首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Large subcutaneous abdominal adipocyte size (s.c. abd. AS) is associated with insulin resistance and predicts type 2 diabetes in Pima Indians. Because type 2 diabetes is familial, we aimed to determine whether mean s.c. abd. AS is also familial and if so, to identify chromosomal regions linked to this measure. Body composition (hydrodensitometry) and mean s.c. abd. AS (fat biopsy) were measured in 295 Pima Indians (179 with normal, 80 with impaired, and 36 with diabetic glucose tolerance) representing 164 nuclear families. Mean s.c. abd. AS, adjusted for age, sex, and percentage body fat was a familial trait (heritability h(2) = 0.48, P < 0.0001). A genome-wide autosomal scan revealed suggestive evidence for linkage (LOD 1.73) of adjusted mean s.c. abd. AS to chromosome 1q21--q23, a region containing LMNA, the gene encoding for the nuclear envelope proteins lamin A/C. Rare mutations in LMNA were recently shown to underlie familial partial lipodystrophy (FPLD), a syndrome characterized by regional loss of adipose tissue, insulin resistance, and glucose intolerance. A common (allelic frequency 0.43) single nucleotide polymorphism (silent 1908C --> T substitution) in exon 10 of LMNA (GenBank X03444) was associated with reduced age-, sex- and percentage body fat-adjusted mean s.c. abd. AS [0.80 +/- 0.17 (CC), 0.76 +/- 0.15 (CT), 0.73 +/- 0.16 (TT) microg lipid/cell, P < 0.05 for CC vs TT]. These findings indicate that approximately half of the variance in mean s.c. abd. AS can be attributed to familial factors and that genetic variation in LMNA might not only underlie rare cases of FPLD, but may also contribute to variation in adipocyte size in the general population.  相似文献   

3.
Dunnigan-type familial partial lipodystrophy (FPLD; OMIM 151660) is a rare monogenic form of insulin resistance characterized by loss of subcutaneous fat from the extremities, trunk, and gluteal region. FPLD recapitulates the main metabolic attributes of the insulin resistance syndrome, including central obesity, hyperinsulinemia, glucose intolerance and diabetes, dyslipidemia, and hypertension. Through the use of focused DNA sequencing of positional candidate genes on chromosome 1q21, we discovered that FPLD results from mutations in LMNA (R482Q; OMIM 150330.0010), which is the gene that encodes nuclear lamins A and C. By stratifying members of extended FPLD pedigrees according to LMNA genotype, we found that hyperinsulinemia is present early in the course of the disease and that dyslipidemia (characterized by high triglycerides and depressed HDL cholesterol) precedes the development of glucose abnormalities. Plasma leptin is also markedly reduced in subjects with FPLD due to mutant LMNA. The findings in FPLD indicate that defective structure of the nuclear envelope produces a phenotype of insulin resistance. The findings may have relevance for common insulin resistance and for drug-associated lipodystrophies, whose molecular basis is unknown at present.  相似文献   

4.
Most pathogenic missense mutations in the lamin A/C gene identified so far cause autosomal-dominant dilated cardiomyopathy and/or Emery-Dreifuss muscular dystrophy. A few specific mutations, however, cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. We have prepared lamin A with a known FPLD mutation (R482Q) by in vitro mutagenesis. Nuclear targeting of lamin A in transfected COS cells, human skeletal muscle cells or mouse adipocyte cell cultures (pre- and post-differentiation) was not detectably affected by the mutation. Quantitative in vitro measurements of lamin A interaction with emerin using a biosensor also showed no effect of the mutation. The results show that the loss of function of R482 in lamin A/C in FPLD does not involve loss of ability to form a nuclear lamina or to interact with the nuclear membrane protein, emerin.  相似文献   

