首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Dose [-concentration]-effect relationships can be obtained by fitting a predictive pharmacokinetic (PK)-pharmacodynamic (PD) model to both concentration and effect observations. Either a model can befit simultaneously to all the data ("simultaneous" method), or first a model can befit to the PK data and then a model can be fit to the PD data, conditioning in some way on the PK data or on the estimates of the PK parameters ("sequential" method). Using simulated data, we compare the performance of the simultaneous method with that of three sequential method variants with respect to computation time, estimation precision, and inference. Using NONMEM, under various study designs, observations of one type of PK and one type of PD response from different numbers of individuals were simulated according to a one-compartment PK model and direct Emax PD model, with parameters drawn from an appropriate population distribution. The same PK and PD models were fit to these observations using simultaneous and sequential methods. Performance measures include computation time,fraction of cases for which estimates are successfully obtained, precision of PD parameter estimates, precision of PD parameter standard error estimates, and type-I error rates of a likelihood ratio test. With the sequential method, computation time is less, and estimates are more likely to be obtained. Using the First Order Conditional Estimation (FOCE) method, a sequential approach that conditions on both population PK parameter estimates and PK data, estimates PD parameters and their standard errors about as well as the "gold standard" simultaneous method, and saves about 40% computation time. Type-I error rates of likelihood ratio test for both simultaneous and sequential approaches are close to the nominal rates.  相似文献   

2.
The purpose of this study was to address the question of whether the use of nonlinear mixed-effect models has an impact on the detection and characterization of nonlinear processes (pharmacokinetic and pharmacodynamic) in rich data obtained from a few subjects. Simulations were used to assess the difference between applying population analysis, ie, nonlinear mixed-effects models as implemented in NONMEM, and the standard 2-stage (STS) method as the data analysis method for detection and characterization of nonlinearities. Three situations were considered, 2 pharmacokinetic and 1 pharmacodynamic. Both the first-order (FO) and FO conditional estimation (FOCE) algorithms were used for the population analyses. Within each situation, rich data were simulated for 8 subjects at multiple dose levels. The true nonlinear model and a simpler linear model were fit to each data set using each of the STS, FO, and FOCE methods. Criteria were prespecified to determine when each data analysis method detected the true nonlinear model. For all 3 simulated situations, the application of population analysis with the FOCE algorithm enabled the detection and characterization of the true nonlinear models in at least a 4-fold lower dose level than the STS approach. For both of the pharmacokinetic settings, population analysis with the FO algorithm performed much more poorly than the STS approach. The superior detection and characterization of nonlinearities provided by population analysis with the FOCE algorithm should allow drug developers to better predict and define how a drug should be used in clinical practice in such situations.  相似文献   

3.
A few approaches for handling baseline responses are available for use in pharmacokinetic (PK)-pharmacodynamic (PD) analysis. They include: (method 1-B1) estimation of the typical value and interindividual variability (IIV) of baseline in the population, (B2) inclusion of the observed baseline response as a covariate acknowledging the residual variability, (B3) a more general version of B2 as it also takes the IIV of the baseline in the population into account, and (B4) normalization of all observations by the baseline value. The aim of this study was to investigate the relative performance of B1-B4. PD responses over a single dosing interval were simulated from an indirect response model in which a drug acts through stimulation or inhibition of the response according to an Emax model. The performance of B1-B4 was investigated under 22 designs, each containing 100 datasets. NONMEM VI beta was used to estimate model parameters with the FO and the FOCE method. The mean error (ME, %) and root mean squared error (RMSE, %) of the population parameter estimates were computed and used as an indicator of bias and imprecision. Absolute ME (|ME|) and RMSE from all methods were ranked within the same design, the lower the rank value the better method performance. Average rank of each method from all designs was reported. The results showed that with B1 and FOCE, the average of |ME| and RMSE across all typical individual parameters and all conditions was 5.9 and 31.8%. The average rank of |ME| for B1, B2, B3, and B4 was 3.7, 3.8, 3.3, and 5.2 for the FOCE method, and 4.6, 4.3, 4.7, and 6.4 for the FO method. The smallest imprecision was noted with the use of B1 (rank of 3.1 for FO, and 2.9 for FOCE) and increased, in order, with B3 (3.9-FO and 3.6-FOCE), B2 (4.8-FO; 4.7-FOCE), and B4 (6.4-FO; 6.5-FOCE). We conclude that when considering both bias and imprecision B1 was slightly better than B3 which in turn was better than B2. Differences between these methods were small. B4 was clearly inferior. The FOCE method led to a smaller bias, but no marked reduction in imprecision of parameter estimates compared to the FO method.  相似文献   

