, and mutations in three genes (amyloid precursor protein [APP] and presenilin 1 and 2 [PS1 and PS2]) cause early-onset familial AD (FAD) by directly increasing production of the toxic, plaque-promoting Abeta42 peptide. Given the strong association between Abeta and AD, it is likely that therapeutic strategies to lower the levels of Abeta in the brain should prove beneficial for the treatment of AD. One such strategy could involve inhibiting the enzymes that generate Abeta. Abeta is a product of catabolism of the large type-I membrane protein APP. Two proteases, called beta- and gamma-secretase, endoproteolyze APP to liberate the Abeta peptide. Recently, the molecules responsible for these proteolytic activities have been identified. Several lines of evidence suggest that the PS1 and PS2 proteins are gamma-secretase, and the identity of beta-secretase has been shown to be the novel transmembrane aspartic protease, beta-site APP-cleaving enzyme 1 (BACE1; also called Asp2 and memapsin 2). BACE2, a protease homologous to BACE1, was also identified, and together the two enzymes define a new family of transmembrane aspartic proteases. BACE1 exhibits all the functional properties of beta-secretase, and as the key enzyme that initiates the formation of Abeta, BACE1 is an attractive drug target for AD. This review discusses the identification and initial characterization of BACE1 and BACE2, and summarizes recent studies of BACE1 knockout mice that have validated BACE1 as the authentic beta-secretase in vivo.  相似文献   

14.
gamma-Secretase is a protease complex, which catalyzes the final of two subsequent cleavages of the beta-amyloid precursor protein (APP) to release the amyloid-beta peptide (Abeta) implicated in Alzheimer's disease (AD) pathogenesis. In human cells, six gamma-secretase complexes exist, which are composed of either presenilin (PS) 1 or 2, the catalytic subunit, nicastrin, PEN-2, and either APH-1a (as S or L splice variants) or its homolog APH-1b. It is not known whether and how different APH-1 species contribute to the pathogenic activity of gamma-secretase complexes with familial AD (FAD)-associated mutant PS. Here we show that all known gamma-secretase complexes are active in APP processing and that all combinations of APH-1 variants with either FAD mutant PS1 or PS2 support pathogenic Abeta(42) production. Since our data suggest that pathogenic gamma-secretase activity cannot be attributed to a discrete gamma-secretase complex, we propose that all gamma-secretase complexes have to be explored and evaluated for their potential as AD drug target.  相似文献   

15.
Alzheimer's dementia (AD) is a chronically progressive neurodegenerative disease. The key protein in the pathophysiology of AD is the amyloid precursor protein (APP) which releases the amyloid-beta peptide (Abeta) by proteolytic cleavage. APP is probably involved in the homeostasis of cellular copper (Cu) metabolism, because significantly changed Cu levels in the brain were found in AD patients as well as in mouse models. In vivo studies with transgenic mice showed that oral Cu supplements can restore lowered Cu levels in the brain to normal, can reduce Abeta production, and can reduce mortality of the animals. Currently, the influence of oral Cu supplementation (in addition to an established acetylcholinesterase inhibitor) on the progression of the disease is being studied in a prospective, double-blind, randomized and placebo-controlled longitudinal clinical trial in patients with mild AD.  相似文献   

16.
The amyloid precursor protein (APP) in brain is processed either by an amyloidogenic pathway by beta-secretase and gamma-secretase to yield Abeta (beta-amyloid 4 kDa) peptide or by alpha-secretase within the beta-amyloid domain to yield non-amyloidogenic products. We have studied blood platelet levels of a 22-kDa fragment containing the Abeta (beta-amyloid 4 kDa) peptide, beta-secretase (BACE1), alpha-secretase (ADAM10), and APP isoform ratios of the 120-130 kDa to 110 kDa peptides from 31 Alzheimer's disease (AD) patients and 10 age-matched healthy control subjects. We found increased levels of Abeta4, increased activation of beta-secretase (BACE1), decreased activation of alpha-secretase (ADAM10) and decreased APP ratios in AD patients compared to normal control subjects. These observations indicate that the blood platelet APP is processed by the same amyloidogenic and non-amyloidogenic pathways as utilized in brain and that APP processing in AD patients is altered compared to control subjects and may be a useful bio-marker for the diagnosis of AD, the progression of disease and for monitoring drug responses in clinical trials.  相似文献   