5.
Mutations in the LMNA gene, which encodes nuclear lamins A and C, underlie both Emery-Dreifuss muscular dystrophy (EMD2) and Dunnigan-type familial partial lipodystrophy (FPLD). This indicates that one gene can cause different phenotypes characterized by tissue degeneration. The gene for one form of Berardinelli-Seip-type congenital total lipodystrophy (BSCL) has been mapped to chromosome 9q34. Based on the observation that one gene caused both FPLD and EMD2, we considered that a known gene for muscular dystrophy at or near the BSCL locus on chromosome 9q would be an appropriate candidate for BSCL. The gene encoding fukutin, which is mutated in Fukuyama congenital muscular dystrophy has been mapped to 9q31. We thus developed amplification primers for the coding regions of the fukutin gene. We found no putative disease mutations, but through screening of diseased and normal subjects, we identified three novel single nucleotide polymorphisms (SNPs). We conclude that mutations in fukutin are not present in subjects with BSCL. However, the identification of SNPs provides tools to investigate this protein for association with other phenotypes. Received: April 9, 2001 / Accepted: May 1, 2001  相似文献   

6.
Mutations in the LMNA gene encoding A-type lamins cause several diseases, including Emery-Dreifuss muscular dystrophy and Dunnigan-type familial partial lipodystrophy (FPLD). We analyzed differentiation of 3T3-L1 preadipocytes to adipocytes in cells overexpressing wild-type lamin A as well as lamin A with amino acid substitutions at position 482 that cause FPLD. We also examined adipogenic conversion of mouse embryonic fibroblasts lacking A-type lamins. Overexpression of both wild-type and mutant lamin A inhibited lipid accumulation, triglyceride synthesis and expression of adipogenic markers. This was associated with inhibition of expression of peroxisome-proliferator-activated receptor gamma 2 (PPARgamma2) and Glut4. In contrast, embryonic fibroblasts lacking A-type lamins accumulated more intracellular lipid and exhibited elevated de novo triglyceride synthesis compared with wild-type fibroblasts. They also had increased basal phosphorylation of AKT1, a mediator of insulin signaling. We conclude that A-type lamins act as inhibitors of adipocyte differentiation, possibly by affecting PPARgamma2 and insulin signaling.  相似文献   

7.
8.
Mutations in the LMNA gene encoding lamins A/C are responsible for Hutchinson-Gilford syndrome (HGS), a disorder of premature aging. Cataract is 1 of the main manifestations. The most prevalent mutation in Hutchinson-Gilford syndrome is C1824T, which activates a cryptic splice donor site to produce an abnormal lamin A protein. The purpose of this study was to investigate a possible association of the C1824T mutation with age-related cataract. Anterior lens capsule material was collected during cataract extraction surgery from 178 patients with senile cataract during 2007-2008. DNA and mRNA were extracted and sequenced for the LMNA gene. DNA and cDNA were screened for the C1824T mutation, which was not detected. Messenger RNA (mRNA) expression was normal, with no truncation. We found that human age-related nuclear cataract is not associated with LMNA gene mutations or truncation of lamin A.  相似文献   

9.
10.
目的 提高对常染色体显性遗传Emery-Dreifuss 肌营养不良症(EDMD)的临床和分子生物学特点的认识.方法 总结1例EDMD患儿的临床表现、诊断、肌肉活检病理学和基因检测结果,并综合文献进行分析.结果 女性,12岁,表现为进行性四肢无力,近端为著,脊柱僵硬,伴明显的双侧跟腱、肘挛缩.血浆肌酶轻度升高.肌电图提示肌源性改变,运动和感觉神经传导速度正常.股四头肌活检病理学检查显示肌肉细胞大小不均,萎缩和肥大的纤维交替存在,部分肌纤维代偿性肥大,脂肪及结缔组织增生明显,符合肌营养不良的病理表现.基因检测发现LMNA基因外显子4的序列变异c.746G〉A(p.Arg249Gln).结论 基因分析是确诊EDMD的最可靠方法.对进行性的、双侧对称的肌肉无力,并伴有肘关节、跟腱挛缩和脊柱僵硬的患儿应进行LMNA基因分析,有助于早期诊断EDMD.  相似文献   