4.
Optimal experimental design can be used for optimizing new pharmacokinetic (PK)–pharmacodynamic (PD) studies to increase the parameter precision. Several methods for optimizing non-linear mixed effect models has been proposed previously but the impact of optimizing other continuous design parameters, e.g. the dose, has not been investigated to a large extent. Moreover, the optimization method (sequential or simultaneous) for optimizing several continuous design parameters can have an impact on the optimal design. In the sequential approach the time and dose where optimized in sequence and in the simultaneous approach the dose and time points where optimized at the same time. To investigate the sequential approach and the simultaneous approach; three different PK–PD models where considered. In most of the cases the optimization method did change the optimal design and furthermore the precision was improved with the simultaneous approach.  相似文献   

5.
The development of covariate models within the population modeling program like NONMEM is generally a time-consuming and non-trivial task. In this study, a fast procedure to approximate the change in objective function values of covariate-parameter models is presented and evaluated. The proposed method is a first-order conditional estimation (FOCE)-based linear approximation of the influence of covariates on the model predictions. Simulated and real datasets were used to compare this method with the conventional nonlinear mixed effect model using both first-order (FO) and FOCE approximations. The methods were mainly assessed in terms of difference in objective function values (ΔOFV) between base and covariate models. The FOCE linearization was superior to the FO linearization and showed a high degree of concordance with corresponding nonlinear models in ΔOFV. The linear and nonlinear FOCE models provided similar coefficient estimates and identified the same covariate-parameter relations as statistically significant or non-significant for the real and simulated datasets. The time required to fit tesaglitazar and docetaxel datasets with 4 and 15 parameter-covariate relations using the linearization method was 5.1 and 0.5 min compared with 152 and 34 h, respectively, with the nonlinear models. The FOCE linearization method allows for a fast estimation of covariate-parameter relations models with good concordance with the nonlinear models. This allows a more efficient model building and may allow the utilization of model building techniques that would otherwise be too time-consuming.  相似文献   

6.
The aim of the study was to evaluate the nonparametric estimation methods available in NONMEM VI in comparison with the parametric first-order method (FO) and the first-order conditional estimation method (FOCE) when applied to real datasets. Four methods for estimating model parameters and parameter distributions (FO, FOCE, nonparametric preceded by FO (FO-NONP) and nonparametric preceded by FOCE (FOCE-NONP)) were compared for 25 models previously developed using real data and a parametric method. Numerical predictive checks were used to test the appropriateness of each model. Up to 1000 new datasets were simulated from each model and with each method to construct 90% and 50% prediction intervals. The mean absolute error and the mean error of the different outcomes investigated were computed as indicators of imprecision and bias respectively and formal statistical tests were performed. Overall, less imprecision and less bias were observed with nonparametric methods than with parametric methods. Across the 25 models, t-tests revealed that imprecision and bias were significantly lower (P < 0.05) with FOCE-NONP than with FOCE for half of the NPC outcomes investigated. Improvements were even more pronounced with FO-NONP in comparison with FO. In conclusion, when applied to real datasets and evaluated by numerical predictive checks, the nonparametric estimation methods in NONMEM VI performed better than the corresponding parametric methods (FO or FOCE).  相似文献   

7.
Pharmacokinetic/pharmacodynamic (PK/PD) models for hematological drug effects exist that assume that cells are produced by a zero- or first-order process, survive for a specific duration (cell lifespan), and then are lost. Due to the fact that delay differential equations (DDE) are needed for cell lifespan models, their software implementation is not straightforward. Our objective is to demonstrate methods to implement three different cell lifespan models for dealing with hematological drug effects and to evaluate the performance of NONMEM to estimate the model parameters. For the basic lifespan indirect response (LIDR) model, cells are produced by a zero-order process and removed due to senescence. The modified LIDR model adds a precursor pool. The LIDR model of cytotoxicity assumes a three-pool indirect model to account for the cell proliferation with capacity-limited cytotoxicity followed by maturation, and removal from the circulation. A numerical method (method of steps) implementing DDE in NONMEM was introduced. Simulation followed by estimation was used to evaluate NONMEM performance and the impact of the minimization algorithm (first-order method vs. first-order conditional estimation method) and the model for residual variability on the estimates of the population parameters. The FOCE method combined with log-transformation of data was found to be superior. This report provides methodology that will assist in application of population methods for assessing hematological responses to various types of drugs  相似文献   