17.
Brain trauma has been shown to be a risk factor for developing Alzheimer disease (AD), and AD-like plaques containing amyloid-beta (Abeta) peptides have been found in the brain shortly following trauma. Here, we evaluated the effects of brain trauma on the accumulation of Abeta and expression of amyloid precursor protein (APP) genes (APP695 and APP751/ 770) over 1 yr in a non-transgenic rodent model. Anesthetized male Sprague-Dawley rats were subjected to parasagittal fluid percussion brain injury of moderate severity (2.5-2.9 atm) or sham treatment and their brains were evaluated at 2, 4, 7, 14 days, and 1, 2, 6, 12 months following injury. Immunohistochemical analysis detected only weak Abeta staining by 2 wk following injury. However, by 1 month to 1 yr following injury, strong immunoreactivity for Abeta was found in damaged axons throughout the thalamus and white matter. Western blot analysis confirmed the accumulation of Abeta peptides in tissue from injured brains. Although in situ hybridization demonstrated an increased gene expression of APP751/770 surrounding the cortical lesion at 2 to 7 days following injury, this expression returned to baseline levels at all subsequent time points and no increase in the expression of APP695 was detected at any time point. These results demonstrate that long-termAbeta accumulation in damaged axons can be induced in a non-transgenic rodent model of brain trauma. Surprisingly, the extent of this Abeta production appeared to be dependent on the maturity of the injury, but uncoupled from the gene expression of APP. Together, these data suggest a mechanism that may contribute to long-term neurodegeneration following brain trauma.  相似文献   

18.
The assessment of protein or amino acid variations across evolution allows one to glean divergent features of disease-specific pathology. Within the Alzheimer's disease (AD) literature, extensive differences in Abeta processing across cell lines and evolution have clearly been observed. In the recent past, increased levels of amyloid beta Abeta1-42 have been heralded to be what distinguishes whether one is prone to the development of AD [59]. However, observations in naturally occurring, non-transgenic animals which display a great deal of parenchymal Abeta1-42 (Abeta found within extracellular plaque deposits) and a complete lack ofbeta1-40 within these same Abeta1-42 plaques raise the issue of whether Abetax-42 (Abeta that is truncated or modified at the N- terminus), rather than Abeta1-42, is instead the critical mediator of Abeta production and pathogenesis [47,49]. Distinct ratios of Abeta N-terminal variants (i.e. Abeta1-x, Abeta3-x, Abeta11-x, beta17-x) have been assessed in human amyloid plaques [18,21,40,41,42,47,48,49,52]. Moreover, ratios of specific Abeta N-terminal variants separate naturally occurring, non-transgenic animals which develop abundant levels of Abetax-42 and not Abetax-40 from human AD participants who harbor plaques that contain both the Abetax-42 and Abetax-40 variants [49]. Next, Teller and colleagues have demonstrated the presence of N-terminal truncated soluble 3kD (likely Abeta17-x) and 3.7kD peptides (in addition to 4kD Abeta) well before the appearance of amyloid plaques in Down Syndrome brain [51], indicating an early contribution of thebeta N-terminus to the formation of amyloid pathology. Additional critical facts concerning the major contribution of the Abeta N-terminus in AD pathogenesis include observations which support thatbeta generated by rodent neurons is predominantly truncated at Abeta11-x [13], the major form of APP C-terminal fragments in mice lacking functional PS1 is AbetaPP11-98 [9], beta11-x expression is increased as a function of BACE expression [55], and an interrelationship between presenilin-1 mutations and increased levels of N-terminally truncatedbeta [40]. This commentary highlights current understanding and potential biochemical, pathological, and cell biological contributions of Abeta N-terminal variants implicated during the course of AD pathogenesis. Although the amyloid beta protein precursor (AbetaPP) gene and Abeta are highly conserved across mammalian species, there are species-specific differences. For instance, the primate, guinea pig, canine, and polar bear share an identical Abeta sequence to that observed in human brain while the rat displays a distinct amino acid sequence with substitutions at residues 5 (Arg), 10 (Tyr), and 13 (His) [24,37]. All of these mammals generate Abeta1-42 via cleavage by at least two enzymes, beta (beta-) secretase and gamma (gamma-) secretase (Fig. 1). The enzyme that liberates the N- terminus of the Abeta peptide ('beta-secretase') is also termed BACE (beta-site AbetaPP cleaving enzyme) [55]. Cathepsin D, which accumulates within AD neurons [15], also cleaves at the N-terminal side of the first aspartate residue of amyloid beta [2].beta-secretase activity is necessary in order to initiate 4kD beta1-x formation by cleaving AbetaPP at the N-terminus and results in the release of a soluble 100kD AbetaPP N- terminal fragment and a 12kD membrane bound C-terminal fragment (C99/C100) [55]. The carboxyl-terminus of the Abetapeptide is liberated through cleavage by the enzyme termed gamma-secretase. In the past, potential AD therapeutic strategies have mainly been geared towards gamma-secretase inhibition. However, such strategies alone no longer appear sound as it is clear that the AbetaPP C99/C100 fragment itself, which requires beta-, but not gamma-, secretase cleavage for generation and includes the entire Abeta peptide, is neurotoxic when evaluated in cultured cells [12,30,34]. Thus, gamma-secretase inhibition alone would not preclude the generation of the neurotoxic C99/C100 fragment.  相似文献   