11.
12.
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by slowly progressive muscle wasting and weakness; early contractures of the elbows, Achilles tendons, and spine; and cardiomyopathy associated with cardiac conduction defects. Clinically indistinguishable X-linked and autosomal forms of EDMD have been described. Mutations in the STA gene, encoding the nuclear envelope protein emerin, are responsible for X-linked EDMD, while mutations in the LMNA gene encoding lamins A and C by alternative splicing have been found in patients with autosomal dominant, autosomal recessive, and sporadic forms of EDMD. We report mutations in LMNA found in four familial and seven sporadic cases of EDMD, including seven novel mutations. Nine missense mutations and two small in-frame deletions were detected distributed throughout the gene. Most mutations (7/11) were detected within the LMNA exons encoding the central rod domain common to both lamins A/C. All of these missense mutations alter residues in the lamin A/C proteins conserved throughout evolution, implying an essential structural and/or functional role of these residues. One severely affected patient possesed two mutations, one specific to lamin A that may modify the phenotype of this patient. Mutations in LMNA were frequently identified among patients with sporadic and familial forms of EDMD. Further studies are needed to identify the factors modifying disease phenotype among patients harboring mutations within lamin A/C and to determine the effect of various mutations on lamin A/C structure and function.  相似文献   

13.
Factor for adipocyte differentiation 24 (fad24) is a novel gene that has been implicated in adipocyte differentiation and DNA replication. In a screen for zebrafish mutants that have an abnormal tissue distribution of neutrophils, we identified an insertional allele of fad24, fad24hi1019. Homozygous fad24hi1019 larvae exhibit muscle degeneration accompanied by leukocyte infiltration. Muscle degeneration was extensive and included tissue apoptosis and disorganized, poorly striated muscle fibers. Blocking apoptosis using pan‐caspase inhibitors resulted in decreased neutrophil recruitment into the body of the larva, suggesting a causative link between apoptosis and leukocyte infiltration. These findings suggest that zebrafish is a powerful genetic model system to address the interplay between muscle degeneration and leukocyte infiltration, and indicate that tissue apoptosis may contribute to neutrophil recruitment in some inflammatory states. Developmental Dynamics 238:86–99, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Mutations in LMNA, the gene that encodes A-type lamins, cause multiple diseases including dystrophies of the skeletal muscle and fat, dilated cardiomyopathy, and progeria-like syndromes (collectively termed laminopathies). Reduced A-type lamin function, however, is most commonly associated with skeletal muscle dystrophy and dilated cardiomyopathy rather than lipodystrophy or progeria. The mechanisms underlying these diseases are only beginning to be unraveled. We report that mice deficient in Lmna, which corresponds to the human gene LMNA, have enhanced mTORC1 (mammalian target of rapamycin complex 1) signaling specifically in tissues linked to pathology, namely, cardiac and skeletal muscle. Pharmacologic reversal of elevated mTORC1 signaling by rapamycin improves cardiac and skeletal muscle function and enhances survival in mice lacking A-type lamins. At the cellular level, rapamycin decreases the number of myocytes with abnormal desmin accumulation and decreases the amount of desmin in both muscle and cardiac tissue of Lmna(-/-) mice. In addition, inhibition of mTORC1 signaling with rapamycin improves defective autophagic-mediated degradation in Lmna(-/-) mice. Together, these findings point to aberrant mTORC1 signaling as a mechanistic component of laminopathies associated with reduced A-type lamin function and offer a potential therapeutic approach, namely, the use of rapamycin-related mTORC1 inhibitors.  相似文献   