8.
Purpose Population model analyses have shifted from using the first order (FO) to the first-order with conditional estimation (FOCE) approximation to the true model. However, the weighted residuals (WRES), a common diagnostic tool used to test for model misspecification, are calculated using the FO approximation. Utilizing WRES with the FOCE method may lead to misguided model development/evaluation. We present a new diagnostic tool, the conditional weighted residuals (CWRES), which are calculated based on the FOCE approximation. Materials and Methods CWRES are calculated as the FOCE approximated difference between an individual’s data and the model prediction of that data divided by the root of the covariance of the data given the model. Results Using real and simulated data the CWRES distributions behave as theoretically expected under the correct model. In contrast, in certain circumstances, the WRES have distributions that greatly deviate from the expected, falsely indicating model misspecification. CWRES/WRES comparisons can also indicate if the FOCE estimation method will improve the results of an FO model fit to data. Conclusions Utilization of CWRES could improve model development and evaluation and give a more accurate picture of if and when a model is misspecified when using the FO or FOCE methods.  相似文献   

9.
Bauer RJ  Guzy S  Ng C 《The AAPS journal》2007,9(1):E60-E83
An overview is provided of the present population analysis methods and an assessment of which software packages are most appropriate for various PK/PD modeling problems. Four PK/PD example problems were solved using the programs NONMEM VI beta version, PDx-MCPEM, S-ADAPT, MONOLIX, and WinBUGS, informally assessed for reasonable accuracy and stability in analyzing these problems. Also, for each program we describe their general interface, ease of use, and abilities. We conclude with discussing which algorithms and software are most suitable for which types of PK/PD problems. NONMEM FO method is accurate and fast with 2-compartment models, if intra-individual and interindividual variances are small. The NONMEM FOCE method is slower than FO, but gives accurate population values regardless of size of intra- and interindividual errors. However, if data are very sparse, the NONMEM FOCE method can lead to inaccurate values, while the Laplace method can provide more accurate results. The exact EM methods (performed using S-ADAPT, PDx-MCPEM, and MONOLIX) have greater stability in analyzing complex PK/PD models, and can provide accurate results with sparse or rich data. MCPEM methods perform more slowly than NONMEM FOCE for simple models, but perform more quickly and stably than NONMEM FOCE for complex models. WinBUGS provides accurate assessments of the population parameters, standard errors and 95% confidence intervals for all examples. Like the MCPEM methods, WinBUGS's efficiency increases relative to NONMEM when solving the complex PK/PD models.  相似文献   

10.
We evaluate by simulation three model-based methods to test the influence of a single nucleotide polymorphism on a pharmacokinetic parameter of a drug: analysis of variance (ANOVA) on the empirical Bayes estimates of the individual parameters, likelihood ratio test between models with and without genetic covariate, and Wald tests on the parameters of the model with covariate. Analyses are performed using the FO and FOCE method implemented in the NONMEM software. We compare several approaches for model selection based on tests and global criteria. We illustrate the results with pharmacokinetic data on indinavir from HIV-positive patients included in COPHAR 2-ANRS 111 to study the gene effect prospectively. Only the tests based on the EBE obtain an empirical type I error close to the expected 5%. The approximation made with the FO algorithm results in a significant inflation of the type I error of the LRT and Wald tests.  相似文献   

11.
We evaluate by simulation three model-based methods to test the influence of a single nucleotide polymorphism on a pharmacokinetic parameter of a drug: analysis of variance (ANOVA) on the empirical Bayes estimates of the individual parameters, likelihood ratio test between models with and without genetic covariate, and Wald tests on the parameters of the model with covariate. Analyses are performed using the FO and FOCE method implemented in the NONMEM software. We compare several approaches for model selection based on tests and global criteria. We illustrate the results with pharmacokinetic data on indinavir from HIV-positive patients included in COPHAR 2-ANRS 111 to study the gene effect prospectively. Only the tests based on the EBE obtain an empirical type I error close to the expected 5%. The approximation made with the FO algorithm results in a significant inflation of the type I error of the LRT and Wald tests.  相似文献   