19.
Alzheimer's disease (AD) is defined by deposits of the 42-residue amyloid-beta peptide (Abeta42) in the brain. Abeta42 is a minor metabolite of the amyloid precursor protein (APP), but its relative levels are increased by mutations on APP and presenilins 1 and 2 linked to familial AD. beta-secretase (BACE-1), an aspartyl protease, cleaves approx 10% of the APP in neuronal cells on the N-terminal side of Abeta to produce the C-terminal fragment (CTFbeta), which is cleaved by gamma-secretase to produce mostly Abeta of 40 residues (90%) and approx10% Abeta42. A third enzyme, alpha-secretase, cleaves APP after Abeta16 to secrete sAPPalpha and CTFalpha, the major metabolites of APP. Moreover, previous studies have demonstrated that phorbol esters stimulate processing of APP by alpha-secretase. Because alpha-secretase and BACE-1 cleave APP within the secretory pathway, it is likely that the two enzymes compete for the APP substrate. This type of competition can explain the failure to saturate the minor BACE-1 pathway by overexpressing APP in the cell. In this study, we demonstrate that inhibition of constitutive alpha-secretase processing in a human neuroblastoma cell line does not increase the yield of Abeta, suggesting that the APP substrate targeted for alpha-secretase processing is not diverted to the BACE-1 pathway. However, when phorbol ester-induced alpha-secretase was similarly inhibited, we detected an increase in BACE-1 processing and AB yield. We explain these results compartmentalization of BACE-1 and alpha-secretase with processing depending on sorting of APP to the two compartments. The simplest explanation for the detection of competition between the two pathways upon phorbol ester stimulation is the partial failure of this compartmentalization by phorbol ester-induced release of secretory vesicles.  相似文献   

20.
The central component of senile amyloid plaques in Alzheimer's disease (AD) is the beta-amyloid peptide (Abeta), derived from proteolytic processing of the amyloid precursor protein (APP). In this study, we developed an in vitro model to measure and identify soluble Abeta from primary cortical neurons. Neurons were isolated from mice transgenic for human APP695 containing the K670N, M671L double mutation. We characterized soluble Abeta using Western blot and ELISA assays. We found that the Abeta levels in conditioned media from these neurons were readily detectable and almost five times higher than in CSF. The majority of Abeta in the media was Abeta1-40; however, Abeta1-42 was also detectable. When the neurons were exposed to Phorbol 12-myristate 13-acetate (PMA), alpha1-antichymotrypsin, or alpha1-antitrypsin, the alterations of soluble Abeta levels were consistent with other models reported. Most importantly, the soluble Abeta in our model was remarkably stable, and aliquots were unchanged after prolonged incubations or repeated freeze/thaw cycles. The Abeta appeared to be monomeric by Western blot analysis. Soluble Abeta coimmunoprecipitated with endogenous mouse apolipoprotein E from the primary cultures. Taken together, our data demonstrated that using a Western blot assay to detect soluble Abeta from transgenic mouse overexpressing APP695 is sensitive, specific, and reliable and provides an accessible model for examining the neuronal metabolism of APP and Abeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号