15.
Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by selective death of motor neurons leading to spasticity, muscle wasting and paralysis. Human VAMP-associated protein B (hVAPB) is the causative gene of a clinically diverse group of MNDs including amyotrophic lateral sclerosis (ALS), atypical ALS and late-onset spinal muscular atrophy. The pathogenic mutation is inherited in a dominant manner. Drosophila VAMP-associated protein of 33 kDa A (DVAP-33A) is the structural homologue of hVAPB and regulates synaptic remodeling by affecting the size and number of boutons at neuromuscular junctions. Associated with these structural alterations are compensatory changes in the physiology and ultrastructure of synapses, which maintain evoked responses within normal boundaries. DVAP-33A and hVAPB are functionally interchangeable and transgenic expression of mutant DVAP-33A in neurons recapitulates major hallmarks of the human diseases including locomotion defects, neuronal death and aggregate formation. Aggregate accumulation is accompanied by a depletion of the endogenous protein from its normal localization. These findings pinpoint to a possible role of hVAPB in synaptic homeostasis and emphasize the relevance of our fly model in elucidating the patho-physiology underlying motor neuron degeneration in humans.  相似文献   

16.
Autosomal dominant Emery-Dreifuss muscular dystrophy is caused by mutations in the LMNA gene that code for the nuclear membrane protein lamin A/C. We investigated skeletal muscle fibers from several muscles for cytoplasmic degenerative changes in three patients with genetically confirmed Emery-Dreifuss muscular dystrophy. Methods included quantitative light and electron microscopy and PCR-based mutational analysis. Results: The degenerative pathway was characterized by the gradual replacement of individual myofibers by connective tissue. Early stages of degeneration typically involved only a segment of the cross-sectional area of a myofiber. Intermediate stages consisted of myofiber shrinkage due to "shedding" of peripheral cytoplasmic portions into the endomysial space, and fragmentation of the myofibers by interposed collagen fibrils. Empty basement membrane sheaths surrounded by abundant deposits of extracellular matrix marked the end stage of the degenerative process. The nuclear number-to-cytoplasmic area in myofibers of one patient increased with increasing cross-sectional area, suggesting that satellite cell fusion with myofibers may have compensated for myofiber shrinkage. The pattern of degeneration described herein differs from muscular dystrophies with plasma membrane defects (dystrophinopathy, dysferlinopathy) and explains the frequently found absence of highly elevated serum creatine kinase levels in autosomal dominant Emery-Dreifuss muscular dystrophy.  相似文献   

17.
Mandibuloacral dysplasia type A (MADA; OMIM 248370), a rare disorder caused by mutation in the LMNA gene, is characterized by post-natal growth retardation, craniofacial and skeletal anomalies (mandibular and clavicular hypoplasia, acroosteolysis, delayed closure of cranial sutures, low bone mass and joint contractures), cutaneous changes and partial lipodystrophy. Little is known about the molecular mechanisms by which LMNA mutations produce bone alterations. An altered bone extracellular matrix (ECM) remodelling could play a pivotal role in this disorder and influence part of the typical bone phenotype observed in patients. Therefore, we have focused our investigation on matrix metalloproteinases (MMPs), which are degradative enzymes involved in ECM degradation and ECM remodelling, thus likely contributing to the altered bone mineral density and bone metabolism values seen in five MADA patients. We evaluated the serum levels of several MMPs involved in bone development, remodelling and homeostasis, such as MMP-9, -2, -3, -8 and -13, and found that only the 82 kDa active enzyme forms of MMP-9 are significantly higher in MADA sera compared with healthy controls (n = 16). The serum level of MMP-3 was instead lower in all patients. No significant differences were observed between controls and MADA patients for the serum levels of MMP-2, -8 and -13 and of tissue inhibitor of metalloproteinase 2, a natural inhibitor of MMP-9. Similarly, normal serum levels of tumour necrosis factor alpha (TNF-alpha), interleukin (IL)-6 and IL-1beta were detected. These data suggest a possible involvement of MMP-9 in MADA disease, underlying the potential use in diagnosis and therapy.  相似文献   