12.
A population pharmacokinetic substudy design of a new chemical entity was evaluated based on the bias in parameter estimates and the power of detecting a specific subpopulation showing different clearance using a clinical trial simulation approach. The effect of analysis algorithms on type I error was also assessed. The design factors included the number of patients (n=100-300) and the number of sampling points per patient (n=2-6). Simulation data were generated from a model developed based on a Phase I study. The power was evaluated for a percentile of test statistics obtained by the simulation study. The clearance (CL) related parameters were estimated with sufficient accuracy in all study designs and all analysis algorithms: the first order (FO), first order conditional estimation (FOCE) and first order conditional estimation with interaction (FOCE-INTER) methods. With the FO and FOCE methods, the type I error rate increased as the frequency of sampling from each patient became higher, but such increase was hardly observed with the FOCE-INTER method. The power tended to depend on the size of the subpopulation. A large difference was found in the power of detecting a specific subpopulation showing a clearance decrease of 30% or 50%. Therefore, the most dominant factors controlling power would be the size of the subpopulation and the decreasing ratio of CL in the subpopulation. These findings obtained by the clinical trial simulation approach are useful for optimization of study design and determination of the limits of evaluation.  相似文献   

13.
Estimation methods for nonlinear mixed-effects modelling have considerably improved over the last decades. Nowadays, several algorithms implemented in different software are used. The present study aimed at comparing their performance for dose-response models. Eight scenarios were considered using a sigmoid E(max) model, with varying sigmoidicity and residual error models. One hundred simulated datasets for each scenario were generated. One hundred individuals with observations at four doses constituted the rich design and at two doses, the sparse design. Nine parametric approaches for maximum likelihood estimation were studied: first-order conditional estimation (FOCE) in NONMEM and R, LAPLACE in NONMEM and SAS, adaptive Gaussian quadrature (AGQ) in SAS, and stochastic approximation expectation maximization (SAEM) in NONMEM and MONOLIX (both SAEM approaches with default and modified settings). All approaches started first from initial estimates set to the true values and second, using altered values. Results were examined through relative root mean squared error (RRMSE) of the estimates. With true initial conditions, full completion rate was obtained with all approaches except FOCE in R. Runtimes were shortest with FOCE and LAPLACE and longest with AGQ. Under the rich design, all approaches performed well except FOCE in R. When starting from altered initial conditions, AGQ, and then FOCE in NONMEM, LAPLACE in SAS, and SAEM in NONMEM and MONOLIX with tuned settings, consistently displayed lower RRMSE than the other approaches. For standard dose-response models analyzed through mixed-effects models, differences were identified in the performance of estimation methods available in current software, giving material to modellers to identify suitable approaches based on an accuracy-versus-runtime trade-off.  相似文献   