18.
Laminopathies comprise a group of inherited diseases with variable clinical phenotypes, caused by mutations in the lamin A/C gene (LMNA). A prominent feature in several of these diseases is muscle wasting, as seen in Emery-Dreifuss muscle dystrophy, dilated cardiomyopathy and limb-girdle muscular dystrophy. Although the mechanisms underlying this phenotype remain largely obscure, two major working hypotheses are currently being investigated, namely, defects in gene regulation and/or abnormalities in nuclear architecture causing cellular fragility. In this study, using a newly developed cell compression device we have tested the latter hypothesis. The device allows controlled application of mechanical load onto single living cells, with simultaneous visualization of cellular deformation and quantitation of resistance. With the device, we have compared wild-type (MEF+/+) and LMNA knockout (MEF-/-) mouse embryonic fibroblasts (MEFs), and found that MEF-/- cells show a significantly decreased mechanical stiffness and a significantly lower bursting force. Partial rescue of the phenotype by transfection with either lamin A or lamin C prevented gross nuclear disruption, as seen in MEF-/- cells, but was unable to fully restore mechanical stiffness in these cells. Our studies show a direct correlation between absence of LMNA proteins and nuclear fragility in living cells. Simultaneous recordings by confocal microscopy revealed that the nuclei in MEF-/- cells, in contrast to MEF+/+ cells, exhibited an isotropic deformation upon indentation, despite an anisotropic deformation of the cell as a whole. This nuclear behaviour is indicative for a loss of interaction of the disturbed nucleus with the surrounding cytoskeleton. In addition, careful investigation of the three-dimensional organization of actin-, vimentin- and tubulin-based filaments showed a disturbed interaction of these structures in MEF-/- cells. Therefore, we suggest that in addition to the loss of nuclear stiffness, the loss of a physical interaction between nuclear structures (i.e. lamins) and the cytoskeleton is causing more general cellular weakness and emphasizes a potential key function for lamins in maintaining cellular tensegrity.  相似文献   

19.
A mutation in the EFEMP1 gene causes Malattia Leventinese, an inherited macular degenerative disease with strong similarities to age-related macular degeneration. EFEMP1 encodes fibulin-3, an extracellular matrix protein of unknown function. To investigate its biological role, the murine Efemp1 gene was inactivated through targeted disruption. Efemp1(-/-) mice exhibited reduced reproductivity, and displayed an early onset of aging-associated phenotypes including reduced lifespan, decreased body mass, lordokyphosis, reduced hair growth, and generalized fat, muscle and organ atrophy. However, these mice appeared to have normal wound healing ability. Efemp1(-/-) mice on a C57BL/6 genetic background developed multiple large hernias including inguinal hernias, pelvic prolapse and protrusions of the xiphoid process. In contrast, Efemp1(-/-) mice on a BALB/c background rarely had any forms of hernias, indicating the presence of modifiers for fibulin-3's function in different mouse strains. Histological analysis revealed a marked reduction of elastic fibers in fascia, a thin layer of connective tissue maintaining and protecting structures throughout the body. No apparent macular degeneration associated defects were found in Efemp1(-/-) mice, suggesting that loss of fibulin-3 function is not the mechanism by which the mutation in EFEMP1 causes macular degeneration. These data demonstrate that fibulin-3 plays an important role in maintaining the integrity of fascia connective tissues and regulates aging.  相似文献   

20.
We have studied a patient with Hutchinson-Gilford progeria (HGP). Sequence analysis of the LMNA gene demonstrated the presence of a c.1824 C > T (p.G608G) mutation, activating a cryptic splice donor site and leading to the formation of a truncated Lamin A protein. All molecularly characterized autosomal dominant HGP cases described so far result from de novo LMNA mutations, mostly originating on the paternal allele and are often linked with advanced paternal age. However, in our patient, the mutation was transmitted by the mother who showed somatic and germline mosaicism without HGP manifestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号