14.
BACKGROUND AND OBJECTIVES: This study examined parametric and nonparametric population modelling methods in three different analyses. The first analysis was of a real, although small, clinical dataset from 17 patients receiving intramuscular amikacin. The second analysis was of a Monte Carlo simulation study in which the populations ranged from 25 to 800 subjects, the model parameter distributions were Gaussian and all the simulated parameter values of the subjects were exactly known prior to the analysis. The third analysis was again of a Monte Carlo study in which the exactly known population sample consisted of a unimodal Gaussian distribution for the apparent volume of distribution (V(d)), but a bimodal distribution for the elimination rate constant (k(e)), simulating rapid and slow eliminators of a drug. METHODS: For the clinical dataset, the parametric iterative two-stage Bayesian (IT2B) approach, with the first-order conditional estimation (FOCE) approximation calculation of the conditional likelihoods, was used together with the nonparametric expectation-maximisation (NPEM) and nonparametric adaptive grid (NPAG) approaches, both of which use exact computations of the likelihood. For the first Monte Carlo simulation study, these programs were also used. A one-compartment model with unimodal Gaussian parameters V(d) and k(e) was employed, with a simulated intravenous bolus dose and two simulated serum concentrations per subject. In addition, a newer parametric expectation-maximisation (PEM) program with a Faure low discrepancy computation of the conditional likelihoods, as well as nonlinear mixed-effects modelling software (NONMEM), both the first-order (FO) and the FOCE versions, were used. For the second Monte Carlo study, a one-compartment model with an intravenous bolus dose was again used, with five simulated serum samples obtained from early to late after dosing. A unimodal distribution for V(d) and a bimodal distribution for k(e) were chosen to simulate two subpopulations of 'fast' and 'slow' metabolisers of a drug. NPEM results were compared with that of a unimodal parametric joint density having the true population parameter means and covariance. RESULTS: For the clinical dataset, the interindividual parameter percent coefficients of variation (CV%) were smallest with IT2B, suggesting less diversity in the population parameter distributions. However, the exact likelihood of the results was also smaller with IT2B, and was 14 logs greater with NPEM and NPAG, both of which found a greater and more likely diversity in the population studied.For the first Monte Carlo dataset, NPAG and PEM, both using accurate likelihood computations, showed statistical consistency. Consistency means that the more subjects studied, the closer the estimated parameter values approach the true values. NONMEM FOCE and NONMEM FO, as well as the IT2B FOCE methods, do not have this guarantee. Results obtained by IT2B FOCE, for example, often strayed visibly away from the true values as more subjects were studied. Furthermore, with respect to statistical efficiency (precision of parameter estimates), NPAG and PEM had good efficiency and precise parameter estimates, while precision suffered with NONMEM FOCE and IT2B FOCE, and severely so with NONMEM FO. For the second Monte Carlo dataset, NPEM closely approximated the true bimodal population joint density, while an exact parametric representation of an assumed joint unimodal density having the true population means, standard deviations and correlation gave a totally different picture. CONCLUSIONS: The smaller population interindividual CV% estimates with IT2B on the clinical dataset are probably the result of assuming Gaussian parameter distributions and/or of using the FOCE approximation. NPEM and NPAG, having no constraints on the shape of the population parameter distributions, and which compute the likelihood exactly and estimate parameter values with greater precision, detected the more likely greater diversity in the parameter values in the population studied. In the first Monte Carlo study, NPAG and PEM had more precise parameter estimates than either IT2B FOCE or NONMEM FOCE, as well as much more precise estimates than NONMEM FO. In the second Monte Carlo study, NPEM easily detected the bimodal parameter distribution at this initial step without requiring any further information. Population modelling methods using exact or accurate computations have more precise parameter estimation, better stochastic convergence properties and are, very importantly, statistically consistent. Nonparametric methods are better than parametric methods at analysing populations having unanticipated non-Gaussian or multimodal parameter distributions.  相似文献   

15.
The uncertainty associated with parameter estimations is essential for population model building, evaluation, and simulation. Summarized by the standard error (SE), its estimation is sometimes questionable. Herein, we evaluate SEs provided by different non linear mixed-effect estimation methods associated with their estimation performances. Methods based on maximum likelihood (FO and FOCE in NONMEMTM, nlme in SplusTM, and SAEM in MONOLIX) and Bayesian theory (WinBUGS) were evaluated on datasets obtained by simulations of a one-compartment PK model using 9 different designs. Bootstrap techniques were applied to FO, FOCE, and nlme. We compared SE estimations, parameter estimations, convergence, and computation time. Regarding SE estimations, methods provided concordant results for fixed effects. On random effects, SAEM and WinBUGS, tended respectively to under or over-estimate them. With sparse data, FO provided biased estimations of SE and discordant results between bootstrapped and original datasets. Regarding parameter estimations, FO showed a systematic bias on fixed and random effects. WinBUGS provided biased estimations, but only with sparse data. SAEM and WinBUGS converged systematically while FOCE failed in half of the cases. Applying bootstrap with FOCE yielded CPU times too large for routine application and bootstrap with nlme resulted in frequent crashes. In conclusion, FO provided bias on parameter estimations and on SE estimations of random effects. Methods like FOCE provided unbiased results but convergence was the biggest issue. Bootstrap did not improve SEs for FOCE methods, except when confidence interval of random effects is needed. WinBUGS gave consistent results but required long computation times. SAEM was in-between, showing few under-estimated SE but unbiased parameter estimations.  相似文献   

16.
With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.  相似文献   

17.
This review describes four basic physiologic indirect pharmacodynamic response (IDR) models which have been proposed to characterize the pharmacodynamics of drugs that act by indirect mechanisms such as inhibition or stimulation of the production or dissipation of factors controlling the measured effect. The principles underlying IDR models and their response patterns are described. The applicability of these basic IDR models to characterize pharmacodynamic responses of diverse drugs such as inhibition of gastric acid secretion by nizatidine and stimulation of MX protein synthesis by interferon α-2a is demonstrated. A list of other uses of these models is provided. These models can be readily extended to accommodate additional complexities such as nonstationary or circadian baselines, equilibration delay, depletion or accumulation of a precursor pool, sigmoidicity, or other mechanisms. Indirect response models which have a logical mechanistic basis account for time-delays in many responses and are widely applicable in clinical pharmacology.  相似文献   

18.
For the purpose of population pharmacometric modeling, a variety of mathematic algorithms are implemented in major modeling software packages to facilitate the maximum likelihood modeling, such as FO, FOCE, Laplace, ITS and EM. These methods are all designed to estimate the set of parameters that maximize the joint likelihood of observations in a given problem. While FOCE is still currently the most widely used method in population modeling, EM methods are getting more popular as the current-generation methods of choice because of their robustness with more complex models and sparse data structures. There are several versions of EM method implementation that are available in public modeling software packages. Although there have been several studies and reviews comparing the performance of different methods in handling relatively simple models, there has not been a dedicated study to compare different versions of EM algorithms in solving complex PBPK models. This study took everolimus as a model drug and simulated PK data based on published results. Three most popular EM methods (SAEM, IMP and QRPEM) and FOCE (as a benchmark reference) were evaluated for their estimation accuracy and converging speed when solving models of increased complexity. Both sparse and rich sampling data structure were tested. We concluded that FOCE was superior to EM methods for simple structured models. For more complex models and/ or sparse data, EM methods are much more robust. While the estimation accuracy was very close across EM methods, the general ranking of speed (fastest to slowest) was: QRPEM, IMP and SAEM. IMP gave the most realistic estimation of parameter standard errors, while under- and over- estimation of standard errors were observed in SAEM and QRPEM methods.  相似文献   

19.
Lipolysis (the breakdown of fat) is generally estimated using stable isotopes, where the rate of appearance (Ra) of glycerol is calculated using Steele's equations. These equations are based on single-compartment differential equations for tracer and tracee where rate of change is approximated by the change in concentration from one time point to the next. We demonstrate an alternative approach to estimate metabolic processes, and to determine relationships between hormones and their actions. Growth hormone (GH) or saline was administered in a double-blind randomized crossover design to eight normal weight (NW) and eight obese (OB) subjects, and differences in the effects of GH on lipolysis were investigated. The relationship between the plasma GH concentration and glycerol Ra (as an index of lipolysis) was described using PK/PD modeling. The model incorporated the plasma GH, glycerol and D5-glycerol concentration profiles, and two sequential effect compartments to account for the delay in response. The estimated time-profile of glycerol Ra was compared with estimates obtained using Steele's equations. NONMEM (Version V) FOCE was used for parameter estimation, four differential equations were used, and glycerol and D5-glycerol were estimated simultaneously. The model adequately described both primary variables (glycerol) and derived variables (glycerol Ra as obtained using Steele's equations). Modeling allowed the assessment of potential differences in GH sensitivity in the two groups, and indicated the importance of GH in lipolysis.  相似文献   

20.
The aim of this study was to describe population pharmacokinetics of cisplatin in an Indian cancer population. Dosage adjustment based on individual pharmacokinetic parameters is of considerable importance for effective and safe use of drugs. Extensive work on cisplatin and other was carried out in different cancer patient populations, but no data are available in Indian cancer patients. In the present study 154 steady state concentrations of cisplatin were analyzed from 46 patients. Pharmacostatistical work was done by using NONMEM. The covariates evaluated in this study were age, body weight, height, sex, and creatinine clearance. The model found to best describe the data following the FO and FOCE method was: Clearance (CL)?=?θ1*(CLCR/74.92) *EXP (η1) and Volume (V)?=?{θ2 *(AGE/52.3) + θ3*(BSA/1.55)}*EXP (η2). The final model estimates of CL and V estimated by FO method were 3.02?L/h and 2.72?L, respectively, and by FOCE method were 3.39?L/h and 4.48?L, respectively. These parameters are utilized for individualizing the loading and maintenance doses in pediatric patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号